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We consider a uniform superfluid confined in two compartments connected by a superleak and initially

held at equal temperatures. If one of the two compartments is heated, a fraction of the superfluid will flow

through the superleak. We show that, under certain thermodynamic conditions, the atoms flow from the

hotter to the colder compartment, contrary to what happens in the fountain effect observed in superfluid

helium. This flow causes quantum degeneracy to increase in the colder compartment. In superfluid helium,

this novel thermomechanical effect takes place in the phonon regime of very low temperatures. In dilute

quantum gases, it occurs at all temperatures below Tc. The increase in quantum degeneracy reachable

through the adiabatic displacement of the wall separating the two compartments is also discussed.
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The thermomechanical effect is an important manifes-
tation of superfluidity. It has historically been observed via
the fountain effect, i.e., the increase in the pressure in a
narrow tube, one of whose ends dips in a bath of superfluid
helium 4, when the tube is heated [1]. It has recently also
attracted interest in the context of dilute ultracold atomic
gases [2,3] as a potential signature of superfluidity in these
systems. These works have focused on the dynamical
aspects of the phenomenon, using the hydrodynamic [2]
or the classical field [3] approach.

The purpose of the present work is to investigate the
thermomechanical effect by exploiting the conditions im-
posed by equilibrium thermodynamics, pointing out novel
features exhibited by superfluids in properly chosen thermo-
dynamic regimes. The experiment we propose is reminiscent
of the original fountain effect [1], with one important differ-
ence. In the original experiment, the pressure at the surface of
the liquid helium bath is constantly equal to the saturated
vapor pressure, and the height growth of the liquid in the
narrow tube is determined by the equilibrium between grav-
ity and the pressure increase�p ¼ s�T of the liquid near the
superleak. Here, �T is the temperature difference between
the bath and the tube, and s is the entropy per unit volume in
the liquid phase. In the situation considered in this Letter, the
quantum fluid instead occupies a fixed total volume, and
the flow of particles through the superleak is caused by
the density difference produced by the heating process.
Consequently, it is determined by the compressibility of the
fluid. In the case of liquid helium, the compressibility is
small; it is much larger in dilute quantum gases. We predict
that, in the phonon regime of superfluid helium, and for all
temperatures below Tc in the case of dilute gases, atoms flow
through the superleak from the hotter to the colder region,
contrary towhat happens in the fountain effect, and resulting
in an increase of quantum degeneracy in the colder compart-
ment. The coolingmechanismproposed in the present Letter,
based on a filtering process through the superleak, differs

from other adiabatic cooling mechanisms considered in ul-
tracold atomic gases, like the adiabatic formation of Bose-
Einstein condensation with nonharmonic traps [4] or the
entropy exchange inmixtures of different atomic species [5].
We consider two compartments, hereafter called left (L)

and right (R) compartments, filled with a homogeneous
superfluid (liquid helium 4 or a dilute atomic gas) and
connected via a superleak, which only allows for the trans-
mission of the superfluid component (see Fig. 1). Initially,
the superfluids occupying the two compartments have the
same temperature (T0

L ¼ T0
R ¼ T0) and the same chemical

potential (�0
L ¼ �0

R). If the right compartment is heated,
the system will eventually reach a new equilibrium con-
figuration characterized by equal chemical potentials, but
different temperatures. The equilibrium between the final–
state chemical potentials is ensured by the flux of the
superfluid through the superleak. However, the condition
of equal temperatures cannot be ensured because the su-
perfluid component does not carry any entropy.
By calling �T ¼ TR � TL, �n ¼ nR � nL and �p ¼

pR � pL the small differences between the final tempera-
tures, densities and pressures of the two compartments, and
imposing equal chemical potentials �� ¼ �ðTR; nRÞ �
�ðTL; nLÞ ¼ 0, we can write:

FIG. 1 (color online). Schematics of the proposed experiment.
The left and right compartments, initially in equilibrium, have
constant volumes and are filled with a homogeneous quantum
fluid. Heating the right compartment, or displacing the super-
leak, causes the system to evolve towards a new thermodynamic
state satisfying chemical, but not thermal, equilibrium.
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�n ¼ @n

@T

���������
�T and �p ¼ @p

@T

���������
�T; (1)

both partial derivatives being evaluated at the initial
equilibrium parameters. The Gibbs-Duhem relation for a
homogeneous system implies @p=@Tj� ¼ s, where s ¼
S=V > 0 is the entropy per unit volume. As a consequence
the pressure pR in the warmer compartment is always
higher than pL. The density difference �n can instead
exhibit a different behavior. In fact, one can write:

