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Dipolar-induced resonance for ultracold bosons in a quasi-one-dimensional optical lattice
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We study the role of the dipolar-induced resonance (DIR) in a quasi-one-dimensional system of ultracold
bosons. We first describe the effect of the DIR on two particles in a harmonic trap. Then, we consider a deep
optical lattice loaded with ultracold dipolar bosons. In order to describe this system, we introduce a novel
atom-dimer extended Bose-Hubbard model, which is the minimal model correctly accounting for the DIR. We
analyze the impact of the DIR on the phase diagram at T = 0 by exact diagonalization of a small-sized system.
We show that the DIR strongly affects this phase diagram. In particular, we predict the mass density wave to
occur in a narrow domain corresponding to weak nearest-neighbor interactions, and we predict the occurrence
of a collapse phase for stronger dipolar interactions.
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I. INTRODUCTION

The recent experimental developments in the field of
ultracold dipolar gases have opened up fascinating prospects
for the study of systems exhibiting dipole–dipole interaction
(DDI) [1,2]. Bose-Einstein Condensates (BECs) of magnetic
atoms have been realized using chromium [3], erbium [4],
and dysprosium [5]. However, atomic magnetic moments are
small (�10 μB, where μB is the Bohr magneton), and therefore
the effects of the DDI observed with these systems have
remained perturbative up to now [6]. The recent realization of
the ultracold heteronuclear molecules RbK [7] and NaK [8],
which both carry electric dipole moments of the order of 1 D,
offers a promising route towards stronger DDI effects, but
quantum degeneracy still remains to be achieved with these
systems. Rydberg atoms boast much larger dipole moments
but yield challenging experimental problems associated with
time and length scales [9].

The DDI is anisotropic and long ranged, and dipolar
gases thus allow for the quantum simulation of more general
Hamiltonians than those accessible with nondipolar neutral
particles, whose interaction is described by the standard
s-wave interaction [10]. Trapping a dipolar system into lower
dimensions stabilizes it with respect to two-body [11] and
many-body [12] instabilities caused by the attractive part of
the three-dimensional (3D) DDI. This has prompted detailed
studies of dipolar systems in 2D and quasi-2D [13,14], bilayer
[15], and quasi-1D [16–19] geometries.

Experiments involving dipolar bosons in optical lattices
have recently been performed both with atomic BECs [20]
and noncondensed dipolar molecules [21,22]. Up to now, their
standard theoretical description has relied on the extended
Bose-Hubbard model (EBHM) accounting for the interaction
between nearest and more distant neighbors [1]. The 1D
EBHM has revealed the occurrence, beyond the standard
Mott-insulator (MI) and superfluid (SF) phases, of a mass
density wave (MDW) phase [18,23] and a Haldane insulator
phase [24,25].

The proper description of specific atomic systems by lattice
models such as the EBHM requires a careful mapping between

models and physical systems. This has already been pointed
out for the Hubbard model [26], but the nontrivial effects
associated with long-range and anisotropic interactions are
even more important. As a first step in this direction, we
analyze the important role played by the dipolar–induced
resonance (DIR) [27,28], which is a low-energy resonance
occurring when the dipole strength is varied. We show that the
DIR affects both the two-body and the many-body physics of
the system (see, e.g. Ref. [29] about the BEC-BCS crossover).

In this article, we consider a quasi-1D lattice system of
bosonic dipoles in the tight-binding regime [30,31].1 We
assume that the dipole moments are aligned perpendicularly to
the trap axis. In this situation, a single DIR occurs. Accounting
for it requires going beyond the single-band EBHM. We
develop an atom-dimer EBHM, which is the minimal model
capturing the DIR. Even at this level, we find that the DIR has
a strong impact on the many-body phase diagram as compared
to previous descriptions [23,25].

