ADVANCED QUANTUM MECHANICS
TUTORIALS 2024-2025

David Papoular
Laboratoire de Physique Théorique et Modélisation, Univ. Cergy—Pontoise

david.papoular@u-cergy.fr

Please ask me MANY questions!

Wednesday, December 4", 2024

1/33



Outline of the tutorials for the whole semester

» Problem 1: two—particle interference
» Problem 2: coherence and correlations in quantum gases
> Problem 3: lattice models, superfluid/Mott insulator transition

» Problem 4: Quantum scattering, scattering resonances

All problems describe experiments that have actually been performed
They all contain elements of theory and introduce calculation techniques

They all contain both standard questions and (very?) hard questions
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A bird’s eye view of the problem

Problem #4: Quantum scattering
and scattering resonances: DIGEST

» Review: scattering problems with optical waves

Fabry—Pérot interferometer

» Quantum scattering theory

Partial waves, s—wave phase shift, scattering length

» Single—channel scattering resonances: “shape resonances”

Square well, shape resonances due to the centrifugal barrier

» Scattering resonances involving multiple channels: “Feshbach resonances”

Two—channel model, experimental applications
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Review:
A scattering problem with optical waves
The Fabry—Pérot interferometer

This example has a direct connectionto  quantum ‘shape resonances’

[Hecht, Optics, 5" edition, Pearson (2017), §9.6]
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Electromagnetic wave propagating in 1D (qu. 1)

» The propagation equation for an electromagnetic wave in vacuum (V-E=0)
follows from Maxwell’s equations V xE=-0B/dt and V xB-= é OE /ot

12
The identity V x (V x E) = V(V-E) - V2E yields: V°E — %% =

» Monochromatic wave: single frequency w  E(r,t) = E(r) exp(—iwt)

2
The propagation equation reduces to: —V%E = % E
Plane—wave solutions &e exp[i(k - r — wt)] satisfy k = w/c
All solutions E(z,t) propagating along z are linear combinations of plane waves:

E = &e explilkz—wt)] + &_e_expli(—kz —wt)]

» Due to Gauss’s flux theorem V-E = 0,
the polarisations e and e_ are both perpendicular to k = ke,
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Electromagnetic wave and Fabry—Pérot cavity (qu. 2)

» Two parallel semi-reflecting mirrors

>

>

é & &
- = £ (amplitude) transmission & reflection coefficients:
& &, & tand r (both assumed to be real)
e i L} > Propagation perpendicular to mirrors: k = ke,
Assume a single polarisation is present: E = e &(r,t)
» Monochromatic solution of the propagation equation:  E(z,t) = E(Z) exp(—iwt)

Analogue of the condition for a stationary state in quantum mechanics

Three spatial regions: A (left), B (cavity = between the mirrors), C (right)

In each region «, the electric field is a sum of two counterpropagating plane waves:
E(z,t) = e[&.; exp(ikz) + &a— exp(—ikz)] exp(—iwt)

d°E w? - .

Y E so 2 conditions are required

For an ‘initial value problem’,  we would give &4 and &4 NOT TODAY!

Propagation equation is 2™—order:

Scattering problem: impose &c_ =0

The solution is proportional to the incident flux €4.: choose &a. = & 6/33



Fabry—Pérot: transmission/reflection coefficients (qu. 3)

Ent o+ Ecy
’x . & Scattering problem: & =0and &s. = &,
e; L

» Write the transmission and reflection coefficients in matrix form at both mirrors

The two mirrors are identical, but beware: their two sides are not symmetric!
The minus sign comes from the unitarity of U: it enforces conservation of energy at each mirror

Beware: also account for propagation between the mirrors: phases exp(+ikL)

Ep+ . t —r Enr and Ep_ e Kt _ t —r Eco_ e
g ) \r t)\& eoe™ ) \r t) \ &g et
» Transmission and reflection coefficients  for the Fabry—Pérot (FP) cavity:

_ &cqpexp(ikL) t2 exp(ikL)
o Ear T 1—r exp(2ikL)

-7 1 — exp(2ikL)
and e = g = T 2 exp(2ikL)
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Fabry—Pérot: resonant cavity (qu. 4)

12 exp(ikL) 1 — exp(2ikL) 5
pp = ———————— and fp = F————— Tep = |Ig and
T 1 T 2 exp(2ikl) ”’ 1— r2exp(2ikL)’ e = [tre]

