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1 Optical Fabry–Perot interferometer
In this introductory section, we consider the well–known wave optics experiment sketched in Fig. 1:
A (classical) electromagnetic field impinges onto a Fabry–Perot cavity consisting of two semi–
reflecting mirrors. The field propagates perpendicularly to the mirrors, i.e. along the direction
defined by ez. The two mirrors are identical, and they are characterised by their transmission
and reflection coefficients t and r, which we choose to be real. Hence, the conservation of energy
requires t2 + r2 = 1.

1. Briefly explain why, in each of the three spatial regions α = A (to the left of the mirrors), B
(between the mirrors), and C (to the right of the mirrors), the electric field may be sought as
E = [Eα+e

i(kz−ωt) +Eα−e
i(−kz−ωt) +h.c.] ϵ, where Eα+ and Eα− are two complex amplitudes.

Recall the link between the wavevector k and the frequency ω for propagation in vacuum,
and the condition on the polarisation ϵ with respect to the propagation direction ez.

2. Justify that, for the problem to be fully determined, two conditions must be imposed on the
six complex amplitudes.

3. We consider the 1D scattering problem where EA+ = EI is the known incident field and EC− =
0. Show that the (complex) transmission coefficient tFP = EC+e

ikL/EA+ and reflection
coefficient rFP = EA−/EA+ are given by:

tFP = t2 eikL

1 − r2 e2ikL
and rFP = r

1 − e2ikL

1 − r2e2ikL
. (1)

4. Show that, if 2kL is an integer multiple of 2π, then |tFP|2 = 1 and rFP = 0: all the incident
intensity is transmitted. Interpret this as a resonance phenomenon. Explain why the phase
of the electromagnetic wave plays a key role; why may this experiment be seen as an example
of multiple–wave interference?
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Figure 1 The six complex amplitudes de-
scribing the electric field in the optical
Fabry–Perot experiment.
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Figure 2 Scattering of an incident plane wave (blue wave-
fronts) by the spherically–symmetric potential V (r) of
range b (red). The scattered wave is measured in the di-
rection θ, ϕ, within the solid angle dΩ (green).

2 Partial waves, s–wave phase shift, and scattering length
We turn to the quantum description of the collision between two particles whose masses are m1
and m2, and whose positions are r1 and r2. Assuming that the interaction between the two
particles is described by a potential V (r1, r2) = V (r1 − r2) which only depends on the relative
position r = r1 − r2, the centre–of–mass and relative motions separate. We choose the referential
where the centre of mass is fixed, and describe the relative motion in terms of a single fictitious
particle of mass m = m1m2/(m1 +m2) at the position r. We further assume that the scattering
potential V (r) is spherically symmetric. Hence, the Hamiltonian reads H = p2/(2m) + V (r).

The considered scattering experiment is sketched in Fig. 2. We assume that the potential
has a finite range b, that is, V (r) is negligible for r ≳ b. A plane wave (blue) with the energy
E = ℏ2k2/(2m) (and the wavelength λ = 2π/k, propagating along the z axis, impinges on the
scattering potential. The scattered wave is measured outside the range of the potential (r ≫ b),
in the direction defined by the polar angles θ, ϕ, within the small solid angle dΩ.

The experiment of Fig. 2 corresponds to a stationary state described by a wavefunction |Ψ⟩
with the well–defined energy E which satisfies the following boundary coundition for large r:

Ψ(r) =
r→∞

eikz + f(k, r)e
ikr

r
. (2)

In Eq. (2), the scattering amplitude f(k, r) is not known a priori: it should be determined from
the solution of the Schrödinger equation H |Ψ⟩ = E |Ψ⟩.

5. Recall the meaning of each of the terms on the right–hand side of Eq. (2).
What is the unit of f(k, r), and what is its relation to the scattering cross–section dσ/dΩ?

6. Is |Ψ⟩ square–integrable? Which physical property of the state |Ψ⟩ does this reflect?
What plays the role of the normalisation condition?

7. For E = 0, check that the wavefunction defined by Eq. (2) is spherically symmetric. Recall
how the scattering length a may be extracted from it.

The object of the remainder of this section is to point out the important link between the
scattering length a and the s–wave phase shift δ0(k) (defined in Question 11 below).

8. For E > 0, explain why, despite the spherical symmetry of H, the wavefunction Ψ(r) only
exhibits cylindrical symmetry about the z axis.