The scattering and bound-state properties of the DDI have
been studied numerically for free-space models [32] and for
3D and 2D lattice systems [33]. In our quasi-1D geometry,
we model the DDI using an effective potential obtained by
averaging the transverse degrees of freedom into the harmonic-
oscillator ground state [16,17]:
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where r∗ = mD2/h̄2 is the dipolar length, with D being the
dipolar strength. The range of this potential is determined
by the oscillator length l⊥ = (h̄/mω⊥)1/2 in the strongly

1Our analysis holds for both atomic and molecular dipoles.
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confined directions y and z. The term g1D = 2h̄2a3D/ml2
⊥ is the

strength of the s-wave contact interaction for a 3D scattering
length a3D [34], which can be manipulated using a Feshbach
resonance [35]. It competes with the DDI to determine the
stability and the phase of the system [36]. We assume g1D = 0
unless otherwise specified. Under this assumption, Eq. (1)
still contains a contact term proportional to r∗. The use of
Eq. (1) amounts to neglecting the role of confinement-induced
resonances [37]. Their interplay with the DIR might lead to
even richer physics, which we are currently investigating.

II. TWO-BODY PHYSICS

The basic building block of our many-body lattice Hamil-
tonian [Eq. (4)] is provided by the solution of the two-body
problem in a single lattice site. Hence, we solve for the
ground-state of two dipolar bosons in a 1D harmonic well,
with the trapping frequency ω0 and the oscillator length
l0 = (h̄/mω0)1/2. The center-of-mass and relative motions
are decoupled, and the relative motion is governed by the
following Hamiltonian:

H2B = p2

2mr

+ 1

2
mrω

2
0x

2 + V1D(x), (2)

where x is the interparticle distance, p is its conjugate
momentum, and mr = m/2 is the reduced mass.

Unlike for the contact interaction [38], the Hamiltonian
H2B cannot be diagonalized analytically. We seek its ground
state numerically, by considering the restriction of H2B onto
a subspace spanned by a finite number of basis states {|φn〉}.
Depending on the value of r∗, V1D supports either no bound
state or a single one. The bound state is present for large enough
values of r∗, and its entrance coincides with the occurrence of
the DIR. The “bare” bound state supported by the attractive
contact part of V1D(x) plays a key role. Its wave function is
ψBS(x) = √

κ exp(−κ|x|), where κ = r∗/(3l2
⊥), and its cusp

at x = 0 cannot be reproduced by projecting |ψBS〉 onto any
finite number of harmonic oscillator eigenstates which are all
smooth at x = 0. Hence, the DIR physics can only be captured
if a wave function which has a cusp at x = 0 is included in
the basis {|φn〉}. The smallest such basis is {|φ0〉,|φ−1〉}, where
|φ0〉 is the ground state of the 1D harmonic oscillator with
frequency ω0, and |φ−1〉 ∝ |ψBS〉 − 〈φ0|ψBS〉|φ0〉 is a linear
combination of |ψBS〉 and |φ0〉 chosen such that the basis is
orthonormal. Hence, for a given value of r∗, we replace H2B

by the following two-state Hamiltonian:

H2state =
(

〈φ0|H2B|φ0〉 〈φ0|H2B|φ−1〉
〈φ−1|H2B|φ0〉 〈φ−1|H2B|φ−1〉

)
(3)

The diagonalization of H2state yields the ground-state energy
E2B(r∗) and the corresponding wave function |�2B(r∗)〉.

The applicability of the quasi-1D effective potential
[Eq. (1)] to our harmonically confined system requires l⊥/l0 to
be small. The energy E2B(r∗) is plotted in Fig. 1 (bottom) for
l⊥/l0 = 0.4. Including more harmonic oscillator states in the
basis allows for the calculation of higher-energy states (Fig. 2,
bottom). However, it does not affect the qualitative behavior
of the ground-state energy E2B(r∗) as long as |φ−1〉 is also
included (Fig. 2, top).
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FIG. 1. (Color online) Top: Matrix elements of the two-state
Hamiltonian H2state describing two bosonic dipoles in a harmonic
trap, as a function of the dipolar length r∗. Bottom: Corresponding
ground-state (red) and excited-state (dashed gray) energies.