» If 2L is an integer multiple of A\, 2L = pA,
Perfect transmission:  fmp = (—1)?, me =0
independent of the transmission of a single mirror

Smaller t leads to better selectivity

Intensity transmission/reflection

1
Cavity length L/A

exp(ikL) N
tp = t gt (1 + (reikL)2 + (reikL)4 —I—v'-)t
exp(ikL)
"1L_ » The double-transmitted waves all interfere:
exp(ikL) multiple—wave interference
exp(ikL) , » Constructive interference
¢ if all double—transmitted waves are in phase,

exp(ikL) T thatis, if 2kL = p2n 653



Quantum scattering
1. s—wave scattering; scattering resonances
2. Partial-wave expansion
3. Zero-range potential

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §l]
[Messiah, Quantum Mechanics, volume I, Wiley (1966), chap. XIX]
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The scattering state: a stationary quantum state (qu. 5)

» Two particles collide in free space: notrap, centre—of-mass referential
Forr — oo, the interaction potential V(r) is negligible compared to the kinetic energy
Compare it to #2/(mr?): For van der Waals interactions Viqy(r) = Cs/r®, b = haw = (mCg/12)1/*

DOES NOT APPLY to Coulomb interaction [see also Problem 2, slide 21/75]

» We impose a boundary condition for large r  (r > b, range of the interaction)
- e
v = €+ Q) -

r—oo

Qdetector  The length £(£2) is the scattering amplitude,
to be determined by solving Schrédinger Eq.

»> Unlike for bound states, the energy

py is known before calculating |W):  E = k2k?/(2m)
Z » This is not an initial value problem!
b 12 k? ,
...................... - Solve HI|V)= — |V to find (),
incident v 2m ) k(@)
plane wave which generalises t and r

. I . d
Scattering cross section in solid angle Q: == [ (Q)?
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Bound states and scattering states: normalisation (qu. s)
2

_ pi . ikr ikr
H= om + V(r), Wi (r) LT, e k(Q) e /r
V(r) energy E > The potential V(r) describing the
interaction between 2 particles
asymptotic
scattering s_tat/ reaches an asymptote for r — oco:
wavefunction,
lvaw a r choose it as the energy E = 0

bound states scattering states

Eo| Brnrnom=s ]
B) Nty found s > Scattering states for 2 momenta ky # ks
S are orthogonal: (W, [Wy,) =0
] (easy if |ki| # |ko|, harderif |ki| = |ko|)
» Eigenstates |V,) of H with E < 0 are bound states: (r|W,) goes to O for r — oo

Labelled by a discrete index n, /dsr [bn]? =1,

> Eigenstates |Vy) of H with E > 0 are scattering states:
Labelled by the wavevector k such that £ = h2k?/(2m): continuous set of values

(r|Wx) DOES NOT go to zero for r — oo, so |Wy) cannot be normalised to 1
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Normalisation for a scattering state  (qu. )

Quetector

A

incident
plane wave

» Choose the coefficient 1 in front of the incident plane wave
namely: choose the amplitude of the incident current jinc

» Schradinger current for the incident plane wave Wi, (r) = e:
h hk

jinc(r) - ~ (\U;vainc - \Uincvw;c) = = ve;

2mi m

Therefore, the incident flux .. -dSe; on the elementary surface dSe, is v dS

» The scattering state |Wx) and amplitude #(2) are fully determined by this choice
Just like in 1D, where t and r are defined for the incident plane wave e
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Zero—energy scattering state, scattering length (qu.7, 5

» From now on, we assume that the interaction V(r) is spherically symmetric
(this excludes anisotropic dipole—dipole interaction)

Qdetector

» For E >0, the wavevectork #0
the scattering state Wy is not spherically—symmetric

plane wave cylindrical symmetry about the incidence direction k

» For E = 0, the incident wavevector k = 0, and the scattering amplitude f, = —a
a
1-=Z

The scattering state is spherically symmetric: Wo(r) e .
— 00

» In a dilute system, (i.e. holds in a gas)
the scattering length a encodes all properties of low—energy scattering

Related to s-wave phase shift &, in partial wave expansion: f; = (€2 — 1)/(2ik) and éy = —ka
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Universal scattering at low energy, effective interaction

» 2-body problem: for r > b, behaviour of low—energy wavefunctions is piloted by a