9. Justify that |Ψ⟩ may be expanded onto a basis of wavefunctions corresponding to well–defined
values of the energy E = ℏ2k2/2m, the total angular momentum ℓ2, and its projection ℓz.
Enforcing the cylindrical symmetry along z, conclude that |Ψ⟩ may be written as:

Ψ(r) =
∑
ℓ≥0

Ψℓ(r) =
∑
ℓ≥0

αℓ Rℓ(r)Pℓ(cos θ) , where Pℓ(u) = Legendre polynomial of order ℓ.

(3)
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In Eq. (3), the sum spans all integers ℓ. The coefficients αℓ will be determined later.
Hints: The spherical harmonics Y m

l (θ, ϕ) satisfy L2 |Y m
ℓ ⟩ = ℓ(ℓ+ 1) |Y m

ℓ ⟩ and Lz |Y m
ℓ ⟩ = m |Y m

ℓ ⟩.
The dependence on ϕ of |Y m

ℓ ⟩ is eimϕ. For m = 0, Y 0
ℓ (θ) = [(2ℓ+ 1)/(4π)]1/2Pℓ(cos θ).

10. Show that the radial wavefunction Rl(r) satisfies the following Schrödinger equation:

1
r

d2(rRℓ)
dr2 +

[
k2 − ℓ(ℓ+ 1)

r2 − 2mV (r)
ℏ2

]
Rℓ = 0 . (4)

Hint: The Laplacian operator ∆ acting on the function f(r, θ, ϕ) satisfies ∆ =
1
r

∂2

∂r2 (rf) −
ℓ2

r2 f .

11. Justify that Rℓ must remain finite for r → 0, so that lim
r→0

(rRℓ) = 0.
Show that Rℓ may be chosen such that Rℓ(r) =

r→∞
sin(kr − ℓπ/2 + δℓ)/r,

and explain how the phase shift δℓ is determined.

12. Combining Eq. (3) with the asymptotic behaviour of Rℓ,
show that αℓ = (2ℓ+ 1)iℓeiδℓ/k and that the scattering amplitude reads:

f(k, r) = f(k, θ) =
∑
ℓ≥0

(2ℓ+ 1) Pℓ(cos θ) e
2iδℓ − 1

2ik
. (5)

Hint: Asymptotic expansion of a plane wave: eikz =
r→∞

1
2ikr

∑
ℓ≥0

(2ℓ+ 1)Pℓ(cos θ)
[
(−1)ℓ+1e−ikr + eikr

]
.

13. From now on, we focus on the scattering of slow particles: kb ≪ 1.
a) For b ≪ r ≪ 1/k, show that Rℓ = c1r

ℓ + c2/r
ℓ+1.

b) For r ∼ 1/k, express Rl using c1, c2, and the spherical Bessel functions jℓ(kr), yℓ(kr):

Rl = c1
(2ℓ+ 1)!!

kℓ
jℓ(kr) − c2

kℓ+1

(2ℓ− 1)!!
yℓ(kr) , (6)

Hints: jℓ(kr) and yℓ(kr) are two independent solutions of Eq. (4) for V (r) = 0.
For small ρ, jℓ(ρ) =

ρ→0
ρℓ/(2ℓ+ 1)!! and yℓ(ρ) =

ρ→0
−(2ℓ− 1)!!/ρ2ℓ+1.

c) Assuming that δℓ is small, show that δℓ ≈ tan δℓ = c2

c1

k2ℓ+1

(2ℓ− 1)!!(2ℓ+ 1)!!
.

Hint: For large ρ, jℓ(ρ) =
ρ→∞

sin(ρ− ℓπ/2)/ρ and yℓ(ρ) =
ρ→∞

− cos(ρ− ℓπ/2)/ρ.

d) Conclude that the scattering amplitude fℓ = (e2iδℓ − 1)/(2ik) in the partial wave ℓ is
proportional to k2ℓ. Recall the intuitive explanation for the suppression of fℓ for ℓ ≥ 1.

14. Show that, for kb ≪ 1, δ0 = −ka. Conclude that, outside the range of the potential (i.e. for
r ≫ b), the s–wave component Ψℓ=0 of the complete scattering wavefunction |Ψ⟩ satisfies:

Ψℓ=0(r) =
r≫b

sin[k(r − a)]
kr

, (7)

whereas the higher partial waves Ψℓ≥1 are unaffected.
Hint: Use first your answer to Question 7, and then the expansion of Eq. (3), remembering that P0(u) = 1.

