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Feshbach resonances in cesium at ultralow static magnetic fields
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We have observed Feshbach resonances for 133Cs atoms in two different hyperfine states at static magnetic
fields of a few milligauss. These resonances are unusual for two main reasons. First, they are the lowest static-field
resonances investigated up to now, and we explain their multipeak structure in these ultralow fields. Second,
they are robust with respect to temperature effects. We have measured them using an atomic fountain clock and
reproduced them using coupled-channels calculations, which are in excellent agreement with our measurements.
We show that these are s-wave resonances due to a very weakly bound state of the triplet molecular Hamiltonian.
We also describe a model explaining their asymmetric shape in the regime where the kinetic energy dominates
over the coupling strength.
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The achievement of Bose-Einstein condensation [1] has
stimulated remarkable developments in atomic physics. Ultra-
cold atoms have found applications in metrology [2] and high-
precision measurements of physical constants [3]; they can be
cooled down to quantum degeneracy and used to simulate
condensed-matter systems [4,5]. A fundamental feature of
ultracold atomic gases, underlying most of their present
applications, is that the interparticle interactions can be tailored
at will, using scattering resonances that occur in low-energy
collisions between two atoms [6]. These Feshbach resonances
are usually obtained using an external static magnetic field
[7]. Their accurate characterization is intimately linked to
a detailed knowledge of the interatomic interaction [8] and
involves coupled-channels calculations [9].

We report on the measurement of multiple Feshbach
resonances in 133Cs using an atomic fountain clock and present
their theoretical characterization using the coupled-channels
method. These resonances are unusual for two main reasons.
First, they occur at very low magnetic fields of the order of
a few milligauss, which makes them the lowest-static-field
resonances investigated up to now. In these ultralow fields, the
quasidegeneracy of spin-triplet collisional channels plays a
key role and conveys a multipeak structure to the resonances.
Second, they are robust with respect to temperature effects.
We have measured them in a regime where the kinetic energy
dominates over the resonance width, and they appear in the
magnetic field dependence of the clock shift as asymmetric
features close to the zero-temperature resonant field.

The physics we describe in this Rapid Communication is
closely linked to the very large and positive value of the triplet
scattering length for Cs [8], which exceeds the range of the
triplet potential and signals that the highest-energy bound state
in this potential is very close to the continuum. This is a specific
property of cesium, and a similar situation is encountered in
some other systems (e.g., metastable triplet helium [10] and
87Rb 133Cs mixtures [11]). The extreme accuracy of frequency
measurements in modern atomic clocks provides the means
to reveal effects of atomic collisions in a regime of very

weak interactions. The low-field resonances which we describe
in this Rapid Communication could be further characterized
using density-independent interferometry [12]. This would
allow for a probe of the constancy of the proton-to-electron
mass ratio and the fine structure constant by exploiting the
enhanced sensitivity to their values near a Feshbach resonance
[13,14]. Furthermore, these resonances involve atoms in two
different spin states and thus pave the way for the study of
quantum magnetism in ultracold cesium gases containing two
different hyperfine states.

Experimental setup. The experiment is done in a fountain
geometry, which has already been described extensively (see,
e.g., Ref. [2]) and which is sketched in Fig. 1. A cloud of
133Cs atoms, launched and laser cooled to ∼1 μK, is prepared
to contain atoms in two different states: |f = 3,mf = 0〉
and |f = 3,mf �= 0〉. It undergoes a ballistic flight inside
the fountain. The interaction between the atoms causes
the apparent frequency of the |f = 3,mf = 0〉 → |f = 4,

mf = 0〉 “clock” transition to differ from the hyperfine
transition frequency of a single atom. This frequency shift,
known as the collisional “clock shift,” is measured by
Ramsey interferometry [15]: The atom cloud goes through the
microwave cavity twice, once at the beginning and once at the
end of the flight [16], whose duration is called the interrogation
time. The transition probability to the f = 4 hyperfine state,
plotted as a function of the microwave frequency, shows
interference fringes. The fringe width is inversely proportional
to the interrogation time and is <1 Hz, making Ramsey
interferometry an ideal tool for frequency metrology.