The nonmonotonic behavior of E2B(r∗) is a signature
of the DIR. The ground-state energy goes below h̄ω0/2
for r∗ > r∗

crit, where r∗
crit/l0 = 0.90 for l⊥/l0 = 0.4. In the
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FIG. 2. (Color online) Top: Ground-state energy E2B(r∗) of the
Hamiltonian H2B, for g1D = 0 and l⊥/l0 = 0.4, including 1 (blue),
3 (green), 6 (orange), and 9 (red) harmonic oscillator states, without
(dashed lines) and with (solid lines) the bare bound state |φ−1〉 in
the projection basis. Bottom: The four lowest eigenvalues of H2B as a
function of r∗, for g1D = 0 (green) and choosing g1D = 2h̄2r∗/(3ml2

⊥)
to cancel the contact term (dashed red), calculated including six
harmonic oscillator states and the bare bound state |φ−1〉 in the basis.
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many-body treatment described below, we are interested in
situations where the dimer population is very small. Similarly
to Feshbach resonance physics [35], the existence of the
closed channel has a strong impact even though it is only
marginally populated. Moreover, the dimer population being
nearly vanishing will help us simplify the problem to an
effective open-channel model. This assumption is satisfied
here, as the overlap |〈φ−1|�2B〉|2 remains smaller than 0.10 for
r∗ � r∗

crit. This overlap only becomes substantial if |φ0〉 and
|φ−1〉 have comparable energies, i.e., for r∗/l0 � 2.13 (Fig. 1,
top). The bound-state population near r∗

crit increases as l⊥/l0
decreases, but it remains <0.15 for l⊥/l0 � 0.2.

Figure 2 (bottom) shows the r∗-dependence of the low-
est eigenvalues of H2B in two different situations: (i) the
s-wave interaction term g1D = 0 and (ii) g1D �= 0 cancels the
contact term in Eq. (1) completely [17]. The r∗ dependence
of the energy levels in these two situations is completely
different. This will allow for an observation of the DIR using
spectroscopic techniques [39].

III. MANY-BODY PHYSICS

We now consider N dipolar particles in a deep quasi-1D
optical lattice with unity filling factor. We describe this
system using a Bose-Hubbard model [10,40] extended to
include nearest-neighbor interactions. We focus on the regime
r∗ � r∗

crit, so that the DIR affects the two-body properties even
though the number of dimers present in the system is extremely
small. In order to properly account for the resonance, we
start from the two-state description introduced above for the
two-body problem [Eq. (3)]. Each of the two states |φ0〉 and
|φ−1〉 yields a band and, hence, we introduce an atom-dimer
EBHM whose Hamiltonian reads

HAD =
∑

i

[
εani + U

2
ni(ni − 1) − Ja(a†

i ai+1 + H.c.)

+V nini+1 + εdmi − Jd (b†i bi+1 + H.c.)

+
(b†i aiai + H.c.)

]
. (4)

In Eq. (4), a
†
i and b

†
i are the creation operators in the site i for

atoms and dimers, respectively, and ni = a
†
i ai and mi = b

†
i bi

are the corresponding number operators. Atoms and dimers are
created in the ground state of the well i. The atomic tunneling
coefficient Ja is taken from Ref. [41]. The atomic on-site and
nearest-neighbor interaction parameters U and V are defined
in terms of V1D and the Wannier wave functions wi(x) and
wi+1(x) localized on the sites i and i + 1 by [30]

U =
∫∫

dx1dx2 w2
i (x1)w2

i (x2) V1D(x1 − x2), (5a)

V =
∫∫

dx1dx2 w2
i (x1)w2

i+1(x2) V1D(x1 − x2). (5b)

