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Outline of the tutorials for the whole semester

▶ Problem 1: two–particle interference

▶ Problem 2: coherence and correlations in quantum gases

▶ Problem 3: lattice models, superfluid/Mott insulator transition

▶ Problem 4: Quantum scattering, scattering resonances

All problems describe experiments that have actually been performed

They all contain elements of theory and introduce calculation techniques

They all contain both standard questions and (very?) hard questions
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A bird’s eye view of the problem

Problem #4: Quantum scattering

and scattering resonances

▶ Review: scattering problems with optical waves
Fabry–Pérot interferometer

▶ Quantum scattering theory
Partial waves, s–wave phase shift, scattering length

▶ Single–channel scattering resonances: “shape resonances”
Square well, shape resonances due to the centrifugal barrier

▶ Scattering resonances involving multiple channels: “Feshbach resonances”
Two–channel model, experimental applications
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Review:

A scattering problem with optical waves

The Fabry–Pérot interferometer

This example has a direct connection to quantum ‘shape resonances’

[Hecht, Optics, 5th edition, Pearson (2017), §9.6]
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Electromagnetic wave propagating in 1D (qu. 1)

▶ The propagation equation for an electromagnetic wave in vacuum (∇ · E = 0)

follows from Maxwell’s equations ∇× E = −∂B/∂t and ∇× B =
1
c2 ∂E/∂t

The identity ∇× (∇× E) = ∇(∇ · E)−∇2E yields: ∇2E − 1
c2

∂2E
∂t2 = 0

▶ Monochromatic wave: single frequency ω E(r,t) = E(r) exp(−iωt)

The propagation equation reduces to: −∇2E =
ω2

c2 E

Plane–wave solutions Ee exp[i(k · r − ωt)] satisfy k = ω/c

All solutions E(z,t) propagating along z are linear combinations of plane waves:

E = E+e+ exp [i(kz − ωt)] + E−e− exp [i(−kz − ωt)]

▶ Due to Gauss’s flux theorem ∇ · E = 0,
the polarisations e+ and e− are both perpendicular to k = k ez
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Electromagnetic wave and Fabry–Pérot cavity (qu. 2)

EA+

EA-

EB+

EB-

EC+

EC-

Lez

▶ Two parallel semi–reflecting mirrors

(amplitude) transmission & reflection coefficients:
t and r (both assumed to be real)

▶ Propagation perpendicular to mirrors: k = kez

Assume a single polarisation is present: E = eE(r,t)

▶ Monochromatic solution of the propagation equation: E(z,t) = E(z) exp(−iωt)
Analogue of the condition for a stationary state in quantum mechanics

▶ Three spatial regions: A (left), B (cavity = between the mirrors), C (right)
In each region α, the electric field is a sum of two counterpropagating plane waves:

E(z,t) = e
[
Eα+ exp(ikz) + Eα− exp(−ikz)

]
exp(−iωt)

▶ Propagation equation is 2nd–order:
d2E
dz2 =

ω2

c2 E so 2 conditions are required

For an ‘initial value problem’, we would give EA+ and EA− NOT TODAY!

Scattering problem: impose EC− = 0

The solution is proportional to the incident flux EA+: choose EA+ = EI 6 / 43



Fabry–Pérot: transmission/reflection coefficients (qu. 3)

EA+

EA-

EB+

EB-

EC+

EC-

Lez

Scattering problem: EC− = 0 and EA+ = EI

▶ Write the transmission and reflection coefficients in matrix form at both mirrors
The two mirrors are identical, but beware: their two sides are not symmetric!

The minus sign comes from the unitarity of U: it enforces conservation of energy at each mirror

Beware: also account for propagation between the mirrors: phases exp(±ikL)

(
EB+

EA−

)
=

(
t −r

r t

)(
EA+

EB−

)
and

(
EB− e−ikL

EC+ e+ikL

)
=

(
t −r

r t

)(
EC− e−ikL

EB+ e+ikL

)

▶ Transmission and reflection coefficients for the Fabry–Pérot (FP) cavity:

tFP =
EC+ exp(ikL)

EA+
=

t2 exp(ikL)
1 − r 2 exp(2ikL)

and rFP =
EA−

EA+
= r

1 − exp(2ikL)
1 − r 2 exp(2ikL)
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Fabry–Pérot: resonant cavity (qu. 4)

tFP =
t2 exp(ikL)

1 − r2 exp(2ikL)
and rFP = r

1 − exp(2ikL)
1 − r2 exp(2ikL)

, TFP = |tFP|2 and RFP = |rFP|2

▶ If 2L is an integer multiple of λ, 2L = pλ,
Perfect transmission: tFP = (−1)p, rFP = 0
independent of the transmission of a single mirror

Smaller t leads to better selectivity
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RFP T = 0.1

T = 0.6

tFP = t eikL
(

1 + (r eikL)2 + (r eikL)4 + · · ·
)

t

▶ The double–transmitted waves all interfere:
multiple–wave interference

▶ Constructive interference
if all double–transmitted waves are in phase,
that is, if 2kL = p 2π 8 / 43