Equation (7) confirms that the scattering length determines the rate at which the s–wave phase
changes with k. We shall now see how this phase may undergo resonant phenomena similar to
the Fabry–Perot resonance described in Sec. 1, where the interaction potential V (r) plays a role
which is analogous to the Fabry–Perot cavity in the optical experiment.
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Figure 3 The potential representing the interaction between two colliding atoms. Left: sketch of the real
potential. Right: the spherical square well potential VSW (Eq. (8)) used in Sec. 3.

3 One scattering channel: shape resonance
We consider a low–energy collision between two atoms. In this section, the atomic internal states
do not change in the course of the collision, so that they do not enter its description. The potential
representing the interaction between the two atoms is sketched in Fig. 3 (left). We wish to replace
this real potential by a simplified one which allows for analytical calculations. Hence, we consider
the spherically–symmetric square well potential VSW shown in Fig. 3 (right) and defined by:

VSW(r) = −ED for r ≤ l; VSW(r) = 0 for r > l. (8)

In Eq. (8), the length l is the range of the potential, and the energy ED > 0 sets the well depth.

15. Using Question 7, show that the scattering length a associated with the potential VSW is:

a/l = 1 − tan(kDl)
kDl

, with kDl = (ED/El)1/2 = (2ml2ED/ℏ2)1/2. (9)

16. Recall why VSW(r) supports bound states which are purely s–wave.
Show that their energies EB = −ℏ2κ2/(2m) satisfy:

κl = − k1l

tan(k1l)
and (kDl)2 = (k1l)2 + (κl)2 . (10)

17. Solve the two coupled Eqs. (10) graphically in the (k1l, κl) plane (both k1 and κ are positive).
Show that, if (2nB −1)π/2 < kDl < (2nB +1)π/2, where nB is a positive integer, then VSW
supports exactly nB s–wave bound states.

18. Comparing Eqs. (9) and (10), check that the potential depths at which a new bound state
appears exactly correspond to those for which the scattering length diverges (see Fig. 4).

19. Point out the analogy with the optical Fabry–Perot resonance analysed in Sec. 1. In partic-
ular, what is the analog, for the matter wave, of the cavity within which the optical wave
undergoes multiple reflections?

The effect analysed in this section is the scattering resonance whose theoretical description is
the simplest. It involves a single scattering channel (i.e. the atomic internal states do not change).
It is achieved by tuning the shape of the interaction potential (we have elected to vary its depth
ED). Hence, it is known as a shape resonance.

The experimental implementation of shape resonances is challenging (but not impossible: see
e.g. Ref. [1]). Experimentalists routinely rely on another type of scattering resonance, the Feshbach
resonance, which is easier to achieve in the laboratory. Its theoretical description is more involved:
we investigate it in Sec. 4.
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Figure 4 Scattering length a (top) and
bound–state energies EB for the spherical
square well potential of Eq. (8). Lengths
are in units of the potential range l and
energies in units of El = ℏ2/(2ml2).

4 Two coupled scattering channels: Feshbach resonance
In this section, we still consider a low–energy collision between two atoms. However, we now allow
for a change in the internal atomic states as a function of r. We make three assumptions:

• For large interatomic distances, the two–atom internal state is |op⟩. There, the atoms interact
via the potential Vop(r). The atoms come in with an energy E which is greater than the
scattering threshold for Vop(r), (see Fig. 5), so that the state |op⟩ defines an open channel.

• The two–atom Hamiltonian supports a bound state corresponding to a different two–atom
internal state |cl⟩. The interaction potential Vcl(r) for the two atoms in the state |cl⟩ is
different from the one for the two atoms in the state |op⟩. In particular, we assume that E
is below the scattering threshold for Vcl(r), so that the state |cl⟩ defines a closed channel.

• The states |op⟩ and |cl⟩ are coupled, so that the internal state may change as a function of
r: it is |op⟩ for large values of r, but it may be a combination of |op⟩ and |cl⟩ for smaller r.

We shall show that if the closed–channel bound state energy is close to the open–channel threshold
energy, a scattering resonance occurs. This two–channel resonance, called the Feshbach resonance,
is routinely used in cold–atom experiments to manipulate the nature (attractive or repulsive) and
the strength of the interaction between these atoms.

