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We analyze theoretically the transport properties of a weakly interacting ultracold Bose gas enclosed in
two reservoirs connected by a constriction. We assume that the transport of the superfluid part is
hydrodynamic, and we describe the ballistic transport of the normal part using the Landauer-Büttiker
formalism. Modeling the coupled evolution of the phase, atom number, and temperature mismatches
between the reservoirs, we predict that Helmholtz (plasma) oscillations can be observed at nonzero
temperatures below Tc. We show that, because of its strong compressibility, the Bose gas is characterized
by a fast thermalization compared to the damping time for plasma oscillations, accompanied by a fast
transfer of the normal component. This fast thermalization also affects the gas above Tc, where we present a
comparison to the ideal fermionic case. Moreover, we outline the possible realization of a superleak
through the inclusion of a disordered potential.
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Recent experiments have initiated the exploration of the
transport properties of ultracold atomic gases [1–9] in
geometries comprising two reservoirs separated by a
potential barrier or a constriction (see Fig. 1). The con-
striction-based geometry presents pluridisciplinary issues
related to mesoscopic physics, disorder, and superfluidity.
In the context of mesoscopic physics [10], it has been used
to observe contact resistance [4], quantized conductance
[8], and thermoelectric effects [6,11] in ultracold Fermi
gases. The creation of directed atomic currents in between
two connected reservoirs makes this geometry relevant
for atomtronics [12]. Constriction-based setups have also
allowed for the investigation of superflow [5], as well as the
exploration of the competition of disorder with super-
fluidity [9] and with conductance [6].
Constricted geometries hold further promises for atomic

superfluids. First, the observation of the fountain effect of
superfluid helium [13] relies on the use of a superleak,
which lets the superfluid through while blocking the
normal part. Superleaks are familiar elements in the context
of experiments on helium [14], but their design in the
context of ultracold gases remains an open question. Their
implementation would allow, for instance, the implemen-
tation of new adiabatic cooling schemes [15], the efficient
excitation of second sound [14], and, more generally, an
advanced control over transport phenomena. Second,
superfluids trapped in two connected reservoirs are
expected to undergo plasma oscillations, which are analo-
gous to the oscillations of a gas in between two connected
Helmholtz resonators (see Ref. [16], Sec. 69). These
oscillations have been extensively studied in the context
of liquid helium [17]. Similar oscillations have also
been observed with ultracold Bose gases in double-well
potentials [18,19].

In ultracold Fermi gases, the occurrence of BCS-type
superfluidity occurs at reasonably high temperatures only
in the presence of strong interactions [20]. In this case, both
the superfluid and normal parts of the quantum fluid are
deep in the hydrodynamic regime, which affords a strong
analogy with superfluid helium [21]. However, it also
makes it more difficult to tell the behavior of the superfluid
fraction apart from that of the normal fraction. Hence, in
the present Letter, we focus on weakly interacting bosonic
gases, where the parameters can be chosen such that
superfluid transport is hydrodynamic whereas normal
transport is ballistic.
Motivated by the possible realization of a superleak, we

develop a theory describing the transport properties of
weakly interacting uniform Bose gases under these con-
ditions, reflecting the different transport regimes for the
superfluid and normal parts. We use it to show that plasma
oscillations are observable even at nonzero temperatures
below Tc, and we describe the damping mechanism due to
the coupling between the superfluid and normal parts. We
also show that the large compressibility of the Bose gas
leads to surprisingly fast thermalization compared to the
damping time of the transport phenomena. This new effect
is related to the thermoelectric properties of the gas. Below
Tc, it causes an efficient transport of the normal part at short