We use the Gaussian approximation to the Wannier functions
wi(x). The on-site energy for atoms and dimers, εa and εd ,
the atomic on-site interaction energy U , and the atom-dimer
conversion rate 
 can then all be expressed in terms of the

matrix elements appearing in Eq. (3), namely,

εa = 1

2
h̄ω0, (6a)

εd = εa + 〈φ−1|H2B|φ−1〉, (6b)

U = 〈φ0|H2B|φ0〉 − εa, (6c)


 = 1√
2
〈φ−1|H2B|φ0〉. (6d)

The nearly vanishing dimer population allows for a crude
description of the dimer dynamics; therefore we neglect atom-
dimer and dimer-dimer interaction, and we take Jd = Ja/10.2

We focus on the tight-binding regime and we introduce
the harmonic oscillator length l0 characterizing the bottom of
each lattice well. Like for the two-body problem, we consider
a fixed and small value of l⊥/l0. The ground state of the
system then depends on two adimensional parameters: r∗/l0
and V/U . The choice of the parameter r∗/l0 allows for a
direct comparison with the two-body physics illustrated in
Figs. 1 and 2. Assuming g1D = 0, Eqs. (5) show that the ratio
V/U does not depend on r∗. It decays with the lattice depth
s = Vlat/ER , where Vlat is the intensity of the optical lattice and
ER is the recoil energy. The harmonic approximation requires
s to be large enough and thus imposes an upper bound on
V/U .

For given values of r∗/l0 and V/U , we numerically
calculate the ground state of HAD by exact diagonalization of
a six-atom, six-well system. Figure 3 shows the phase diagram
of the system for l⊥/l0 = 0.4. The observable is the single-
particle off-diagonal density matrix element ρ1 = 〈a†

2a1〉,
and it distinguishes the superfluid phase (ρ1 �= 0) from the
insulating phases (ρ1 = 0). The different insulating phases
can subsequently be told apart by examining the ground-state
wave function. Figure 3 compares the physically accessible
phase diagram obtained using the single-band EBHM [23]
[taking 
 = 0 in Eq. (4)] with the atom-dimer phase diagram
(
 �= 0). In the considered range of parameters, the previously
investigated single-band phase diagram exhibits two phases:
SF and MI. The atom-dimer phase diagram presents three
qualitative differences. First, the MI phase region stops at
r∗ = r∗

crit. Second, the phase diagram includes a narrow MDW
domain which occurs for very small values of V/U .3 Third,
there appears a “collapse” phase where all atoms sit in the
same well.4 In our small-sized system, the MI-MDW and

2This choice for Jd reflects the assumption that the polarizability of
a molecule is twice that of an atom [41]. In the considered regime, its
exact value does not affect our numerical results.

3Up to now, the MDW phase had been predicted to occur in an
extended domain corresponding to large values of V/U [23].

4This collapse phase is related to the one predicted in the 2D
case [42] using a mean-field approach to calculate the Bose-Hubbard
parameters. Our phase diagram shows no phase with a period of
three sites or more. We have checked that longer-period insulating
phases are not energetically favored. This is in agreement with the
density matrix renormalization group (DMRG) calculations including
next-nearest-neighbor interactions reported in Ref. [24]. However,
such phases have been predicted to occur for filling factors �=1 (see,
e.g., Ref. [43]).
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FIG. 3. (Color online) Many-body phase diagrams obtained using
the single-band (
 = 0, top) and atom-dimer (
 �= 0, bottom)
EBHMs, performing exact diagonalization on a six-atom, six-well
system with l⊥/l0 = 0.4. The effective on-site interaction Ueff < 0
on the right of the vertical dashed line.

MDW-collapse transitions appear sharp, in accordance with
their expected first-order character. Instead, the transitions
between the SF phase and each insulating phase are smooth,
which is compatible with the Berezinskii-Kosterlitz-Thouless
behavior predicted in 1D [23].