We describe the collision using a two–channel Hamiltonian:

H =
(
Hop W
W Hcl

)
. (11)

In Eq. (11), Hop = p2/(2m) + Vop(r) is the open–channel Hamiltonian, Hcl = p2/(2m) + Vcl(r)
is the closed–channel Hamiltonian, and W (r) is the coupling operator (which we assume to be
Hermitian). We seek an eigenstate |Ψ⟩ = Ψop(r) |op⟩ + Ψcl(r) |cl⟩ of H with the energy E, which
satisfies the scattering boundary condition of Eq. (2), all atoms being in |op⟩ for large r:

Ψ(r) =
r→∞

[
eikz + f(k, r)e

ikr

r

]
|op⟩ . (12)

Thus, the closed–channel component Ψcl(r) vanishes for large r, but it is non–zero for finite r.

20. Write the eigenvalue equation for the matrix Hamiltonian H in the following form:{
(E −Hop) |Ψop⟩ = W |Ψcl⟩
(E −Hcl) |Ψcl⟩ = W |Ψop⟩

(13)
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Figure 5 The two coupled scattering channels giving
rise to a Feshbach resonance. The blue and red curve
show the interaction potential in the open and closed
channels, respectively.

21. We first consider the second line of Eq. (11). Justify that the operator E −Hcl is invertible,
and that its inverse Gcl ≈ |ϕres⟩ ⟨ϕres| /(E − Eres). Here, |ϕres⟩ is the resonant bound state
in the closed channel with the energy Eres. Conclude that |Ψcl⟩ satisfies:

|Ψcl⟩ = |ϕres⟩
⟨ϕres|W |Ψop⟩
E − Eres

. (14)

22. We now turn to the first line of Eq. (13). Justify that the operator E−Hop is non–invertible.
Hence, we introduce the Green’s function G+

op = (E − Hop + i0+)−1. Justify that |Ψop⟩
satisfies:

|Ψop⟩ = |ψ+
k ⟩ +G+

opW |ϕres⟩
⟨ϕres|W |Ψop⟩
E − Eres

. (15)

In Eq. (15), |ψ+
k ⟩ satisfies Eq. (2) for the Hamiltonian Hop with E = ℏ2k2/(2m).

Hints: First, think about the states for which E −Hop is not invertible. Then, use Eq. (14).

23. Express ⟨ϕres|W |Ψop⟩ in terms of the ‘bare’ states |ϕres⟩, |ψ+
k ⟩ and their energies Eres, E:

⟨ϕres|W |Ψop⟩
E − Eres

=
⟨ϕres|W |ψ+

k ⟩
E − Eres − ⟨ϕres|WG+

opW |ϕres⟩
. (16)

The final step involves the asymptotic behaviour of G+
op(r). It can be shown (see the comple-

mentary Sec. 4.1) that, for any square–integrable function u(r):

⟨r|G+
op|u⟩ =

r→∞
− m

2πℏ2
eikr

r
⟨ψ−

k |u⟩ , with k = kr/r. (17)

In Eq. (17), |ψ−
k ⟩ is the scattering state with ingoing–wave boundary conditions:

ψ−
k (r) = [ψ+

−k(r)]∗ =
r→∞

eikz + f−(k, r) e−ikr/r.

24. Combining Eqs. (14), (15), and (17), show that |Ψop⟩ has the following asymptotic behaviour:

Ψop(r) =
r→∞

eikz + fop
eikr

r
− m

2πℏ2
eikr

r

⟨ψ−
k |W |ϕres⟩ ⟨ϕres|W |ψ+

k ⟩
E − Eres − ⟨ϕres|WG+

opW |ϕres⟩
. (18)

25. Finally, take the zero–energy limit of Eq. (18) to show that the scattering length has a
resonant behaviour:

a = aop + m

2πℏ2
| ⟨ϕres|W |ψ0⟩ |2

E − Eres − ⟨ϕres|WG+
opW |ϕres⟩

, (19)

where aop is the scattering length of Hop, namely, the value of the scattering length if the
bound state is detuned far from the resonance (E−Eres large). The state |ψ0⟩ = |ψ+

0 ⟩ = |ψ−
0 ⟩

is the scattering state for Hop with E = 0.
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Figure 6 First reported observation of a Feshbach
resonance in a cold atomic gas. The experiment was
performed on a gas of Bose–condensed 23Na atoms.
(a) Near the resonance, inelastic collisions are en-
hanced, so that the atoms are lost from the trap.
(b) For a given static magnetic field B, the scatter-
ing length is measured by releasing the atoms from
the trap and measuring their kinetic energy after a
time–of–flight expansion. The measured curve a(B)
(normalised to its off–resonant value aop) matches the
hyperbolic prediction of Eq. (19).
(Figure reproduced from Ref. [2]).