@n

@T

���������
¼ � @n

@�

��������T

@�

@T

��������n
¼ �n2�T

@�

@T

��������n
; (2)

the isothermal compressibility �T being a positive quantity.
Hence, the direction of the flow is dictated by the sign
of @�=@Tjn. If this derivative is negative, and thus
@n=@Tj� > 0, the atoms flow from the colder to the

warmer compartment (positive flow). The opposite hap-
pens if @�=@Tjn > 0, and hence @n=@Tj� < 0 (negative

flow). In the latter case, the quantum degeneracy of the
colder compartment increases. In fact, the total entropy in
the left compartment remains constant, but the entropy per
particle SL=NL decreases. In order to ensure adiabaticity,
the heating process (as well as the displacement of the
separating wall discussed in the last section) should be
slow enough to ensure thermalization in the left compart-
ment, and the velocity v of the atoms going through the
superleak during the process should be smaller than a
critical value dictated by the geometry of the experiment.
This condition will also ensure the absence of dissipation
due to the creation of vortices. If the transmission of the
atoms relies on quantum tunneling, the current nv should
be smaller than the critical Josephson current. The actual
implementation of these conditions will be discussed
elsewhere.

Using the Gibbs-Duhem relation dp ¼ sdT þ nd�,
and introducing the thermal expansion coefficient n�p ¼
�@n=@Tjp, Eq. (2) can also be written in the form

@n

@T

���������
¼ Tð�Ts� �pÞ nT : (3)

This form is particularly useful in the case of superfluid
helium where the quantities �T , s and �p are experimen-

tally available. It explicitly shows that the direction of the
flow depends on the sign of (�Ts� �p).

A general result concerning the behavior of the thermo-
dynamic quantity @�=@Tjn entering Eq. (2) can be inferred
in the very low temperature regime, where the thermody-
namic behavior of a superfluid is governed by the thermal
excitation of phonons (phonon regime). In this regime,
the chemical potential behaves as �ðn; TÞ ¼ �0ðnÞ þ
�phonðn; TÞ with

�phonðn; TÞ ¼ �2

30

ðkBTÞ4
@
3c40

@c0
@n

��������T
; (4)

while�0ðnÞ and c0ðnÞ are the T ¼ 0 values of the chemical
potential and the sound velocity, respectively. In all known
superfluids the quantity @c0=@njT is positive. Therefore, in
the phonon regime one always has @�=@Tjn > 0, and
hence a negative flow.
We now discuss, in a more systematic way, the tempera-

ture dependence of @n=@Tj� in the case of superfluid

helium and of dilute quantum gases.
Superfluid helium.—When one increases the tempera-

ture and leaves the phonon regime, the thermodynamic
behavior of superfluid helium is soon dominated by the
thermal excitation of rotons which deeply affect the be-
havior of the chemical potential. In Fig. 2 (left) we show
the temperature dependence of �ðTÞ extracted from the
measured thermodynamic functions of helium [6] for tem-
peratures below 1.5 K. Its variation from the T ¼ 0 value at
zero pressure, �0=kB ¼ �7:16 K, is small. However, its
change of behavior when T increases, and in particular the
change of sign of @�=@Tjn, is apparent. This effect is
caused by the roton contribution to thermodynamics which
can be written in the form
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FIG. 2 (color online). Chemical potential as a function of T for three different superfluids. Left: superfluid 4He, calculated using the
equation of state in [6] (red). The orange curve is the sum of the phonon and roton contributions [Eqs. (4) and (5)]; the phonon
contribution is also shown separately (green). Middle: ultracold Bose gas (red), calculated from the Hartee-Fock prediction [Eq. (6)]
with gn=kBTc ¼ 0:3. Right: ultracold Fermi gas at the unitary limit (red) [17]. For both gaseous superfluids, the ideal gas prediction is
also shown (green).
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�rotðn; TÞ ¼ fðkBTÞ1=2 @�@n
��������T

e��=kBT: (5)

In Eq. (5) we have defined f ¼ 2p2
0

ffiffiffiffiffiffi
m�p

=ð2�@2Þ3=2, where
p0 is the momentum corresponding to the roton minimum
in the excitation spectrum and m� is the corresponding
effective mass [7]. The coefficient f depends only weakly
on n [6] and, for simplicity, in Eq. (5) we have only
retained the density dependence of the roton gap �ðnÞ,
which is well known to decrease with increasing n, thereby
providing a negative contribution to @�=@Tjn. The ap-
proximate expression (�phon þ�rot) correctly reproduces

the qualitative behavior of the full thermodynamic result
(see Fig. 2 left), which confirms the key physical role
played by rotons. The curves refer to the value � ¼
mHen ¼ 145:3 kg m�3 for the density, mHe being the
mass of a single helium atom. The analysis reveals that,
for temperatures larger than �1 K, superfluid helium is
charaterized by @n=@Tj� > 0, i.e., by a positive flow

through the superleak. In this regime, the thermal expan-
sion coefficient is actually negative [8] and the two terms in
Eq. (3) add up with the same sign. Using the values of the
thermodynamical functions given in [9,10], we predict that
the relative amplitude ðT=�Þ@�=@Tj� is of the order of