Quantum scattering

1. s–wave scattering; scattering resonances

2. Partial–wave expansion

3. Zero–range potential

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §I]

[Messiah, Quantum Mechanics, volume II, Wiley (1966), chap. XIX]
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The scattering state: a stationary quantum state (qu. 5)

▶ Two particles collide in free space: no trap, centre–of–mass referential

For r → ∞, the interaction potential V (r) is negligible compared to the kinetic energy
Compare it to ℏ2/(mr2): For van der Waals interactions Vvdw(r) = C6/r6, b = lvdw = (mC6/ℏ2)1/4

DOES NOT APPLY to Coulomb interaction [see also Problem 2, slide 21/75]

▶ We impose a boundary condition for large r (r ≫ b, range of the interaction)

λ

incident
plane wave

z
b

V(r)

dΩ

detector

θ

Ψk(r) =
r→∞

eik·r + fk(Ω)
eikr

r

The length fk(Ω) is the scattering amplitude,
to be determined by solving Schrödinger Eq.

▶ Unlike for bound states, the energy
is known before calculating |Ψ⟩: E = ℏ2k2/(2m)

▶ This is not an initial value problem!

Solve H |Ψ⟩ =
ℏ2k2

2m
|Ψ⟩ to find fk(Ω),

which generalises t and r

Scattering cross section in solid angle Ω:
dσ
dΩ

= |fk(Ω)|2
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Bound states and scattering states: normalisation (qu. 6)

H =
p2

2m
+ V (r), Ψk(r) =

r→∞
eik·r + fk(Ω) eikr/r

r
lvdw

EB

V(r)

 weakly bound
state

asymptotic
scattering state
wavefunction

a sc
a
tt
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▶ The potential V (r) describing the
interaction between 2 particles
reaches an asymptote for r → ∞:

choose it as the energy E = 0

▶ Scattering states for 2 momenta k1 ̸= k2

are orthogonal: ⟨Ψk1 |Ψk2 ⟩ = 0

(easy if |k1| ̸= |k2|, harder if |k1| = |k2|)

▶ Eigenstates |Ψn⟩ of H with E < 0 are bound states: ⟨r|Ψn⟩ goes to 0 for r → ∞

Labelled by a discrete index n,
∫

d3r |ψn|2 = 1,

▶ Eigenstates |Ψk⟩ of H with E ≥ 0 are scattering states:
Labelled by the wavevector k such that E = ℏ2k2/(2m): continuous set of values
⟨r|Ψk⟩ DOES NOT go to zero for r → ∞, so |Ψk⟩ cannot be normalised to 1
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Normalisation for a scattering state (qu. 6)

λ

incident
plane wave

z
b

V(r)

dΩ

detector

θ
Ψk(r) =

r→∞
1×eik·r + fk(Ω)

eikr

r

▶ Choose the coefficient 1 in front of the incident plane wave
namely: choose the amplitude of the incident current jinc

▶ Schrödinger current for the incident plane wave Ψinc(r) = eik·r:

jinc(r) =
ℏ

2mi
(Ψ∗

inc∇Ψinc −Ψinc∇Ψ∗
inc) =

ℏk
m

= v ez

Therefore, the incident flux jinc · dS ez on the elementary surface dS ez is v dS

▶ The scattering state |Ψk⟩ and amplitude fk(Ω) are fully determined by this choice
Just like in 1D, where t and r are defined for the incident plane wave eikz
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Zero–energy scattering state, scattering length (qu. 7, 8)

▶ From now on, we assume that the interaction V (r) is spherically symmetric
(this excludes anisotropic dipole–dipole interaction)

λ

incident
plane wave

z
b

V(r)

dΩ

detector

θ

Ψk(r) =
r→∞

eik·r + fk(Ω)
eikr

r

▶ For E > 0, the wavevector k ̸= 0
the scattering state Ψk is not spherically–symmetric
cylindrical symmetry about the incidence direction k

▶ For E = 0, the incident wavevector k = 0, and the scattering amplitude f0 = −a

The scattering state is spherically symmetric: Ψ0(r) =
r→∞

1 − a
r

▶ In a dilute system, (i.e. holds in a gas)

the scattering length a encodes all properties of low–energy scattering

Related to s–wave phase shift δ0 in partial wave expansion: fl = (e2iδl − 1)/(2ik) and δ0 = −ka
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Universal scattering at low energy, effective interaction
▶ 2–body problem: for r > b, behaviour of low–energy wavefunctions is piloted by a

r
lvdw

repulsive
core

attractive
Van der Waals tail

EB

V(r)

weakly bound
state

asymptotic
scattering state
wavefunction

a

interaction is zero: ideal gas

effective interaction is repulsive

effective interaction is attractive

[Cohen-Tannoudji and Guéry-Odelin, Advances in Atomic Physics, World Scientific (2011)]

▶ The mean distance between atoms is n−1/3 = (L3/N)1/3

Dilute system: If n−1/3 is larger than the interaction range b,
the short–range details of the potential are irrelevant
All potentials with the same scattering length are equivalent

r

E
n
e
rg

y
 E

a

▶ Replace the potential
by a simpler one with the same scattering length:
square well or contact potential “g δ(r)” with g = 4πℏ2a/m