0 interaction is zero: ideal gas E
v(r) R
repulsive
core .
asymptotic : a>0
scattering state H | %
wavefunctiol NS
lyaw g ST effective interaction is repulsive
0;
a.-" r : i
Eg] Feaiy Sound 50 attractive
state Van der Waals tail
effective interaction is attractive K
R

3o an

2011

> The mean distance between atoms is n='/3 = (L*/N)'/3

Dilute system: If n='/% is larger than the interaction range b,

the short-range details of the potential are irrelevant
All potentials with the same scattering length are equivalent

l = lvdw a

> Replace the potential
by a simpler one with the same scattering length:
square well or  contact potential “g(r)”  with g = 4xhi?a/m

Energy E |

Ve Beware: contact potentials must be handled with care! (details soon)
sw(r) 14/33



Scattering length for a square well  (1/2)  (qu. 15)

H = pz/(zm) + V(f)‘ \Ilk(r) . e/k-r + fk(Q) eikr/r

l = lvdw
o - » 3D isotropic square well potential Vsw(r):
W —|Es| Vsw(r) = —|Ep|forr </  and Vsw(r) =0forr >/
(o))
L%’ \Ep| > Calculate zero—energy scattering state Wo(r) = 1-—a/r
—|Ep r—oo
Vaw () where the unknown is the scattering length a

> The potential Vsw(r) and boundary condition are both spherically symmetric
therefore, look for a spherically—symmetric wavefunction W (r)

2
> For r > 0, Laplacian of a spherically-symmetric function: ~ V*Wo(r) = %%(r Vo)

h2 d2
“om W(f%) + Vsw(r) (r¥o)

The 3D Schrédinger Eq. reduces to a 1D Schrédinger Eq. on  uo(r) = r Wo(r)

Zero—energy Schrodinger equation: 0 =

» Boundary condition (a): Forlarge r, uo(r) S r—a is linear in r
—

Boundary condition (b): For r — 0, Wo(0) is finite, therefore uy(0) = 0 x Wo(0) =0
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Scattering length for a square well  (2/2)  (qu. 15)

1 =luq » Spherically—symmetric square well potential Vsw(r):
. 4 s

............ Vew(r) = —|Ep| = ——2 forr </ and Vsw(r)=0forr>/
w 2m
> » Schrodinger equation: 0 s Vsw
E inger equation: f%uo(r) +  Vsw(r) up(r)
Wi

» Boundary conditions:  ug(0) =0 and w(r) = r—a
——r y 0(0) o(r) =

where the unknown is the scattering length a

(a)Forr> 1. Vsw(r)=0, so that uy'(r) = 0, thus up(r)=r—a
2.2
(b)Forr < I: Vew(r) = — hZII;D, so that uf (r) + k3 uo(r) = 0, thus uy(r) = a sin(kp r)

> Matching condition:  u)(r)/uo(r) must be continuous at r = /

1 kpcos(kpl) a_ tan(kpl)
—a~ sin(kol) ’ therefore = 1 Kol

Scattering resonance for all kp/ = (n+ 1/2) =, where nis an integer

2
that it to say, for all well depths |Ep| = (n+1/2)% =® _

2ml2
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s—wave bound states for a square well (1/2)  (qu. 16)
Vsw(r) = —|Ep| forr < and Vsw(r) = 0forr > I; |Ep| = h2k3/(2m)
2
> H= ;—m + V(r) commutes with I:  look for eigenstates |V, ; ) shared by H, I?, I,
2 W im) = ]72/(/+ 1) [Wnm and Iz N}n‘,/.m> =hmV,m)

> s-wave bound states: /=m=0 energy —|Ep| < E, = —12k2/(2m) < 0
1¥n0,0(r) depends only on r = |r|: write 1n.0,0(r) = un(r)/r with u,(0) =0
} }2 2
U (r)  Vew(Dun(n) = = unr)
L=l > Forr> 1, ul/(r)=kK2un(r) sothat un(r) =ae "n’
= > (e**n " would lead to a wavefunction which is not normalisable)
w|-|Es| ”ro
> k 5252
g‘ » Forr </, ——u,,( ) — om D yn(ry = - 2mn un(r)
w —|ED| . > >
Vow (") up(r) + k1 un(ry=0 with ki =kp— k2 >0
Using un(0) = 0, un(r) = Bsin(kqr)
/
. . r) . .
» Matching condition: Un(r) is continuous at r =/, hence —knl = kil
Un(r) tan(ki ) 47,33



s—wave bound states for a square well (2/2)  (qu. 17)