10�2 for T ¼ 1:8 K.
For smaller temperatures, when we approach the phonon

regime, helium exhibits a negative flow throw the super-
leak. The temperature where this effect is largest depends
on the density, and decreases as the density increases. For
the density � ¼ 145:3 kg=m3, close to the lowest density
for which helium 4 is liquid, the relative amplitude of the
predicted effect is largest for T ¼ 0:8 K (see Fig. 3) where
we find ðT=�Þ@�=@Tj� � �2� 10�4. This value is two

orders of magnitude smaller than the typical relative am-
plitude corresponding to thermomechanical effect in the
roton region. The reason for this large difference can easily
be understood from Eq. (3): in the phonon regime, �Ts and
��p have opposite signs, leading to a strong suppression

of the total amplitude. Furthermore, both s and �p become

smaller and smaller as T ! 0. Although small, the novel

thermomechanical effect in the phonon regime of helium
should be large enough to be detected experimentally by
measuring the change in the index of refraction or the
dielectric constant � of the liquid in the left compartment.
Indeed, it should lead to a relative variation ��=� � 10�6

[11], which is well above the typical experimental sensi-
tivity [12]. It is worth pointing out that the thermomechan-
ical effect discussed above is based on the assumption that
the total volume VL þ VR occupied by the fluid is kept
constant. This effect should not be confused with the
fountain effect, which occurs in situations where there is
no constraint on the total volume. This latter effect is
driven by the pressure difference s�T and, hence, is always
characterized by a positive flow through the superleak.
Dilute quantum gases.—The thermodynamic behavior

of quantum gases is very different from the one of super-
fluid helium, due to the absence of the roton minimum in
the excitation spectrum. As soon as one leaves the phonon
regime described by Eq. (4), the relevant excitations are of
single-particle nature. In the case of dilute Bose-Einstein
condensates, a reliable description of the single-particle
regime is provided by the Hartree–Fock theory, which
yields the following expression for the chemical potential
in the superfluid regime below Tc [13]:

�ðn; TÞ ¼ gðn0 þ 2nTÞ ¼ g

�
nþ �ð3=2Þ

�
mkBT

2�@2

�
3=2

�
;

(6)

and the expression � ¼ �id þ 2gn for T > Tc, �id being
the chemical potential of the ideal gas. In Eq. (6), n0 and nT
are the densities of the condensate and of the thermal
components, respectively, g ¼ 4�@2a=m is the coupling
constant (a is the scattering length characterizing the
atom-atom interactions and m the mass of a single atom),
and �ð3=2Þ � 2:612. Consistent with the weak coupling
scheme, in the second equality of Eq. (6), we have used

the ideal gas expression nT ¼ �ð3=2ÞðmkBT=2�@
2Þ3=2 for

the thermal density [14]. Equation (6) shows that the chemi-
cal potential is an increasing function of temperature up to

the critical temperature mkBTc ¼ 2�@2ðn=�ð3=2ÞÞ2=3,
where � reaches its maximum which is twice the T ¼ 0
value [16]. The temperature dependence of the chemical
potential at fixed density can now be measured in quantum
gases, where the equation of state is obtained by suitable
integration of the density profiles of the trapped gas or direct
in situmeasurements. Thesemeasurements have so far been
carried out for Fermi gases [see Fig. 2 (right)] [17] but can
also be performed in Bose gases [18].
Combining Eqs. (2) and (6), we obtain the following

expression for the relative amplitude of the thermomechan-
ical effect in the Bose gas below Tc:

T

n

@n

@T

���������
¼ � 3

2

�
T

Tc

�
3=2

; (7)
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FIG. 3 (color online). Amplitude @�
@T j� of the thermomechan-

ical effect in liquid 4He: dependence on the temperature T for the
fixed density � ¼ 145:3 kg=m3.
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yielding the negative flow of particles through the super-
leak for all temperatures [19]. Equation (7) also shows that
the relative amplitude is of order 1 for temperatures of the
order of the critical temperature. The flow through the
superleak being negative in the whole range of tempera-
tures below Tc and the relative amplitude of the effect
being very large are the two main differences exhibited
by dilute BEC gases with respect to superfluid helium. In
particular, the second feature is the consequence of the
large compressibility of the gas.