Beware: contact potentials must be handled with care! (details soon)
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Scattering length for a square well (1/2) (qu. 15)
H = p2/(2m) + V (r), Ψk(r) =

r→∞
eik·r + fk(Ω) eikr/r

r

E
n
e
rg

y
 E

a ▶ 3D isotropic square well potential VSW(r):
VSW(r) = −|ED| for r ≤ l and VSW(r) = 0 for r > l

▶ Calculate zero–energy scattering state Ψ0(r) =
r→∞

1 − a/r

where the unknown is the scattering length a

▶ The potential VSW(r) and boundary condition are both spherically symmetric
therefore, look for a spherically–symmetric wavefunction Ψ0(r)

▶ For r > 0, Laplacian of a spherically–symmetric function: ∇2Ψ0(r) =
1
r

d2

dr 2 (r Ψ0)

Zero–energy Schrödinger equation: 0 = − ℏ2

2m
d2

dr 2 (rΨ0) + VSW(r) (rΨ0)

The 3D Schrödinger Eq. reduces to a 1D Schrödinger Eq. on u0(r) = r Ψ0(r)

▶ Boundary condition (a): For large r , u0(r) =
r→∞

r − a is linear in r

Boundary condition (b): For r → 0, Ψ0(0) is finite, therefore u0(0) = 0×Ψ0(0) = 0
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Scattering length for a square well (2/2) (qu. 15)

r

E
n
e
rg

y
 E

a
▶ Spherically–symmetric square well potential VSW(r):

VSW(r) = −|ED | = −
ℏ2k2

D
2m

for r ≤ l and VSW(r) = 0 for r > l

▶ Schrödinger equation: 0 = −
ℏ2

2m
u′′

0 (r) + VSW(r) u0(r)

▶ Boundary conditions: u0(0) = 0 and u0(r) =
r→∞

r − a

where the unknown is the scattering length a

(a) For r > l : VSW(r) = 0, so that u′′
0 (r) = 0, thus u0(r) = r − a

(b) For r < l : VSW(r) = −ℏ2k2
D

2m
, so that u′′

0 (r) + k2
D u0(r) = 0, thus u0(r) = α sin(kD r)

▶ Matching condition: u′
0(r)/u0(r) must be continuous at r = l

1
l − a

=
kD cos(kD l)
sin(kD l)

, therefore
a
l
= 1 − tan(kD l)

kD l

Scattering resonance for all kD l = (n + 1/2)π, where n is an integer

that it to say, for all well depths |ED| = (n + 1/2)2 π2 ℏ2

2ml2
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s–wave bound states for a square well (1/2) (qu. 16)

VSW(r) = −|ED | for r ≤ l and VSW(r) = 0 for r > l ; |ED | = ℏ2k2
D/(2m)

▶ H =
p2

2m
+ V (r) commutes with l: look for eigenstates |Ψn,l,m⟩ shared by H, l2, lz

l2 |Ψn,l,m⟩ = ℏ2l(l + 1) |Ψn,l,m⟩ and lz |Ψn,l,m⟩ = ℏm |Ψn,l,m⟩

▶ s–wave bound states: l = m = 0 energy −|ED| ≤ En = −ℏ2κ2
n/(2m) < 0

ψn,0,0(r) depends only on r = |r|: write ψn,0,0(r) = un(r)/r with un(0) = 0

−
ℏ2

2m
u′′

n (r) + VSW(r) un(r) = −
ℏ2κ2

n

2m
un(r)

r

E
n
e
rg

y
 E

a
▶ For r > l , u′′

n (r) = κ2
n un(r) so that un(r) = α e−κn r

(e+κn r would lead to a wavefunction which is not normalisable)

▶ For r < l , −
ℏ2

2m
u′′

n (r) −
ℏ2k2

D
2m

un(r) = −
ℏ2κ2

n

2m
un(r)

u′′
n (r) + k2

1 un(r) = 0 with k2
1 = k2

D − κ2
n ≥ 0

Using un(0) = 0, un(r) = β sin(k1r)

▶ Matching condition:
u′

n(r)
un(r)

is continuous at r = l , hence −κn l =
k1 l

tan(k1 l) 17 / 43



s–wave bound states for a square well (2/2) (qu. 17)

Bound–state energies:
En

ℏ2/(2ml2)
= −(κn l)2 with κn l = −

k1l
tan(k1l)

> 0 and (kD l)2 = (k1l)2 + (κl)2

/2 3 /2 5 /2 7 /2 9 /2
k1l

/2

3 /2

5 /2

7 /2

9 /2

nl

▶ Graphical solution: look for the intersections
of the blue and green curves in
the (k1l, κnl) quarter–plane (k1 > 0, κn > 0)

▶ If (n − 1/2)π < kD l < (n + 1/2)π,
n intersections, hence, n bound states

n = 2 on the figure

▶ For every kD l = (n + 1/2)π, a new bound state appears

correspondingly, the scattering length a/l diverges
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Square well: zero–energy scattering resonance (qu. 18, 19)

r
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a

Unit of energy: El = ℏ2/(2ml2)
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▶ The scattering length diverges every time a new bound state enters the well