Figure 5 shows a zoom-in on the atom-dimer phase
diagrams for l⊥/l0 = 0.3 and 0.2. The comparison between
Figs. 4 and 5 shows that decreasing the value of l⊥/l0 has a
twofold effect on the phase diagram: (i) the collapse phase,
which starts at r∗ = r∗

crit, appears for smaller values of r∗/l0,
and (ii) the extent of the MDW phase domain is reduced. This
second result suggests that the experimental observation of
MDW phases in quasi-1D bosonic systems will be difficult.
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FIG. 4. (Color online) Top: Zoom-in on the part of the atom-
dimer phase diagram [Fig. 3 (bottom), l⊥/l0 = 0.4] showing the
transitions between the SF, MI, MDW, and collapse phases. Bottom:
Quasianalytical phase boundaries calculated for N = 6 (solid black)
and N → ∞ (dashed red).

The phase diagram can be interpreted using an effective
single-band EBHM, where the on-site interaction reproduces
the two-body ground-state energy:

Heff =
∑

i

[
−Ja(a†

i ai+1 + H.c.) + εani

+ 1

2
Ueffni(ni − 1) + V nini+1

]
, (7)

with Ueff(r∗) = E2B(r∗) − εa . In the parameter range explored
in Figs. 3 and 4, the phase diagram obtained using Heff is very
similar to the atom-dimer phase diagram. This is due to the
atom-dimer detuning � = εd − U − 2εa being much larger
than 
, Ja , and V .5 The effective model Heff allows for a

5The two approaches are expected to yield different results for small
�. Then, the dimer population is non-negligible, and the physics is
described by the atom-dimer model of Eq. (4) where the parameters
modeling the dimer dynamics should be properly chosen.
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FIG. 5. (Color online) Zoom-in on the atom-dimer phase dia-
grams for l⊥/l0 = 0.3 (top) and l⊥/l0 = 0.2 (bottom).

comparison between our phase diagram and those calculated
in terms of the EBHM parameters U/J and V/J . In particular,
we find a Haldane-like phase near the upper left corner of our
MDW domain, in agreement with the Haldane domain reported
in Ref. [25].6

6A systematic investigation of the Haldane phase domain will be
carried out on larger systems using DMRG.

We also use the effective single-band model to derive
quasianalytical approximations for the phase boundaries for
any number N of particles and sites. We calculate the energy
deep within each phase in terms of J , Ueff , V , and N .
Equating these energies for two contiguous phases, we obtain
the boundaries shown for N = 6 on Figs. 3 and 4 and for
N → ∞ on Fig. 4 (right). The boundaries found for N = 6
and for N → ∞ are very similar. We now focus on the
boundary between the SF and the collapse phases, given by
ESF − Ecollapse ≈ N (V − 2J ) − N2Ueff/2 = 0. The tunneling
term scales with N , whereas the interaction scales with N2.
Hence, for small N , the superfluid phase survives in a region
where Ueff < 0, but the collapse phase is energetically favored
for large N . This instability corresponds to the implosion
of a BEC with a negative scattering length when its size is
increased [44].

IV. OUTLOOK

The phase diagram which we have obtained describes the
ground state of the system. One possible way to explore it
experimentally is to cool the system in a given geometry
in the absence of dipolar interactions and then adiabatically
increase r∗. The phases we have predicted at T = 0 may be
experimentally identified using in situ imaging techniques
as well as the recent advances allowing for the detection
of nonlocal order [45]. The narrow MDW domain which
appears in the phase diagram for small V/U is well within the
validity range of our atom-dimer Hamiltonian. By contrast, the
MDW phase domain previously predicted using the standard
EBHM [23,25] occurs in an extended domain corresponding
to large values of V/U .

The DIR could also have a strong effect on systems
described by generalized EBHMs such as the one studied in
Ref. [14]. It would be interesting to extend this work to 2D
geometries, where the anisotropy of the dipolar interaction is
expected to play a role. Our analysis would also be relevant for
the understanding of the fermionic 1D EBHM with repulsive
interactions, where the relevant phases are the spin density
wave, the charge density wave, and the bond order wave
[46–49].
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