FIG. 1 (color online). Two reservoirs can exchange particles
and heat through a constriction.
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times; above Tc, it yields a key difference compared to ideal
fermionic gases. It hinders the realization of a superleak,
which will require an additional ingredient, such as a
disordered potential.
We describe the ballistic transport of the normal part

using the Landauer-Büttiker formalism for quantum trans-
port [22]. To our knowledge, the present work is the first
application of this formalism to massive bosons. It had been
applied to (massless) phonons to analyze heat conductance
at the quantum level [23].
We assume that the two compartments of Fig. 1 are box

traps with the same volume VL ¼ VR, each enclosing a
uniform superfluid. We model the constriction by an
isotropic radial harmonic trap of frequency ω⊥=2π. The
hydrodynamic assumption for superfluid transport through
the constriction (see Ref. [24], Chap. 5) is valid if
ℏω⊥ ≪ gn, where n is the mean gas density inside the
constriction, g ¼ 4πℏ2a=m is the interaction constant, a is
the scattering length, and m is the atomic mass.
We call δNs ¼ NR

s − NL
s and δNn ¼ NR

n − NL
n the differ-

ence in superfluid and normal atom numbers between the
right and left compartments of Fig. 1, and δS ¼ SR − SL the
analogous entropy difference. We focus on small deviations
from the homogeneous situation. In this linear-response
regime, the superfluid current INs

, the normal current INn
,

and the entropy current IS, are linear functions of the small
differences in phase δϕ, chemical potential δμ, and temper-
ature δT between the two reservoirs, which we write in
matrix form as

0
B@

INs

INn

IS=kB

1
CA ¼

0
B@

IJ=ω⊥ 0 0

0 L11 L12

0 L12 L22

1
CA

0
B@

ℏω⊥δϕ
δμ

kBδT

1
CA: ð1Þ

Equation (1) generalizes the 2 × 2 matrix introduced in
Ref. [6] in the absence of superfluid. The first line of Eq. (1)
reflects the definition of the superfluid current, js ¼ nsvs,
where ns is the mean superfluid density in the reservoirs,
and vs ¼ ℏ∇ϕ=m is the superfluid velocity. For the
geometry of Fig. 1, IJ ¼ 2nsA=ml, where l is the con-
striction length and A ¼ πgns=mω2⊥ is its effective
Thomas-Fermi section. The two zeros in the first column
reflect the fact that the normal-part quantities δNn and δS
do not explicitly depend on δϕ. The coefficients (Lij)
describe the ballistic transport of the normal part and the
entropy. The normal part consists of the thermal excitations
present in the gas. Assuming that kBT ≫ gn, these are
particles, and an analysis of the role of interactions using
Hartree-Fock theory reveals that the ideal-gas expressions
for the Lij’s are applicable. This assumption on T rules out
low-temperature collective phenomena, such as anomalous
phonon transmission [25] or Andreev reflection [26]. For
uniform Bose gases, it is easy to satisfy while maintaining
the presence of superfluid (T < Tc), because the ratio
gn=kBTc is of the order of 0.04.

We calculate the Lij’s using the Landauer-Büttiker
formalism (see Ref. [22], Chap. 2). We describe the
excitations in each reservoir using Bose distributions
ηB, whose difference δηB ¼ ηBR − ηBL ¼ ∂ηB=∂μjTδμþ∂ηB=∂TjμδT. For T < Tc, the Lij’s are given by [27]

hL11 ¼ −
π2

6

�
kBT
ℏω⊥

�
2

;

L12 ¼ L21 ¼
18

π2
ζð3ÞL11; L22 ¼

4π2

5
L11; ð2Þ

where h is Planck’s constant. The Lij’s do not depend on l
(∼5 μm), because it is much shorter than the thermal mean
free path inside the reservoirs (∼100 μm). Furthermore, the
Lij’s all share the same dependence on T and ω⊥. This
second property is an important difference with respect to
the fermionic case [6], where the chemical potential is of
the order of the Fermi energy and, hence, enters in the
expression for the transport coefficients.
The coupling between the superfluid and normal parts

arises from the equation of state, which involves the total
gas density in each reservoir, e.g., nR ¼ ðNR

s þ NR
n Þ=VR,

and from the equation for the superfluid velocity, ℏ∂tδϕ ¼
−δμ [24]. Combining these equations with Eq. (1), we
obtain a differential system describing the evolution of δϕ,
δN, and δT [28],