▶ The new bound state appears with the energy E = 0: zero–energy resonance
The square well plays the role of the Fabry–Perot cavity

The analogy has limitations: the spatial extent of the bound state is a ≫ l

▶ This is a general property known as LEVINSON’S theorem:
For any spherically–symmetric potential V (r) (smooth and well–behaved for r → 0 and r → +∞),

the scattering length a diverges each time a new bound state appears
[C. Cohen–Tannoudji & D. Guéry–Odelin, Advances in Atomic Physics, World Scientific (2011), Sec. 15.3.3] 19 / 43



Fabry–Pérot analogue: scattering resonance
▶ Simplest example: one scattering channel ‘shape resonance’
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For r > r0,
V(r) = 2 l(l + 1)/(2mr2)

For r < r0, V(r) = 0

quasi-bound state

[Messiah, Quantum Mechanics, Wiley (1958), vol. I, chapter 10, §15]

▶ More useful experimentally: two coupled channels Feshbach resonance

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §I.C] 20 / 43



Dilute system: from 2–body to many–body physics
We assume that the system is dilute: n−1/3 ≫ b (interaction range)

▶ 2–body physics: for a given potential V (r), determine the scattering length a
Choose the correct effective contact interaction “g δ(r)” with g = 4πℏ2a/m

▶ Many–body physics: work with the contact interaction term g Ψ̂†Ψ̂†Ψ̂Ψ̂

For weakly–interacting bosons at zero temperature, often reduces to Gross–Pitaevskii Eq.

Fermions are more complicated (BEC–BCS crossover . . . )

▶ Beware: the system may be both dilute and strongly interacting

b ≪ n−1/3 ≲ a

This regime is called ‘resonant’, or ‘strongly correlated’, or ‘unitary’
It is accessible experimentally with fermions, currently explored with bosons
Mean–field theory is not applicable, but many surprising symmetries

[Castin & Werner, in The BCS–BEC crossover and the unitary Fermi gas,
Lecture Notes in Physics 836, Zwerger (ed), Springer (2012)] 21 / 43



Tuning the interaction between many bosonic atoms
▶ Simplest many–body description: Gross–Pitaevskii equation (GPE)

This is a mean–field theory, valid at zero temperature T = 0

iℏ∂Ψ
∂t

= − ℏ2

2m
∇2Ψ + Utrap(r)Ψ + g|Ψ(r)|2 Ψ

(Science 1995)

85Rb

For a < 0 and many atoms, the later stages of the collapse are not captured by Gross–Pitaevskii Eq.

[Pitaevskii & Stringari, Bose–Einstein Condensation & Superfluidity, OUP (2016), §5.1, §11.2, §11.6]
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Tuning the interaction between many fermionic atoms
▶ In order to beat Pauli’s exclusion, we need at least

2 different species (e.g. 6Li, 40K) or 2 internal states of the same atom (|↑⟩, |↓⟩)

▶ For fermions, there is no Gross–Pitaevskii equation

Long–range order on 2–atom correlator: |F (r1,r2)|2 = lim
r→∞

⟨Ψ̂†
↑(r2 + r)Ψ̂†

↓(r1 + r)Ψ̂↓(r1)Ψ̂↑(r2)⟩

Mean–field description through the Bogoliubov–de Gennes equations

For more details, solve the Homework problem

[Sá de Melo, Physics Today 61(10), 45 (2018)] 23 / 43



Scattering by a

spherically–symmetric potential:

Partial–wave expansion

[Messiah, Quantum Mechanics, Wiley (1958), vol. I, §X.8 & §X.11–15; vol. II, exercice XIX.4]
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Scattering state |Ψk⟩ in terms of spherical harmonics (9)

▶ The spherical harmonics Yl,m (̂r) = Yl,m(Ω) = Yl,m(θ,ϕ) (̂r = vector of unit length)

make up a basis of the (square–integrable) functions on the sphere

Therefore, for a given r , we may expand Ψk(r) =
+∞∑
l=0

l∑
m=−l

Ψk,l,m(r)Yl,m (̂r)

where the ‘coefficients’ Ψk,l,m(r) depend on r = |r| only

λ

incident
plane wave

z
b

V(r)

dΩ

detector

θ

▶ The scattering state |Ψk⟩ is cylindrically–symmetric
about the incident direction k = k ez :
no dependence on the azimuthal angle ϕ

▶ The dependence on ϕ of Yl,m(r) is eimϕ

Hence, keep only m = 0 in the sum

Ψk(r) =
+∞∑
l=0

Ψk,l(r) Yl,0(̂r) (k = kez , hence, the subscript k in Ψk,l is no longer a vector)

▶ Each term in the sum is an eigenstate of both l2 and lz (neither of which involves r )
l2 |Yl,m⟩ = ℏ2l(l + 1) |Yl,m⟩ and lz |Yl,m⟩ = ℏm |Yl,m⟩