26. Sketch a as a function of E. What is the resonant energy, and why is it slightly different from
Eres? Which parameter sets the strength of the resonance (also called ‘resonance width’)?

27. Why may a static magnetic field may be used to tune E − Eres and, hence, vary a?
Difficult: What is the coupling W due to?
Hint: For two 2 atoms, list the 4 relevant angular momenta. How do they couple for large r? for small r?

4.1 Complement: asymptotic behaviour of the Green’s function G+(r)
The object of the last few questions is to prove the asymptotic behaviour for large r of the single–
channel Green’s function G+

op(r, r′) given by Eq. (17) above.
We recall the exact expression for the Green’s function G+

0 of the (single channel) free Hamil-
tonian H0 = p2/(2m):

G+
0 = 1

E −H0 + i0+ and G+
0 (r, r′) = ⟨r|G+

0 |r′⟩ = − m

2πℏ2
eik|r−r′|

|r − r′|
. (20)

We alse define G−
0 = (E −H0 − i0+)−1 = [G+

0 ]† which is an ingoing wave.
Similarly, we shall use two Green’s functions for Hop. The first one, G+

op = (E −Hop + i0+)−1,
has already been introduced in Question 22. The second one is G−

op = (E−Hop − i0+)−1 = [G+
op]†.

28. We call |ϕk⟩ the plane wave with the wavevector k: ϕk(r) = ⟨r|ϕk⟩ = exp(ik · r).
Starting from Eq. (20), show that Eq. (17) holds for the free problem:

For any square–integrable function u(r), ⟨r|G+
0 |u⟩ =

r→∞
− m

2πℏ2
eikr

r
⟨ϕk|u⟩ . (21)

29. Show that the ingoing–wave scattering state |ψ−
k ⟩ (in the open channel) satisfies:

|ψ−
k ⟩ = (1 +G−

opV ) |ϕk⟩ . (22)

Hint: Prove |ϕk⟩ = (1 −G−
0 V ) |ψ−

k ⟩. Then, apply (A−1 −B−1) = A−1(B −A)B−1 to G−
op and G−

0 .

30. Show that G+
op = G+

0 (1 + V G+
op).

Apply Eq. (21) to |v⟩ = (1 + V G+
op) |u⟩, and conclude using Eq. (22).

Hint: For the first step, apply (A−1 −B−1) = B−1(B −A)A−1 to G+
op and G+

0 .
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Further reading
Introductory

• A detailed discussion of Fabry–Perot interference and, more generally, multiple–beam interference, may be
found in Ref. [3, Sec. 9.6].

• Chapter 8 of Ref. [4] provides an introduction to quantum scattering, including a discussion of the partial
waves expansion and the properties of the free spherical waves. The spherical harmonics are reviewed in
Ref. [5, chap. VI, complement A].

• The application of quantum scattering theory to ultracold gases is vividly presented in Ref. [6]. This reference
contains useful ideas concerning the optical theorem and the key role of the scattering length, as well as an
experimentally–informed discussion of elastic and inelastic processes.

Experimental references on scattering resonances

• The s–wave shape resonances of Sec. 3 in this problem are challenging to exploit experimentally. However,
shape resonances involving non–s–wave bound states were observed even before Feshbach resonances [1].

• The first observation of a Feshbach resonance in an ultracold gas is due to W. Ketterle [2]. In this early
experiment, the change in the interaction energy (and, hence, in the scattering length) was measured by
time–of–flight techniques. The key figure of this paper is reproduced here as Fig. 6.

• There is another important type of scattering resonance, called confinement–induced resonance, which may
occur when the system is trapped in highly anisotropic geometries [7].

More advanced

• A mathematically–oriented presentation of spherical harmonics, which stresses their link with group repre-
sentation theory, may be found in Ref. [8, chap. 7].

• Another famous example where waves are expanded onto a basis of spherical harmonics is the multipole
expansion of the electromagnetic field [9, chap. 4].

• The review article by Chin et al [10] provides references to the theoretical and experimental literature on
Feshbach resonances in cold gases. Their useful Table IV lists many of the known Feshbach resonances.

• Messiah gives a remarkably thorough and concise presentation of quantum scattering theory [11, chap. XIX].
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