τ1
d
dt

0
B@

ℏδϕ
τ1

δN
κT

kBδT

1
CA ¼

0
B@

0 −1 0

ðωplτ1Þ2 −1 þS

0 S=l −τ1=τT

1
CA

0
B@

ℏδϕ
τ1

δN
κT

kBδT

1
CA:

ð3Þ
In Eq. (3), κT ¼ ∂N=∂μjT is the isothermal compressibility,
CN ¼ T∂S=∂TjN is the heat capacity, l ¼ CN=κTT is their
ratio, and the Seebeck coefficient S ¼ −∂μ=∂TjN −
L12=L11 encodes the thermoelectric properties of the gas.
Equation (3) introduces three time scales,

τ1 ¼
κT

−L11

; τpl ¼ 2π

ffiffiffiffiffi
κT
IJ

r
; τT ¼ CN=T

−L22

; ð4Þ

where τ1 is related to normal transport and determines the
damping of plasma (pl) oscillations and thermoelectric
effects, the bare plasma period τpl ¼ 2π=ωpl is related to
superfluid transport, and τT is the thermalization time
(see Fig. 2).
Weakly interacting Bose gases are characterized by a

very large compressibility (κT ¼ N=gn for T < Tc),
whereas CN=NkB is finite (see Fig. 3, left). Hence, the
ratio l is very small, of the order of a few 10−2, which is a
key difference with respect to ideal Fermi gases (l ∼ 1,
Fig. 3, center) and liquid helium 4 (l ∼ 10 near the
superfluid transition, Fig. 3, right). This specific property
of Bose gases leads to τT ≪ τ1; i.e., thermalization is
much faster than the damping due to normal transport.
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Furthermore, if T is high enough for the Hartree-Fock
theory to hold (kBT≳ a few gn), but low enough for the
superfluid fractionNs=N ¼ 1 − ðT=TcÞ3=2 to be substantial
(T=Tc ≲ 0.5), the time scales satisfy τT ≪ τpl < τ1. On the
other hand, if T ≳ Tc, the superfluid is absent and our
description reduces to the coupled system on δN and δT
introduced in Ref. [6], corresponding to the lower right
2 × 2 block of the matrix in Eq. (3).
Plasma oscillations.—We now turn to the analysis of

plasma oscillations in the geometry of Fig. 1. These
oscillations can be excited by introducing an initial atom
number mismatch δN between the two reservoirs. We have
predicted their occurrence at T ¼ 0 by numerically solving
the Gross-Pitaevskii equation, using a Crank-Nicolson
scheme [30,31]. We have investigated the 2D geometry
represented in Fig. 1, as well as the corresponding
cylindrically symmetric three-dimensional geometry,
choosing the linear size of the reservoirs and the atomic
density in each reservoir to be of the same order of
magnitude as in Ref. [32]. Our results show that the
quantum pressure term in the Gross-Pitaevskii equation
(see Ref. [24], Sec. 5.2) is negligible for typical values of
the density, reservoir volumes, and constriction radius,
which validates the hydrodynamic approach for superfluid
transport. They confirm that zero-temperature oscillations

occur at the Helmholtz frequency ωð0Þ
pl (see Ref. [16],

Sec. 69) , which is of the order of a few Hz and, hence,
amenable to observation.

Our model allows us to investigate plasma oscillations at
nonzero temperatures. First, our Hartree-Fock description
shows that the bare plasma frequency ωpl scales with
a=l1=2, whereas the damping factor ωplτ1 is proportional to
ðTc=TÞ2=

ffiffi
l

p
and does not depend on a. Therefore, the

observation of oscillations will be favored by using smaller
constriction lengths, lower temperatures T=Tc, and larger
scattering lengths a. Plasma oscillations occur if the matrix
entering Eq. (3) has two complex-conjugate eigenvalues
with negative real parts, (−1=τdamp � iωosc). Then, the
plasma frequency is ωosc=2π and the damping time is
τdamp. Figure 4, left, shows the dependence of ωosc and
τdamp on T=Tc for a typical 87Rb gas below Tc. Oscillations
occur for T ≲ 0.95Tc. For higher temperatures, the super-
fluid fraction is negligible, and the damping time coincides
with that predicted by the normal-part model of Ref. [6].
Thermalization being a fast process compared to the time