[Kosmann–Schwarzbach, Groups and Symmetries, Springer (2010), chap. 7] 25 / 43



Schrödinger Eq. on the l th component Ψk,l(r) (qu. 10)

Ψk(r) =
+∞∑
l=0

Ψk,l (r) Yl,0 (̂r), l2 |Yl,m⟩ = ℏ2l(l + 1) |Yl,m⟩, lz |Yl,m⟩ = ℏm |Yl,m⟩, E =
ℏ2k2

2m

▶ Schrödinger equation on the full scattering state |Ψk⟩:

− ℏ2

2m
∇2Ψk + V (r) Ψk =

ℏ2 k2

2m
Ψk

▶ Laplacian acting on a function expressed in spherical coordinates f (r ,θ,ϕ):

∇2f =
1
r
∂2

∂r 2 (r f ) − l2/ℏ2

r 2 f where l2 = squared angular momentum operator

▶ ∇2 [Ψk,l(r)Yl,0(̂r)] =
[

1
r
∂

∂r 2 (r ψk,l)−
l(l + 1)

r 2 ψk,l

]
Yl,0(̂r) proportional to |Yl,0⟩

The spherical harmonics |Yl,0⟩ are linearly independent

▶ This leads to a Schrödinger Eq. for each component Ψk,l with quantum number l :

− ℏ2

2m
1
r
∂2(rΨk,l)

∂r 2 +

(
ℏ2

2m
l(l + 1)

r 2 + V (r)
)
Ψk,l =

ℏ2 k2

2m
Ψk,l

The angular part of the Laplacian yields the centrifugal barrier l(l + 1)/r 2
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Boundary conditions on the partial wave |Ψk ,l⟩ (qu. 11)
Previous formulation of the scattering problem: (not an initial value problem)

H |Ψk⟩ =
ℏ2k2

2m
|Ψk⟩ with Ψk(r) =

r→∞
ei k·r + f (k,̂r)

eikr

r

▶ Assuming that V (r) is spherically symmetric, we have replaced
the partial differential equation involving a complicated boundary condition
by uncoupled ordinary differential equations, labelled by the integer l

− ℏ2

2m
d2(r Ψk,l)

dr 2 +

(
ℏ2

2m
l(l + 1)

r 2 + V (r)
)
(r Ψk,l) =

ℏ2 k2

2m
(r Ψk,l)

▶ Ψk,l(r) is finite for r → 0, therefore uk,l(r) = r Ψk,l(r) satisfies uk,l(0) = 0

The differential Eq. is 2nd–order: this defines Ψk,l(r) up to a multiplicative constant αl

▶ For large r , both V (r) and l(l + 1)/r 2 are negligible

u′′
k,l(r) + k2uk,l = 0, meaning that Ψk,l =

uk,l(r)
r

=
r→∞

αl
sin (kr−lπ/2+δl)

r
The phase δl is already fully determined. αtext

l = αslides
l [(2l + 1)/(4π)]1/2

▶ Choose αl such that the complete wavefunction Ψk(r) =
∑

l Ψk,l(r)Yl,0(̂r)
satisfies the scattering boundary condition: Ψk(r)− ei k·r =

r→∞
outgoing wave
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Expanding a plane wave into l–wave components (1/3)

▶ The plane wave Φk(r) = eikz has a well–defined momentum: p |Φk⟩ = ℏk ez |Φk⟩
We shall expand it into components with well–defined angular momentum l2, lz

Φk(r) =
√

4π
∑

l

(2l + 1)1/2 i l jl(kr) Yl,0(̂r) =
∑

l

(2l + 1) i l jl(kr) Pl(cos θ)

SPECIAL FUNCTIONS FREQUENTLY USED IN QUANTUM SCATTERING THEORY:

▶ Spherical harmonics Yl,m(r̂) satisfy l2Yl,m (̂r) = ℏ2l(l + 1)Yl,m (̂r), lzYl,m (̂r) = ℏm Yl,m (̂r)

▶ Legendre polynomials Pl (u) =
1

2l l!

(
d
dx

)l (
u2 − 1

)l

They determine the angular dependence of Yl,0: Yl,0 (̂r) =

(
2l + 1

4π

)1/2
Pl (cos θ)

▶ Spherical Bessel functions jl (ρ) [also yl (ρ)]: defined on the next slide

[ NIST Dynamical Library of Mathematical Functions, https://dlmf.nist.gov ]
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Expanding a plane wave into l–wave components (2/3)
▶ Φk(r) = eikz =

∑
l

Φk,l (r)Yl,0 (̂r) is a solution of ∇2 Φk = −k2 Φk, so that the Φk,l satisfy:

−
d2(r Φk,l )

dr2
+

l(l + 1)
r2

(r Φk,l ) = k2 (r Φk,l ) [Schrödinger Eq. without V (r)]

Change variable to ρ = kr : −
d2

dρ2
(ρΦl ) +

l(l + 1)
ρ2

(ρΦl ) = ρΦl

Two independent solutions: the spherical Bessel functions jl (ρ) and yl (ρ)

0 2 4 6
= kr

1

0

1

j l(
)

l=0 1 2 3jl( )

jl (ρ) =
ρ→0

ρl

(2l + 1)!!
, jl (ρ) =

ρ→∞

sin(ρ − lπ/2)

ρ

0 2 4 6
= kr

1

0

1

y l
(

)

l=0 1 2 3 yl( )

yl (ρ) =
ρ→0

−
(2l − 1)!!