Clock shift measurements of Feshbach resonances. The
clock shift depends on elementary collisional properties, which
are affected by the presence of a magnetic field. We exploit
this dependence to observe Feshbach resonances by measuring
the clock shift. This observable is very sensitive to the atomic
spatial and velocity distributions, first because of the evolution
of the atomic cloud during the interrogation (see, e.g.,
Ref. [17]), and second because the measured shifts are strongly
sensitive to the collision energy. In order to minimize the
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FIG. 1. (Color online) Left: schematics of the atomic fountain.
Right: hyperfine levels used in the experiment. Populations after
launch and transitions excited for the state preparation (1). A
horizontal laser beam then pushes away f = 4 atoms. Populations at
the start (2) and during (3) the interrogation.

impact of the atomic distributions, we determine collision shift
ratios by performing interleaved frequency measurements with
three configurations, leading to three measured frequencies:
ν

(1)
0 , ν

(1/2)
0 , and ν

(1)
0;mf

. First, the |3,mf = 0〉 state is selected
with the maximum possible atom number N0. Second, the
|3,mf = 0〉 state is selected with the atom number N0/2.
Third, N0 atoms in |3,mf = 0〉 are selected together with Nmf

atoms in another chosen |3,mf 〉 state, as illustrated in Fig. 1 for
mf = 3. The expanding atomic cloud is truncated during the
Ramsey cavity traversals, so that the detected atoms are only a
fraction (∼20%) of the initially selected atoms, and N0, N0/2,
and Nmf

refer to the detected atom numbers. A crucial feature
of our experiment is to perform the microwave excitation for
state selection with the (interrupted-) adiabatic passage method
described in Ref. [18] in order to ensure quasi-identical space
and velocity distributions for all states and all configurations.
We can prepare the third configuration with any of the six
mf = ±1,±2,±3 states. Typically, N0 ≈ Nmf

∼ 5 × 106.
The corresponding effective density during the interrogation
is ∼2 × 107 cm−3, many orders of magnitudes lower than
in typical quantum gas experiments.1 The mean free path is
∼35 m and the mean time between collisions is ∼5000 s, that
is, 3 orders of magnitude longer than the experimental cycle.

In a given configuration, the frequency shift of the
|3,0〉 −→ |4,0〉 transition is given by

δν = n0ρ0K0(B,Dr,v) + nmf
ρmf

Kmf
(B,Dr,v), (1)

where n0 and nmf
are the detected atom numbers, ρ0 and

ρmf
are the effective densities per detected atom, and K0 and

Kmf
are the collision shifts scaled to the effective densities.

These functions depend on the space and velocity distributions
Dr,v , and more generally on the fountain geometry. They
include collisional properties and thus also depend on the
magnetic field B, which is known via the spectroscopy of
the first-order-sensitive |3,mf = 1〉 → |4,mf = 1〉 transition.
It is stable to ∼40 nG and homogeneous to better than 10−2.

1The dominant processes that will smear out our resonances at
large densities are two-body inelastic collisions. They are efficient at
densities of >1013 cm−3. However, for densities ∼1013 cm−3 (typical
in experiments with ultracold gases), mixtures containing both f = 4
and f = 3 atoms have an inverse lifetime which we estimate to be
∼100 s−1 (i.e., 0.1 mG in magnetic field units), which makes the
resonances insensitive to inelastic decay.

It keeps the same downward orientation over the entire height
of the fountain to avoid spin-flip losses and to ensure a
good control of the quantization axis. Under these conditions,
selecting a −mf state for a measurement is equivalent to
probing the +mf state with the field −B. Starting from the
measured frequency shifts and the detected atom numbers,
we compute the shift per detected mf = 0 atom, A0;0, and
the additional shift Amf ;0 due to the mf �= 0 population, per
detected mf �= 0 atom:

A0;0 = ν
(1)
0 − ν

(1/2)
0

N0 − N0/2
= ρ0K0(B,Dr,v),

(2)

Amf ;0 =
ν

(1)
0;mf

− ν
(1)
0

Nmf

= ρmf
Kmf

(B,Dr,v).

The (B-independent) densities ρ0 and ρmf
are almost equal.

Hence, the ratio Rmf ,0(B) = Amf ;0/A0;0 � Kmf
/K0 does not

depend on the detected atom numbers and is as close to intrinsic
collisional properties as possible in our experiment. We have
determined A0;0, Amf ;0, and Rmf ;0, for B ranging from 0 to
100 mG, for the three possible additional states mf = 1, 2, or
3. Our measurements of Rmf ;0(B) are shown in Fig. 2, and they
exhibit a dramatic dependence of Rmf ;0 on B for all three states.
Instead, we measure no change of the clock collision shift
A0;0(B), at a level limited by its dependence on ρ0, and thus on
the atomic distributions Dr,v . Within these limits, K0 remains
constant over the entire range of our experiments. It is equal to
the large negative clock shift which affects Cs fountain clocks
[19–21]. Hence, the observed behavior of Rmf ;0(B) relates
to Kmf

(B,Dr,v), which we attribute to Feshbach resonances
either in the |3,0; 3,mf 〉 or the |4,0; 3,mf 〉 channel.

The precise control of the magnetic field and the high signal-
to-noise ratio of the data allow for a stringent comparison to
two theoretical approaches: (i) a coupled-channels calculation
of the scattering length characterizing interactions at zero tem-
perature as a function of B, and (ii) a finite-temperature model
of the clock collision shift in the fountain geometry, which
explains the asymmetric shape of the observed resonances.