—(knh)2 with knl = — i

Bound-state energies: L =
9IS T2 emey tan(ki )

> 0and (kpl)2 = (ki/)2 + (kl)?

on/2

e » Graphical solution: look for the intersections

of the blue and green curves in
- 5™ : the (kil, knl) quarter—plane  (k; > 0, x5 > 0)

K

32 > If(n—1/2)7r < kol < (n+1/2) T,

nintersections, hence, nbound states
n = 2 on the figure

n/2

n2  3m2  Sm2  In2 omR

kal
» Forevery kpl=(n+1/2)m, a new bound state appears
correspondingly, the scattering length a// diverges
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Square well: zero—energy scattering resonance (qu. 1s, 19)

/2 3m/2 5m/2 /2 on/2
5 ! Scattering
length a/l
I = lyaw a
r [
w|-|Es| W |
> - 1 bound state } 2 bound states | 3 bound states | 4 bound states
= -5 :
9] 0 . .
] )
Vaw () -100 r
Unit of energy: E; = h2/(2ml?) 200 Binding energies Ep/E; |
0 w2 3m/2 5m/2 Tn/2 on/2
Well depth (Ep,/Ep'?

» The scattering length  diverges everytimea new bound state enters the well

» The new bound state appears with the energy £ = 0: zero—energy resonance

The square well plays the role of the Fabry—Perot cavity
The analogy has limitations:  the spatial extent of the bound state is a > /

» This is a general property known as LEVINSON’S theorem:

For any spherically-symmetric potential V(r) (smooth and well-behaved for r — 0 and r — +o0),
the scattering length a diverges each time a new bound state appears
[C. Cohen—Tannoudji & D. Guéry—Odelin, Advances in Atomic Physics, World Scientific (2011), Sec. 15.3.3] 19/33



Fabry—Pérot analogue:

> Simplest example:

A=

vdw a

Energy E |

» More useful experimentally:

closed channel

Tune AE
usirlg B

— Eincident

Energy E

open channel

Relative distance r

one scattering channel

scattering resonance

‘shape resonance’

10

For r>ro,
V(r) = h2 I(1 + 1)/(2mr?)

Potential V(r/[h2/(mr2)]
-

For r<ro, V(r)=0

0 1 2
Position r/ry

Messiah, Quantum Mechanics, Wiley (1958), vol. |, chapter 10, §15]

two coupled channels Feshpach resonance
a

Resonance
width

-

Bres:

abackground

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §I.C]
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Dilute system: from 2—-body to many—body physics

We assume that the system is dilute:  n~"/% >> b (interaction range)

» 2-body physics: for a given potential V(r), determine the scattering length a
Choose the correct  effective contact interaction “g(r)”  with g = 4nh?a/m

» Many-body physics: work with the contact interaction term g Ut Ui
For weakly—interacting bosons at zero temperature, often reduces to Gross—Pitaevskii Eq.

Fermions are more complicated (BEC—BCS crossover .. .)

> Beware: the system maybe both dilute and strongly interacting

b<n'?<a

This regime is called  ‘resonant’, or ‘strongly correlated’, or ‘unitary’
It is accessible experimentally with fermions,  currently explored with bosons
Mean—field theory is not applicable, but many surprising symmetries

[Castin & Werner, in The BCS—-BEC crossover and the unitary Fermi gas,

Lecture Notes in Physics 836, Zwerger (ed), Springer (2012)] 21/33



Tuning the interaction between many bosonic atoms

» Simplest many—body description: Gross—Pitaevskii equation (GPE)
This is a mean—field theory, valid at zero temperature T =0

oV - 2
/hW = f%v UV 4+ Ump(NV + gV v
"Attractive" "ldeal Gas" "Repulsive"
a<0 a=0 a>0
L Y e
BEC collapses BEC is stable
- f ' )
it Cornell
&
Wieman
Buntocus 85Rp
(Nature 2001) (Science 1995)

For a < 0 and many atoms, the later stages of the collapse are not captured by Gross—Pitaevskii Eq.