ρl+1
, yl (ρ) =

ρ→∞
−

cos(ρ − lπ/2)

ρ

(2l)!! = 2l × (2l − 2) × · · · × 2, (2l + 1)!! = (2l + 1) × (2l − 1) × · · · × 1, 1!! = 0!! = (−1)!! = 1

▶ Φk,l must be finite for r → 0, therefore Φk,l (r) = αl jl (r) 29 / 43



Expanding a plane wave into l–wave components (3/3)

▶ We have shown eikz =
∑

l

αl jl(kr)Yl,0(̂r) =
∑

l

αl

(
2l + 1

4π

)1/2

jl(kr)Pl(cos θ)

Now, let us determine the coefficients αl

1. Write the lowest–order term in jl(ρ) as: jl(ρ) =
ρ→0

2l l!
(2l + 1)!

2. Using the explicit formula Pl(u) =
1

2l l!

(
d
dx

)l (
u2 − 1

)l
,

show that the highest–order term in Pl(u) is:
(2l)!
2l l! l!

u l

3. Expand both the left– and right–hand sides in increasing powers of (kr cos θ)

and conclude that αl =

(
4π

2l + 1

)1/2

(2l + 1) i l

Φk(r) =
√

4π
∑

l

(2l + 1)1/2 i l jl(kr) Yl,0(̂r) =
∑

l

(2l + 1) i l jl(kr) Pl(cos θ)
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Scattering state |Ψk⟩: scattering amplitude fk(Ω) (qu. 12)

▶ The scattering–state boundary condition Ψk(r)− Φk(r) =
r→∞

fk(̂r)
eikr

r
states that, for large r , the difference (|Ψk⟩ − |Φk⟩) reduces to an outgoing wave

▶ Φk(r) =
r→∞

∑
l

√
4π (2l + 1)1/2 i l sin(kr − lπ/2 )

kr
Yl0(̂r)

Ψk(r) =
r→∞

∑
l

√
4π (2l + 1)1/2 i l α̃l

sin(kr − lπ/2 +δl)

kr
Yl0(̂r)

(αslides
l =

√
4π (2l + 1)1/2 i l α̃l/k )

Ψk(r)−Φk(r) =
r→∞

∑
l

[4π(2l + 1)]1/2

2ikr

[
(α̃leiδl − 1) eikr+(−)l(−α̃le−iδl + 1) e−ikr

]
Yl,0(̂r)

▶ In order to remove the ingoing wave, choose α̃l = eiδl

Ψk(r)− Φk(r) =
r→∞

(∑
l

[4π(2l + 1)]1/2 e2iδl − 1
2ik

Yl,0 (̂r)

)
eikr

r

=
r→∞

(∑
l

(2l + 1)Pl (cos θ)
e2iδl − 1

2ik

)
eikr

r

Therefore, the scattering amplitude is fk(Ω) =
∑

l

(2l + 1)Pl(cos θ)
e2iδl − 1

2ik
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Scattering state |Ψk⟩: partial–wave expansion
▶ We have proved: [αl =

√
4π (2l + 1)1/2 i l eiδl /k ]

Ψk(r) =
∑

l

√
4π (2l + 1)1/2 i leiδl

Ψk,l(r)
k

Yl,0(̂r) =
∑

l

(2l + 1)Pl(cos θ) i leiδl
Ψk,l(r)

k

▶ Finally, restore the role of k using k · r = kr cos θ, or equivalently k̂ · r̂ = cos θ

Use the ‘addition theorem’: Pl(k̂ · r̂) =
4π

2l + 1

l∑
m=−l

Y ∗
l,m(k̂)Yl,m (̂r)

Ψk(r) =
4π
k

∞∑
l=0

l∑
m=−l

Y ∗
l,m(k̂) Yl,m(r̂) i l eiδl Ψk ,l(r)

where uk,l(r) = r Ψk,l(r) is the (real) solution of:

− ℏ2

2m
u′′

k,l(r) +

(
ℏ2

2m
l(l + 1)

r 2 + V (r)
)

uk,l(r) =
ℏ2 k2

2m
uk,l(r)

which satisfies uk,l(0) = 0 and uk,l(r) =
r→∞

sin(kr − lπ/2 + δl)

[Messiah, Quantum Mechanics, volume II, Wiley (1958), chap. XIX, exercice 4] 32 / 43



Orthogonality of the scattering states |Ψk⟩
1. If |k1| ̸= |k2|, give a simple argument why ⟨Ψk1 |Ψk2⟩ = 0

HINT: The states |Ψk1 ⟩ and |Ψk2 ⟩ are both eigenstates of the same Hamiltonian H.

