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1. Introduction to lattice models
1.1. Examples from numerics, physics and chemistry
1.1.1. Finite differencing: from real continuum space to a discrete lattice

We start from the hamiltonian h for a single particle in one–dimensional space:

h = + p2

2m
+ v(x) = − ℏ2

2m
∂2

∂x2 + v(x) , (1)

where m is the mass of the particle and v(x) is an external potential ensuring that the particle
is trapped. The commutator [x, p] = iℏ being non–zero implies that the momentum operator p
and the trapping potential operator v(x) may not be simultaneously diagonalised, and the last
step in Eq. (1) is written in the position basis (|x⟩). In order to find the stationary states of h,
we must solve the eigenvalue problem h |ψ⟩ = ϵ |ψ⟩, where the hermitian operator h acts on an
infinite–dimensional Hilbert space, and the wavefunction ψ(x) is defined over a continuous (i.e.
uncountable) set of points, which may be an interval [0, L] of real values for a system of finite
size L, or all real numbers in the case of a scattering problem. For some specific (and rare) cases
of v(x), the Schrödinger Eq. (1) may be solved explicitly. In most cases, no explicit solution is
available, and we must turn to numerical approaches.

In this section, we consider one popular and elementary numerical approach called the finite–
diference method. Our goal is to show that this method amounts to replacing the continuum–space
problem described by the Hamiltonian h by a lattice model.

In the finite–difference method, we relinquish the description of ψ(x) over an uncountable set of
values of x. Instead, we sample the wavefunction ψ(xn) over a finite set of positions (xn)1≤n≤N .
Let us assume that the xn are regularly spaced: xn = na. Then, if a is small enough, an
approximation for ψ′′(xn) may be obtained through:

ψ′′(xn) ≈ 1
a2 (ψ(xn+1) − 2ψ(xn) + ψ(xn−1)) . (2)

Hence, we may approximate the exact eigenvalue equation h |ψ⟩ = ϵ |ψ⟩ by the following one:

ϵ ψn = − ℏ2

2ma2 (ψn+1 − 2ψn + ψn−1) + vnψn . (3)

Equation (3) does not fully specify the finite–differencing problem: it must be assorted with a
boundary condition which guarantees the hermiticity of the approximate hamiltonian operator.
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Strict boundary conditions, ψ0 = ψN+1 = 0, are applicable if the system is trapped in between
two impenetrable walls at x = 0 and x = (N + 1)a. Periodic boundary conditions, ψ0 = ψN+1
with no specific value being imposed, are often the most convenient choice if it makes sense to
interpret the potential v(x) as a periodic function with period Na (v(0) = v(Na)), which is the
case e.g. if the particle is constrained to move on a ring of perimeter Na. We focus on the case
of periodic boundary conditions. Then, the finite–difference equation amounts to approximating
h by the N ×N matrix hFD expressed in the discrete position basis (|xn⟩):

hFD = + ℏ2

ma21 − ℏ2

2ma2



0 1 0 0 1

1
. . . 1 0 0

0
. . . . . . . . . 0

0 0 1
. . . 1

1 0 0 1 0


+



v1 0 0 0 0

0
. . . 0 0 0

0 0
. . . 0 0

0 0 0
. . . 0

0 0 0 0 vN


. (4)

The matrix hFD encompasses both Eq. (3) and the periodic boundary condition ψ0 = ψN , the
latter being encoded by the two ones appearing in red at the top right and bottom left corners
of the matrix proportional to −ℏ2/(2ma2) on the right–hand side (for strict boundary conditions
ψ0 = ψN = 0, both of these matrix elements would be 0.). It is hermitian and, hence, may be
diagonalised through all the usual methods (for example, on the computer, using a package for
numerical linear algebra such as LAPACK or its variants).

The matrix form of Eq. (4) is the one which should be coded when performing numerical
simulations on a computer. We shall now recast it in a form which allows for an interpretation
in terms of a lattice model. First, the term ℏ2/(ma2)1 is a constant energy shift which has no
consequence, and we drop it from now on. Next, we introduce the kets |n⟩ = |xn⟩, so that the
set (|n⟩)1≤n≤N is a basis of the N–dimensional Hilbert space on which hFD acts. We enforce the
periodic boundary conditions by setting |0⟩ = |N⟩ and |N + 1⟩ = |1⟩. Equation (4) may now be
written in braket notation:

hFD = −J
N∑
n=1

(|n+ 1⟩ ⟨n| + |n− 1⟩ ⟨n|) +
N∑
n=1

vn |n⟩ ⟨n| , (5)

where the positive number J = +ℏ2/(2ma2) is called the hopping amplitude. Equation (5) exhibits
two typical features of a lattice model. First, it is defined in terms of a finite set of position kets |n⟩
which represent the discrete lattice sites. Second, it includes a hopping term which describes how
the particle may move from the site |n⟩ to one of its nearest–neighbouring sites |n+ 1⟩ or |n− 1⟩.
The hopping amplitude t > 0 appears with a minus sign in hFD, meaning that, in the absence of
any trapping potential, it is energetically favourable for the particle to be delocalised over many
sites. The second sum on the right–hand side of Eq. (5) represents the trapping potential, which
is diagonal in terms of the sites |n⟩, just like the trapping potential v(x) is diagonal in the position
basis |x⟩ in continuum space. The Hamiltonian hFD is expressed in first quantisation, so that it is
not straightforward to include a two–body interaction term: this will be done below in terms of
creation and annihilation operators.