[Pitaevskii & Stringari, Bose—Einstein Condensation & Superfluidity, OUP (2016), §5.1, §11.2, §11.6]
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Tuning the interaction between many fermionic atoms

» In order to beat Pauli’s exclusion, we need at least
2 different species (e.g. °Li, “°K)  or 2 internal states of the same atom (|1), |1))

» For fermions, there is no Gross—Pitaevskii equation
(Wl (r2 + )T (g + )W (1)U (r2))
Mean—field description through the Bogoliubov—de Gennes equations

For more details, solve the Homework problem

06

Long-range order on 2—atom correlator:  |F(rq,rz)[? = rim
oo

- Yika) "

1
BEC —
Attraction —»

[Sa de Melo, Physics Today 61(10), 45 (2018)] 23/33



Contact potential

also called:

Zero—range potential

Universal regime  for low—energy scattering and bound states

[Huang, Statistical Mechanics, Wiley (1963), §10.5]

[Pitaevskii & Stringari, Bose—Einstein Condensation and Superfluidity, OUP (2016), §9.2]
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Dirac peak ‘potential’: ambiguous E=0 scattering state

» Consider the ‘potential’ Vs(r) = gd(r), which is spherically symmetric
Look for the zero—energy scattering state:  Wq(r) e 1—a/r

Reduced mass m,.q = m/2 for two particles with the same mass

2

> Introduce up(r) = r Wo(r): —% u (r) + Vs(r)uo(r)=0 withu(r) = r—a
Forr >0, Vs(r),playsnorole, sothatuy(r)=0 andu(r)=r—a
Vo(r)y=1—a/r
h2
> Schrodinger equation:  —-—- V2Wo(r) + 9g8(rWe(r) = 0

Inject Wo(r) anduse VZ(1/r) = —4xd(r) (Poisson formula in electrostatics)

2
a(r) (,L{Za + g(1 - a/r)) =0 cannot be satisfied for all r > 0
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Contact potential: formulation as a pseudo—potential

» The difficulty comes from the non—regular part —a/r:  remove it using a derivative

olrv(r
(Vo) = go(r) A0
» Expand the wavefunction W(r Z WV m(r) Yim(6,¢) onto spherical harmonics

Important: Domain of the Hamiltonian:
Wavefunctions W(r) such that all r ¥, ,(r) are finite forr — 0

Different from the case of a regular potential, for which r W, p,(r) 0 0
r—

> Visudo COINcides with Vs for all wavefunctions W, ,(r) that are regularatr =0

g&(r)% [Y1m(N] = go(r) [Wim(r) + ¥ m(r)] = go(r) ¥;m(0)

» Wavefunctions diverging like 1/r: W, n(r) = x1,m(r)/r with x regularatr =20
) N / Y /
905, [Vim(n)] = G810 X] m(r) = G0(1)X] m(0)

(r| Viseudo[Wi,m) = 96(r) x1.m(0) is also well defined.
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Pseudo—potential:  scattering length

O[rw(r)]

rV)\Cu(O“U - 5(r
(1 Vsasao ) = g5(1) 27

» The pseudopotential Vpsudo is spherically symmetric
Look for the zero—energy scattering state: ~ Wo(r) i 1—a/r
—00

Reduced mass m,.q = m/2 for two particles with the same mass

2
> Introduce uo(r) = rWo(r): —% ug (1) + Viseudo(r) to(r) =0 with uo(r) =_r-a

— 00

Forr >0, Vieuwo(r)=0, sothatui(r)=0 andu(r)=r—a
Vo(r)=1—a/r

2
» Schrédinger equation: —%Vzwo(r) + gé(r)%[rwo(r)] = 0

Inject Wo(r) anduse VZ(1/r) = —4x§(r) (Poisson formula in electrostatics)

2 2
a(r) (— 477; a.y g) =0, so that g = 477; 2 s expected.
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Pseudo—potential: bound state

(1/2)

> Spherical symmetry: look for a bound state +; which is an eigenstate of I? and /,
Bound state means negative energy: E=—rx*/m withkx >0
Schrodinger equation for r > 0: Vpseudo plays no role

W1 P

“moror) t
. 1 8°

> Change variable to p = xr: —— —pvr) +
p Op?