From now on, we assume that |k1| and |k2| are arbitrarily close (their directions may differ)

2. Show that, for a given l , the radial wavefunctions uk,l(r) satisfy:∫ ∞

0
dr uk1,l(r) uk2,l(r) =

1
4
δ

(
k1 − k2

2π

)
HINTS: The radial waves are defined for r > 0; exploit their asymptotic behaviour.

3. Use the partial wave expansion to show that: ⟨Ψk1 |Ψk2⟩ = δ

(
k1 − k2

2π

)
HINTS: The spherical harmonics satisfy:

the orthonormality condition
∫

sin θ dθ dϕ Y∗
l1,m1

(̂r)Yl2,m2 (̂r) = δl1,l2 δm1,m2

the completeness relation
∞∑
l=0

l∑
m=−l

Y∗
l,m(k̂1)Yl,m(k̂2) = δ(k̂1 − k̂2)
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Contact potential

also called:

Zero–range potential

Universal regime for low–energy scattering and bound states

[Huang, Statistical Mechanics, Wiley (1963), §10.5]

[Pitaevskii & Stringari, Bose–Einstein Condensation and Superfluidity, OUP (2016), §9.2]
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Dirac peak ‘potential’: ambiguous E=0 scattering state

▶ Consider the ‘potential’ Vδ(r) = g δ(r), which is spherically symmetric

Look for the zero–energy scattering state: Ψ0(r) =
r→∞

1 − a/r

Reduced mass mred = m/2 for two particles with the same mass

▶ Introduce u0(r) = r Ψ0(r): −ℏ2

m
u′′

0 (r) + Vδ(r) u0(r) = 0 with u0(r) =
r→∞

r − a

For r > 0, Vδ(r), plays no role, so that u′′
0 (r) = 0 and u0(r) = r − a

Ψ0(r) = 1 − a/r

▶ Schrödinger equation: −ℏ2

m
∇2Ψ0(r) + g δ(r)Ψ0(r) = 0

Inject Ψ0(r) and use ∇2(1/r) = −4π δ(r) (Poisson formula in electrostatics)

δ(r)
(
−4πℏ2 a

m
+ g(1 − a/r)

)
= 0 cannot be satisfied for all r ≥ 0
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Contact potential: formulation as a pseudo–potential
▶ The difficulty comes from the non–regular part −a/r : remove it using a derivative

⟨r|Vpseudo|Ψ⟩ = g δ(r)
∂[r Ψ(r)]

∂r

▶ Expand the wavefunction Ψ(r) =
∑
l,m

Ψl,m(r)Yl,m(θ,ϕ) onto spherical harmonics

Important: Domain of the Hamiltonian:

Wavefunctions Ψ(r) such that all r Ψl,m(r) are finite for r → 0

Different from the case of a regular potential, for which r Ψl,m(r) =
r→0

0

▶ Vpseudo coincides with Vδ for all wavefunctions Ψl,m(r) that are regular at r = 0

g δ(r)
∂

∂r

[
rΨl,m(r)

]
= g δ(r)

[
Ψl,m(r) + rΨ′

l,m(r)
]

= g δ(r) Ψl,m(0)

▶ Wavefunctions diverging like 1/r : Ψl,m(r) = χl,m(r)/r with χ regular at r = 0

g δ(r)
∂

∂r

[
rΨl,m(r)

]
= g δ(r)χ′

l,m(r) = g δ(r)χ′
l,m(0)

⟨r |Vpseudo|Ψl,m⟩ = g δ(r)χ′
l,m(0) is also well defined.
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Pseudo–potential: scattering length
⟨r|Vpseudo|Ψ⟩ = g δ(r)

∂[r Ψ(r)]
∂r

▶ The pseudopotential Vpseudo is spherically symmetric

Look for the zero–energy scattering state: Ψ0(r) =
r→∞

1 − a/r

Reduced mass mred = m/2 for two particles with the same mass

▶ Introduce u0(r) = r Ψ0(r): −ℏ2

m
u′′

0 (r) + Vpseudo(r) u0(r) = 0 with u0(r) =
r→∞

r − a

For r > 0, Vpseudo(r) = 0, so that u′′
0 (r) = 0 and u0(r) = r − a

Ψ0(r) = 1 − a/r

▶ Schrödinger equation: −ℏ2

m
∇2Ψ0(r) + g δ(r)

∂

∂r
[r Ψ0(r)] = 0

Inject Ψ0(r) and use ∇2(1/r) = −4π δ(r) (Poisson formula in electrostatics)

δ(r)
(
−4πℏ2 a

m
+ g

)
= 0, so that g =

4πℏ2 a
m

as expected.
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Pseudo–potential: bound state (1/2)
▶ Spherical symmetry: look for a bound state ψl which is an eigenstate of l2 and lz

Bound state means negative energy: E = −ℏ2κ2/m with κ > 0
Schrödinger equation for r > 0: Vpseudo plays no role