Calculation of the scattering length. We describe the system
in the center-of-mass frame of the atom pair. Neglecting the
spin-spin interaction, which yields no significant contribution
to our observables, the interaction is spatially isotropic. We
limit our analysis to s-wave interactions governed by the
following Hamiltonian [9]:

H = p2

2μ
+ Vel(r) + Vhf + VZ, (3)

where r is the interatomic distance, p is its conjugate
momentum, and μ = m/2 is the reduced mass of the
atom pair. The central part of the interaction is given
by Vel(r) = VS(r)PS + VT (r)PT , where PS and PT are the
projectors onto the electronic singlet and triplet subspaces. The
term Vhf = ahf(s1 · i1 + s2 · i2)/h̄2 is the hyperfine interaction,
where sj and i j are the spin operators of the electron and the
nucleus of atom j . The operator VZ = 2μBB Sz is the Zeeman
term, with μB being the Bohr magneton and Sz = s1z + s2z

being the total electronic spin projection along the quantization
axis ez.
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FIG. 2. (Color online) Measured collision frequency shift ratio Rmf ;0(B) from the experiment, exhibiting Feshbach resonances at ultralow
static magnetic fields. Left: MF = 3; middle: MF = 2; right: MF = 1. The vertical lines show the theoretical resonant field values. Experiment
(effective temperature ∼900 nK) and theory (E = 0, Fig. 3) are completely independent (see text).

We calculate the B-dependent scattering length associated
with the zero-energy scattering state corresponding to the
levels populated in the experiment. The Hamiltonian H

conserves the projection MF of the total two-atom spin
F = f 1 + f 2, where fj = sj + i j is the total spin of atom j .
Therefore, this scattering state has a definite value of the total
spin projection MF , on which the scattering length aMF

(B)
depends. For large interatomic separations, the atoms are in
the Zeeman-dressed state related to the (Bose-symmetrized)
two-atom state |f1 = 4,m1 = 0; f2 = 3,m2 = MF 〉, where fj

and mj define the magnitude and projection of the total spin fj .
The measurements shown in Fig. 2 relate to MF = 3, 2, and 1.
The corresponding scattering state |�MF ,B〉 has 10, 13, and 14
components, respectively. We evaluate it numerically using the
coupled-channels approach [9], our implementation of which
is described in Ref. [22]. The accumulated-phase-boundary
condition [9] is applied at r0 = 20 a0, and the asymptotic
behavior of the scattering state is enforced at rmax = 1000 a0.
The values of the accumulated-phase parameters, the hyperfine
interaction constant ahf , and the electronic potentials VS and
VT are the same as those used in Ref. [23].

Our results for the s-wave scattering length aMF
(B) are

shown in Fig. 3, for MF = 3, 2, and 1. The occurrence of
inelastic processes (such as the decay towards the lower-energy
states having f1 = f2 = 3) causes a to have a nonvanishing
imaginary part [24] and the resonances appear as smooth dis-
persive features (rather than as the divergences of the lossless
case). The calculated positions of the broadest resonances
compare favorably to those determined from the clock-shift
measurements (Fig. 2). The predicted multiple-peak structure
is clearly visible in the experimental data for MF = 2.

Our numerical analysis includes only s–wave interactions,
and the fact that it recovers the measured resonance posi-
tions proves that these are s–wave resonances. The triplet
potential VT supports a very weakly bound state, with
the binding energy |ET | = h̄2/(2μa2

T ) ≈ h 5 kHz = μB 4 mG,
where aT = 2400 a0 is the scattering length associated with
VT [8]. For a given value of MF , the two-atom internal
states |f1 = 4,f2 = 3,F,MF 〉 are electronic triplets for all
allowed odd values of F . For B = 0, each of these triplet
channels supports the weakly bound triplet state, yielding
NT

M degenerate bound states (energy −|ET |), where NT
M is

the number of triplet channels with the quantum numbers
(f1 = 4,f2 = 3,MF ). For nonzero, albeit small, magnetic
fields, the coupling due to VZ lifts this degeneracy, and these
NT

M states cross the threshold for different values of B, causing
multiple resonances. For MF = 3 or 2, there are NT

M = 3
triplet channels (F = 7, 5, or 3), which correspond to the three
predicted resonances in these two cases. For MF = 1, there are
NT

1 = 4 triplet states (F = 7, 5, 3, 1), but our coupled-channels
results only show three resonances for B > 0. An additional
feature is visible for B ≈ −10 mG, which could be a signature
of the expected fourth resonance. Its occurrence for negative B

and a qualitative difference of the shape from those of the other
predicted resonances would be due to the finite lifetime of a
resonant triplet state which has become quasibound [25]. This
multiple-resonance physics only occurs for small B: indeed,
for values of B larger than a few |ET |/μB , the Zeeman term
VZ causes the bare weakly bound triplet states to dissolve into
the continuum.