» Normalisable solutions are proportional to the
spherical Bessel function ki(p): v(r) = aki(xr)

_om@—1)n
k/(P)p:OET and  Kk(p)

. ™
p—oo 2 p
» Domain of Viseuso: iy must be finite for r — 0

Hence, there are only s—wave bound states (if any):

[ NIST Dynamical Library of Mathematical Functions,

B2+ 1) B h2k2
more VT TV
I+ 1
(pt )’l/fl = =
pki(p)
5.0
e "

I=0 and <o(r)=7

http://dlmf.nist.

gov

]
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Pseudo—potential: bound state

Yo(r) = B exp(—kr)/r with E = —r’k?/m
. ) 12 Ani? a
» s—wave Schrodinger equation: _EVZ’IZJO + Wm

» Behaviours for r — 0:
o(r) = B(1/r—x)+O(r),

Inject them in the Schrédinger equation:

> x>0,

The bound state represents a molecule:

therefore: no bound state if a < 0,

0.4
1 exp(—r/a)
(2w a®)1/2 r/a

Yo (r )

> rao(r) is finite but non—zero for r — 0

> spatial extent set by scattering length a

Wavefunction a32 (r/a) wo(r/a)
o
Y

0.0

> energy E = —1?/(m&?)

(2/2)

and

[If f(r)is regularat r =0,
V2o = —4mB5(r)+O(1/r),

(1 —ra)é(r)=0(1/r),

V2f(r) =

k>0

2,2
50) - lrwn()] = " o

(1/no2(rf)/or?

A(rig)/0r = —Br+ O(r)

so that

k=1/a

a single bound state if a > 0

it only exists for repulsive interactions.

Contact

\ Cor

potential with sca

Bound state wav

S




Universality for low—energy scattering & bound states

For distances greater than the potential range b,

The scattering length a  fully dictates the behaviour of ...

» Low-energy scattering states
zero—energy scattering state:  Wy(r) S 1—a/r

r>
sin[k(r — a)]

= (see qu. 13—-14)
r>b kr

low —energy scattering state:  W,_o(r)

» Weakly bound states

1 exp(—r/a) . h
, spatial extent a > b (halo), ener = -
(2rad)/2  r/a P > b (halo) e ma?

2

wavefunction ¢ (r) =
Beware: No universality for deeper bound states
» In the low—energy universal regime, for r > b,

all wavefunctions coincide  with the ones calculated using the  contact potential.
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Universality on an example: the square well potential

0 w2 3m/2 S5m/2 Tm/2 on/2
3 : Scattering
length a/l
I = lyaw a
—— 0 .
T
w|-IEs| W
> - 1 bound state } 2 bound states | 3 bound states | 4 bound states
o 5 ‘
] 0 T
C
w —|ED|
Vaw (r) -100 f
Unit of energy: £, = 12/(2m/?) 200 Binding energies I;EB/EI .
0 w2 3m/2 5m/2 m/2 on/2

Well depth (E/Ep'?

> Next slide: scattering and bound—state wavefunctions  for various values of a//
obtained in the cases where the well supports 3 bound states or 4 bound states

and compares them to the predictions of the contact potential.

The considered wavefunctions are all s—wave; plotted quantities: ug(r) = rWo(r) or un(r) = rin(r)
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zero-energy scattering state ug(r)
Scattering length a/l=0

[Scattering length a//=0
Ngs = 3 bound states

~
lu,

Scattering length a// =0
Ngs =3 bound states

|
=
S

3 5
< _ N _ = g
_g Nes=2 3 Nes =0, el E 5
2 S T
E N H
I3 < =
3 = -60 g 0
H w k)
>
2o o (k)2 = 86 -
= 3 2
1
£ & 3
] 3
@ (K2 =110 ¢!
2o 3
. -120 (kol)? =120 2 | wr=se
Wes=T1 T 1 2 2
Radial coordinate r// Radial coordinate r// Radial coordinate r/l
Nes=2 3 4 Nes =0 0 5 - =
10 Va s cattering lengtha/l=-10{ = ;catfeanzg Ieggtth f/‘= 10
3 Nes =3 bound states S 1 s = 3 bound states
2 =
§ < g
3 3 H
g & _ ©
= S H
4 < =
s ° = -60 2 o
H w )
o > @
g )
< S (ko) =88 °
2 2 €
s = 2
@ X (k)2 =110 ¢!
-10 Scattering length a/l=-10 = a2 m120 2
Nes=1  zero-energy scattering state uo(r)|  -120 (koll? = z I =88
@
1 1 3
Radial coordinate r/l Radial coordinate r// Radial coordinate r/l
3
T wah?=00m1 [Scattering lengtha/l=+1q 'S Z(a‘_te;'sglji:gs‘gfe/;: 10
3 Nes=4 bound states | & s =
e k]
< = ]
S < g
g § %
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Thanks for your regular attendance!

Happy Holidays!

Good luck, lots of success and enjoyment!
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