−ℏ2

m
1
r
∂2

∂r 2 (r ψl) +
ℏ2

m
l(l + 1)

r 2 ψl = −ℏ2κ2

m
ψl

▶ Change variable to ρ = κr : −1
ρ

∂2

∂ρ2 (ρψl) +
l(l + 1)
ρ2 ψl = −ψl

▶ Normalisable solutions are proportional to the
spherical Bessel function kl(ρ): ψl (r) = α kl (κ r)

kl (ρ) =
ρ→0

π

2
(2l − 1)!!
ρl+1

and kl (ρ) =
ρ→∞

π

2
e−ρ

ρ

▶ Domain of Vpseudo: rψl must be finite for r → 0
0.0 2.5 5.0

= kr

0.0

0.5

1.5

k l
(

)

l=0 1 2 3 kl( )

Hence, there are only s–wave bound states (if any): l = 0 and ψ0(r) = β
e−κr

r
[ NIST Dynamical Library of Mathematical Functions, http://dlmf.nist.gov ] 38 / 43



Pseudo–potential: bound state (2/2)
ψ0(r) = β exp(−κr)/r with E = −ℏ2κ2/m and κ > 0

▶ s–wave Schrödinger equation: −
ℏ2

m
∇2ψ0 +

4πℏ2 a
m

δ(r)
∂

∂r
[r ψ0(r)] = −

ℏ2κ2

m
ψ0

▶ Behaviours for r → 0: [If f (r) is regular at r = 0, ∇2f (r) = (1/r)∂2(rf )/∂r2

ψ0(r) = β(1/r −κ)+O(r), ∇2ψ0 = −4πβ δ(r)+O(1/r), ∂(r ψ0)/∂r = −βκ+O(r)

Inject them in the Schrödinger equation: (1 − κa) δ(r) = O(1/r), so that κ = 1/a

▶ κ > 0, therefore: no bound state if a < 0, a single bound state if a > 0

The bound state represents a molecule: it only exists for repulsive interactions.

ψ0(r) =
1

(2π a3)1/2

exp(−r/a)
r/a

▶ r ψ0(r) is finite but non–zero for r → 0

▶ spatial extent set by scattering length a

▶ energy E = −ℏ2/(ma2) 0 2 4
Radial coordinate r/a

0.0

0.2

0.4

W
av

ef
un

ct
io

n 
 a

3/
2
(r/

a)
0(

r/a
)

Contact potential with scattering length a > 0

Bound state wavefunction

a1/2 u0(r/a) = a3/2 (r/a) 0 = e r/a/(2 )1/2
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Pseudo–potential: scattering state with energy E > 0
▶ The incident wavevector is k such that E = ℏ2 k2/m [reduced mass mred = m/2]

Expand the scattering state Ψk(r) =
∑

l Ψl(r)Yl,0(θ,ϕ) into partial waves

Vpseudo plays no role for r > 0: Ψl(r) satisfies the same equation as the plane wave Φk

Solution: linear combination of spherical Bessel functions Ψl(r) = αl jl(kr) + βl yl(kr)

▶ Behaviour for small r : jl(ρ) =
ρ→0

ρl

(2l + 1)!!
and yl(ρ) =

ρ→0
− (2l − 1)!!

ρl+1

Domain of Vpseudo: r Ψl(r) must be finite for r → 0, therefore βl = 0 for all l ≥ 1

Only the s–wave component is scattered! [Plane wave: r Φl =
r→0

0, so that even β0 = 0]

▶ Scattering state for all r > 0: Ψk(r) = eik·r − a
1 + ika

eikr

r

HINTS: First, show that the s–wave component u0(r) = sin(kr + δ0) with tan δ0 = −ka

Then, use f = f0 =
e2iδ0 − 1

2ik
along with the identity e2iδ0 =

1+i tan δ0
1−i tan δ0
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Universality for low–energy scattering & bound states
For distances greater than the potential range b,

The scattering length a fully dictates the behaviour of . . .

▶ Low–energy scattering states
zero–energy scattering state: Ψ0(r) =

r≫b
1 − a/r

low –energy scattering state: Ψl=0(r) =
r≫b

sin[k(r − a)]
kr

(see qu. 13–14)

▶ Weakly bound states

wavefunction ψ0(r) =
1

(2π a3)1/2

exp(−r/a)
r/a

, spatial extent a ≫ b (halo), energy ε = −
ℏ2

m a2

Beware: No universality for deeper bound states

▶ In the universal regime, for r ≫ b,

all wavefunctions coincide with the ones calculated using the contact potential.
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Universality on an example: the square well potential

r

E
n
e
rg

y
 E

a

Unit of energy: El = ℏ2/(2ml2)

-5

 0

 5
0 π/2 3π/2 5π/2 7π/2 9π/2

1 bound state 2 bound states 3 bound states 4 bound states

Scattering
length a/l

-200

-100

 0

0 π/2 3π/2 5π/2 7π/2 9π/2

Well depth (ED/El)
1/2

Binding energies EB/El

▶ Next slide: scattering and bound–state wavefunctions for various values of a/l

obtained in the cases where the well supports 3 bound states or 4 bound states

and compares them to the predictions of the contact potential.

The considered wavefunctions are all s–wave; plotted quantities: u0(r) = rΨ0(r) or un(r) = rψn(r)
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