Feshbach resonances in a fountain geometry. To clarify
the impact of finite temperatures, the atomic distribution Dr,v ,
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FIG. 3. (Color online) Numerical results for the scattering length aMF
(B), calculated using the coupled-channels method (E = 0). Left:

MF = 3; middle: MF = 2; right: MF = 1.
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FIG. 4. (Color online) Left: fit of our model [Eqs. (4) and (5)]
to the MF = 3 measurements. Right: clock shift as a function of B

for various coupling strengths Ce. The value Ce = C0 = 4 Erec/krec

(thick red [gray]) is close to the experimental situation; results for
Ce = 100 C0 (dashed black), 10 C0 (dotted magenta [light gray]),
and 0.1 C0 (solid green [dark gray]) are also shown. Inset: closeup of
the red [gray] curve for small B.

and the fountain geometry, we evaluate the clock shift using
a simple model for the S-matrix elements Sαγ (k) and Sβγ (k)
describing the interaction between the clock states, α = |3,0〉
and β = |4,0〉, and the state γ = |3,mf 〉. The elementary clock
shift due to γ is

δωβα

2π
= h̄ργ

mk
Im{Sαγ (k)S†

βγ (k) − 1}, (4)

with ργ being the local density of atoms in the state γ and
k = p/h̄ being the wave vector for the relative motion of the
two colliding atoms. We take Sαγ (k) = 1 and assume a single-
resonance behavior for Sβγ (k):

Sβγ (k) = 1 − i
e

E − �μ(B − B0) + i
e/2
, (5)

where E = h̄2k2/2μ is the relative kinetic energy of the
colliding pair, �μ is a relative magnetic moment, B0 is the
zero-energy resonant field, and 
e = kCe is the elastic width
of the resonance [26], the coupling strength Ce being constant.
We have omitted the inelastic contribution to the width, i
i/2,
in the denominator of Eq. (5), as our coupled-channels results
imply that 
i/Ce � k.

The total clock shift is obtained by averaging Eq. (4)
over the measured Dr,v . We calculate it using a Monte Carlo
simulation accounting for the collisional energy distribution
(corresponding to the effective temperature ∼900 nK), the
decrease of the atomic density with time, and the truncation

of the atomic cloud in the microwave resonator. A fit of our
model [Eqs. (4) and (5)] to the measurements for MF = 3
[Fig. 4 (left)] yields B0 = 5 ± 1 mG, �μ = 1.5μB , and Ce =
C0 = 4Erec/krec, where h̄krec = h/λ and Erec = h̄2k2

rec/2m are
the recoil momentum and energy, and λ = 852 nm is the laser
cooling wavelength. The fit captures the main features of the
data, in particular its asymmetry. Were the resonance to occur
in the αγ channel, the sign of the clock shift would be reversed.
Therefore, this analysis, independent of our coupled-channels
results, confirms that the resonance occurs in the βγ channel.

Finally, we consider the role of the coupling strength
compared to the kinetic energy. Figure 4 (right) shows the total
clock shift as a function of B for various coupling strengths
Ce, keeping B0 and �μ fixed to their experimental values. The
black curve is for Ce = 400Erec/krec. In this strong-coupling
regime, the resonance has a symmetrical dispersive-like shape.
At any given field, all atoms within the distribution Dr,v

contribute to it, and the collision shift reaches the unitarity
limit. The green curve (Ce = 0.4Erec/krec) illustrates the
weak-coupling regime, in which the kinetic energy exceeds the
elastic width. In this regime, the resonance curve is strongly
asymmetric. For B < B0, the resonant channel is closed and
the behavior is similar to the far-detuned strong-coupling case.
For B > B0, the resonant channel is open. At a given field,
only a fraction of the distribution Dr,v contributes significantly
to the frequency shift because of the narrow elastic width.
Consequently, the total clock shift is smaller than the unitarity
limit value. The experimental value Ce = C0 = 4Erec/krec

(thick red [gray]) is near the weak-coupling regime. The
resonant behavior of the clock shift is apparent, and it occurs
at B0, where this model predicts a singularity even at finite
temperature.

The presence of the weakly bound triplet state, responsible
for our ultralow-field resonances, is a lucky accident in three
dimensions (3D). However, weakly bound two-particle states
can emerge generically in strongly confined geometries, for
example in the quasi-two-dimensional (quasi-2D) case at a
negative and fairly small 3D scattering length [27]. The use of
this type of states can make ultralow-field resonances a generic
feature in quantum gases.
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