WARM-UP: creation and annihilation operators

a[†] and a are creation/annihilation operators for a given mode
In the language of second quantisation, a 'mode' is a single–particle state
Consider the operators b[†] = a and b = a[†]

- ightharpoonup May b^{\dagger} and b be understood as creation/annihilation operators ...
 - 1. for bosons ?
 - 2. for fermions?

Particle and hole excitations in a polarised Fermi gas

Examples of Fermi gases: ultracold atomic gas, electrons in a metal, white–dwarf stars 'Polarised' means all fermions are in the same spin state |↑⟩

► 1st quantisation: the many–fermion wavefunction is a Slater determinant 2nd quantisation: anticommuting creation/annihilation operators

The ground state is a Fermi sea: $|FS\rangle = a_{\varepsilon_5}^{\dagger} \, a_{\varepsilon_4}^{\dagger} \, a_{\varepsilon_3}^{\dagger} \, a_{\varepsilon_2}^{\dagger} \, a_{\varepsilon_1}^{\dagger} \, |vac\rangle$

We are interested in the excited states.

Particle and hole excitations in a polarised Fermi gas

- ► Hamiltonian for the ideal polarised Fermi gas: $H \varepsilon_F N = \sum_{\mathbf{k}} (\varepsilon_k \varepsilon_F) a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$
 - Single—particle energies measured from Fermi surface ε_F (grand–canonical Hamiltonian, temp^{ture} T=0)
- ► The ground state is a Fermi sea $|FS\rangle$, with energy $E_{FS} > 0$ All single—particle states with energy $\varepsilon < \varepsilon_F$ are occupied; all those with $\varepsilon > \varepsilon_F$ are free The Fermi energy $\varepsilon_F \neq E_{FS}$: calculate both for a uniform ideal Fermi gas with density n
- ► There are two types of elementary excitations:
- **1.** Promote 1 particle from inside Fermi sea to Fermi surface: $\varepsilon_{\text{hole}} = \varepsilon_F \varepsilon_k > 0$
- **2.** Promote 1 particle from Fermi surface to higher–energy state: $\varepsilon_{\rm part} = \varepsilon_{\it k} \varepsilon_{\it F} > 0$

- 'Elementary' because all excitations may be written in terms of these How to express the excitation of an atom from inside the Fermi sea to an excited single-particle state?
- The vacuum state of the $\{a_k\}$ is $|vac\rangle$, not $|FS\rangle$ For $\varepsilon_k < \varepsilon_F$, $a_k |FS\rangle \neq 0$

From particles to quasi-particles

KEY IDEA: consider the ground state as a new vacuum, introduce new operators $\{b_{\mathbf{k}}^{\dagger}\}$ creating the *excitations* = *quasiparticles* see also (fermionic or bosonic) Bogoliubov theory, BCS theory, ...

Excitations in an ideal Fermi gas:

If
$$\varepsilon_k > \varepsilon_F$$
: $b_{\mathbf{k}}^{\dagger} = a_{\mathbf{k}}^{\dagger}$ $\varepsilon_{\text{part}} = \varepsilon_k - \varepsilon_F > 0$

If
$$\varepsilon_{k} < \varepsilon_{F}$$
: $b_{\mathbf{k}}^{\dagger} = a_{-\mathbf{k}}$ $\varepsilon_{\text{hole}} = \varepsilon_{F} - \varepsilon_{k} > 0$

Expelling particle with momentum ${f k}$ creates hole with momentum $-{f k}$

Dispersion relation: $\varepsilon^{\text{excit}}(k) = |\varepsilon_k - \varepsilon_F|$

$$\qquad \qquad H - N\varepsilon_F = (E_{FS} - N\varepsilon_F) \quad + \sum_{\mathbf{k}} |\varepsilon_{\mathbf{k}} - \varepsilon_F| \; b_{\mathbf{k}}^\dagger \; b_{\mathbf{k}}$$

Creating an excitation increases the energy!

► If the fermions are charged, what is the charge of the hole?