scales τpl and τ1 causes the evolution of δT to approx-
imately decouple from that of δϕ and δN. Hence, the
dynamics of these latter two quantities is almost isothermal
and is piloted by the upper left 2 × 2 block of the matrix
entering Eq. (3). The maximum amplitude of the temper-
ature oscillations can be determined by assuming that the
dynamics of δT is driven by that of δN and δϕ:

δTmax

T
¼ gn

kBT
S

S2 þ L
δN0

N
; ð5Þ

where L ¼ L22=L11 − ðL12=L11Þ2. The presence of the
factor gn=kBT in Eq. (5) keeps δTmax=T small and confirms
the near-isothermal nature of these oscillations. Figure 4,
left, shows that the frequency and damping time predicted
by the isothermal model (green) agree with the full
calculation (red). Hence, the main decay mechanism is
due to the presence of the normal part. Thermoelectric
effects, neglected in the isothermal model, mostly affect the
damping time, causing it to lengthen.
The plasma oscillations caused by an initial number

mismatch δN0=N ¼ 0.1 are shown in Fig. 4, center, for the
parameters of Fig. 2. This figure also shows the number of
normal atoms that have traveled through the constriction,
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FIG. 2 (color online). The time scales τT (dashed red line), τpl
(solid blue line), τ1 (dotted green line), for a 87Rb gas with
n ¼ 1019 atoms=m3, N ¼ 105 atoms in each reservoir, ω⊥=2π ¼
15 Hz and l ¼ 5 μm.
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FIG. 3 (color online). Specific heat CN (dotted green line), compressibility κT (dashed blue line), and their ratio l
(solid red line), for ideal Bose (left) and Fermi (center) gases, and for liquid helium 4 (right, density ρ0 ¼ 145.3 kg=m3,
calculated using the data in Ref. [29]).
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δNtr
nðtÞ [33], to reveal that these oscillations are performed

almost exclusively by the superfluid part.
Thermalization at temperatures below Tc.—In order to

reveal the key role played by fast thermalization in ultra-
cold Bose gases, we now consider the response of the
system to an initial temperature mismatch δT0. We consider
temperatures T=Tc ≲ 0.5. In this case, the dynamics of the
system at small times of the order of τT is driven by the
relaxation of temperature towards δT ¼ 0. This fast process
quickly converts the initial temperature mismatch δT0 into
a number imbalance δNmax,

δNmax

N
¼ 15

4

ζð5=2Þ
ζð3=2Þ

S
S2 þ L

�
T
Tc

�
3=2 δT0

T
: ð6Þ

The sign of δNmax is dictated by the Seebeck coefficient S,
which is negative, just like for fermions [6]. Furthermore,
according to Eq. (1), temperature variations do not directly
couple to the motion of the superfluid part. Hence, this fast
relaxation process almost exclusively drives the transport of
normal atoms. On a longer time scale, the oscillation then
proceeds quasi-isothermally as before, with the frequency
ωosc and the damping time τdamp. This process is illustrated
in Fig. 4, right, for δT0=T ¼ 0.1 and the parameters used
in Fig. 2. On the other hand, if a disordered potential is
added to the system, the response to a temperature gradient
δT > 0 will be very different from Fig. 4 (right). Assuming
that the normal flow is blocked, the system will undergo
plasma oscillations about a state of chemical equilibrium
with δN=N ¼ −0.04, in accordance with the thermome-
chanical effect predicted in Ref. [15].
Thermalization at temperatures above Tc.—In Bose

gases, the ratio l remains small for temperatures
T ≳ Tc, where the physics is captured by the ideal-gas
model and a direct comparison with fermions is possible
(see Fig. 3, left and center). The gas contains no superfluid
part, and the dynamics of δN and δT are described by the
lower right 2 × 2 block of Eq. (3), which coincides with
the model of Ref. [6]. Equation (4) shows that the