It is interesting to discuss now the thermomechanical
effect in terms of the increase of quantum degeneracy in
the left compartment. Although our expression (6) for the
chemical potential accounts for the weak interaction be-
tween the atoms in the condensate, the entropy of the gas in
each compartment is well described by that of an ideal gas.
In this approximation, the entropy of a Bose–condensed
gas depends on the temperature and the volume but not on
the number of particles. Therefore, the flux of particles
through the superleak, caused by heating the right
compartment, changes neither the entropy SL nor the tem-
perature TL of the left compartment. However, as SL is
distributed among a greater number of particles, the
quantum degeneracy of the left compartment increases.

Assuming that VR � VL, we find �ðSL=NLÞ=ðSL=NLÞ ¼
�3=2ðT0=T0

c Þ3=2�TR=T
0, where T0

c is the critical tempera-
ture for the initial density n0.

We now discuss an even more efficient way to increase
quantum degeneracy by exploiting the novel thermomechan-
ical effect described above. We consider the adiabatic dis-
placement of the wall separating the two compartments of
Fig. 1 towards the right. This displacement has two important
consequences. First, due to adiabaticity, the temperature
decreases in the left compartment and increases in the right
compartment, the entropy of the gas being proportional to

VT3=2 if the effect of interactions can be neglected. Second,
the number of atoms in the left compartment increases, due to
the presence of the superleak. Note that the temperature
variation in each compartment is independent of the presence
of the superleak as the entropy does not depend on the
number of particles. In the absence of the superleak, nL
would decrease, and the quantum degeneracy in both com-
partments would remain unchanged. In the presence of the
superleak, the situation is different:we find that the density in
the left compartment actually increases with respect to the
initial value (in contrast to the decrease one would naively
expect due to the increase of VL). This follows from the
thermal density being higher in the right compartment and
the chemical equilibrium condition �L ¼ �R. These two
combined effects cause a strong increase of quantum degen-
eracy.We express it in terms of the reduced temperature	L¼
TL=TcL in the left compartment, where the critical tempera-
ture Tcl corresponds to the final value of nL. Assuming that
VR always remains much larger thanVL, the thermodynamic
properties of the right compartment are not affected by the

displacement of the superleak, and the final value of 	L is
given by:

	L
	0

¼
�
VL

V0
L

ð1þ 	3=20 Þ � 	3=20

��2=3
; (8)

where 	0 is the initial reduced temperature, and V0
L and VL

are the initial and final volumes of the left compartment,
respectively.Hence, the quantumdegeneracy can inprinciple
be made arbitrarily large by taking VR � VL � V0

L.
The novel thermomechanical effects we have predicted

for the Bose gas are also expected to occur in a Fermi gas in
the superfluid regime. The most interesting case is the
unitary Fermi regime, corresponding to an infinite value
of the scattering length. This system has been achieved
experimentally [17] and its theoretical properties are rea-
sonably well understood [20]. An interesting feature of this
system is that its thermodynamic functions exhibit a uni-
versal behavior, independent of the value of the interaction
strength. In Fig. 2 (right) we report the recent experimental
measurement of the chemical potential as a a function of

T=TF, where kBTF ¼ ð@2=2mÞð3�2nÞ2=3 is the Fermi en-
ergy defined in uniform matter, together with the predic-
tion for the ideal Fermi gas. Like in the case of Bose gases,
the chemical potential of the Fermi superfluid is an in-
creasing function of T up to the critical value. Its measured
behavior is reasonably well reproduced by the theoretical
prediction obtained using the variational many-body for-
malism [20]. In the case of the ideal gas, the chemical
potential is instead a decreasing function of T, revealing
that the positive slope of �ðTÞ is a clear consequence of
superfluidity. Compared to the Bose case, the relative
amplitude ðT=nÞ@n=@Tj� of the thermomechanical effect

is smaller in Fermi gases because of the much smaller
compressibility of these systems.
Finally, we briefly discuss how the thermomechanical

effect could be implemented in a trapped quantum gas.
Well established tools, such as magnetic traps and optical
dipole potentials, can readily be used to create the two–
compartment potential [21], including the implementation
of boxlike traps [22]. The superleak can be implemented
using quasi-1D optical dipole potentials with a reduced
number of transverse excitation modes [23]. Other impor-
tant issues concern the consequences of the thermome-
chanical effect in the presence of harmonic confinement,
and in particular the optimization of the adiabaticity con-
ditions for the motion of the wall separating the two
compartments [24,25].
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