thermalization time τT is determined by the specific heat,
which is of the same order of magnitude for Bose and Fermi
gases. However, the damping time τ1 involves the com-
pressibility, which is much larger for bosons than for
fermions. Therefore, damping is much slower in Bose
gases than in Fermi gases. The variation of δN reflects the
two time scales τT and τ1. In both cases, the Seebeck
coefficient S is negative; therefore, δN first decreases
towards negative values. It reaches a minimum for
short times tm ≃ τT ln ðτ1=τTÞ, whose value δNm ≈
δT0=TCNS=ðS2 þ LÞ does not depend critically on the
statistics. However, the difference between bosons and
fermions is apparent during the long-time relaxation
towards δN ¼ 0. Figure 5 compares the cases of bosonic
41K at the temperature T=Tc ¼ 1.1 and fermionic 40K at the
temperature T=TF ¼ 1.1, with TF being the Fermi energy.
These two isotopes differ only by the statistics which they
obey, and the relaxation is 50 times longer for bosons
(τB1 ∼ 1.5 s) than for fermions (τF1 ∼ 30 ms).
Strictly speaking, the plasma oscillations we have

analyzed for T < Tc are not Josephson oscillations.
These would occur for μ ≪ ℏω⊥, which is opposite to
our hydrodynamicity condition for the superfluid flow.
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FIG. 4 (color online). Plasma oscillations in a 87Rb gas, for the parameters of Fig. 2. Left: frequency νosc ¼ ωosc=2π (top) and damping
time τdamp (bottom) for plasma oscillations at nonzero temperatures below Tc, calculated using Eq. (3) (red “full”) and its isothermal
limit (dashed green “isothermal”). Center: the initial imbalance in atom numbers δN0=N ¼ 0.1 causes quasi-isothermal oscillations.
Right: the initial temperature mismatch δT0=T ¼ 0.1 yields fast thermalization accompanied by an efficient transport of the thermal part
at short times, followed by quasi-isothermal oscillations. In both cases, T=Tc ¼ 0.4, and we plot δN=N (solid green line), δT=T (dotted
red line, multiplied by 10), and δNtr

n=N (dashed purple line), as a function of time.
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FIG. 5 (color online). Evolution of δN=N following an initial
temperature imbalance δT0=T ¼ 0.1 for bosonic 41K (solid blue
line, T ¼ 1.1Tc) and fermionic 40K (dashed green line,
T ¼ 1.1TF). No superfluid is present, and the constriction is
more stringent (ω⊥=2π ¼ 500 Hz) to achieve bosonic decay
times of the order of 1 s.
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However, in the linear-response limit, the two equations
determining the superfluid dynamics at T ¼ 0 are formally
equivalent to the Josephson equations (see Ref. [24],
Chap. 15). A qualitative difference with true Josephson
oscillations will emerge in the nonlinear regime, where
deviations from the law ΔNs ¼ IJ sinðΔϕÞ should be seen.
The classical-to-quantum crossover to Josephson oscilla-
tions can be explored numerically at T ¼ 0 by varying the
constriction geometry. Furthermore, if both μ and T are
≪ ℏω⊥, the discretization of the channel conductance
(recently observed in Fermi gases [8]) will play a key role.
In conclusion, we have shown that, in the case where the

transport of the normal part is ballistic, plasma oscillations
can be observed at nonzero temperatures below Tc, and that
thermalization between the reservoirs is fast compared to
the oscillation period, causing an efficient transport of the
normal part at short times (see Fig. 4, right). A possible way
to inhibit normal transport, and thus to realize a superleak,
is to add a disordered potential inside the constriction, for
instance by projecting a speckle [6], in analogy with the
fine powders used in the historical superleaks [13]. The
presence of disorder should not impede superfluid flow
[34], but the normal flow will be dictated by a competition
between conductance and disorder inside the channel,
whose analysis in the fermionic case has been initiated
in Ref. [6].
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