In the absence of a trapping potential, v1 = . . . = vN = 0. Then, hFD is a circulant matrix
whose eigenvalues are the energies ϵFD

p = −2J cos(kpa) with kpa = 2π p/N (see Sec. 2.1 for another
derivation of this result in terms of Bloch’s theorem).

1.1.2. Benzene molecule

1.2. Bloch’s theorem
We consider the (single–particle) Hamiltonian h = p2/(2m) + v(r), where the potential v(r) is
spatially periodic. Its spatial periodicity is encided by the direct lattice vectors (ai)1≤i≤3: for all
positions r and all three direct lattice vectors ai, v(r + ai) = v(r). Then, a basis of eigenstates
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Figure 1 Dispersion relations ϵk = ℏ2k2/2m in free
space (solid red) and ϵFD

p = 2J(1 − cos(ka)) (dashed
blue) for the lattice model obtained by finite differ-
ences (Eq. (5)). Momenta are in units of the inverse
lattice spacing 1/a and energies in units of the hop-
ping amplitude J . The two dispersion relations co-
incide for small |ka| ≪ 1, i.e. the discretised model
captures phenomena whose wavelengths are greater
than a. They differ for larger momenta |ka| ≲ π, i.e.
the discretised model does not resolve higher–energy
phenomena whose wavelengths are ≲ a.
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Figure 2 Left: the two configurations for benzene taking part in the resonance describing the three
delocalised double bonds. Right: a fictitious ‘benzene ion’, charged 6+, where all six electrons responsible
for the double bonds have been removed. A quantum mechanical model for the molecule may be obtained
by viewing the six carbon atoms on the ring as a six–site Fermi–Hubbard model where each site may
accommodate up to two electrons with opposite spins.

of H may be found such that each eigenstate |ψ⟩ is the product of a plane wave exp(iq · r) with a
function u(r) which has the same spatial period as the lattice potential v:

ψ(r) = eiq·r u(r), with u(r + ai) = u(r) for all positions r and all three vectors ai. (6)

The Bloch wavefunctions of Eq. (6) are eigenstates of h, i.e. they correspond to a well–defined
energy ϵ such that h |ψ⟩ = ϵ |ψ⟩. They correspond to the plane–wave eigenstates eiqx/

√
V of a

single particle in free space (which they reduce to if the potential v is adiabatically turned off).
Hence, they extend over the whole lattice, just like the plane waves extend over the whole volume.
In free space, we may also define the position states |r⟩, which are localised at the point r but
are not stationary states of the free particle Hamiltonian p2/(2m). Similarly, in the presence
of the periodic potential, we may define wavefunctions which are localised in a given lattice site
|j⟩, which are labelled by the integer multiplet j = (j1, j2, j3). These localised states are called
Wannier functions1. They are linear combinations of Bloch functions corresponding to different
energies within a given band b, hence, they are not stationary states of the Hamiltonian h.

We first prove the theorem in 1D, where there is no need to discuss the reciprocal lattice, which
makes the proof particularly transparent. Then, we turn to the 3D case. We first define the
reciprocal lattice and explain its meaning in terms of duality. Finally, we prove Bloch’s theorem
in 3D, following the lines of the 1D proof and emphasizing the role of the reciprocal lattice.

1 Wannier functions should be manipulated with great care. For primitive lattices, i.e. lattices whose unit cell
contains exactly one minimum, the Bravais functions w0j corresponding to the lowest band (b = 0) and to the
site j centred at the position rj , may be chosen to be real and to satisfy w0j(r) = w0(r − rj). Even in this
simple case, difficulties arise from the non–trivial decay of w0(r) outside the lattice site [1, §II.B]. If the unit cell
contains multiple minima (e.g. in the case of a lattice of double wells), the construction of Wannier functions is
challenging and crucially hinges on the choice of the phases in the linear combination of Bloch wavefunctions.
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1.2.1. Proof of Bloch’s theorem in 1D.

We introduce the translation operator Ta = exp(−iap/ℏ) corresponding to the spatial period a. Its
action on the position basis vectors |x⟩ reads Ta |x⟩ = |x+ a⟩. The assumption that v be periodic
with period a means that the Hamiltonian [h, Ta] = 0. Therefore, there is a basis of states |ψ⟩
which are eigenvectors of h and Ta simultaneously:

h |ψ⟩ = ϵ |ψ⟩ and Ta |ψ⟩ = τ |ψ⟩ . (7)

The operator Ta is unitary, therefore all its eigenvalues τ are complex numbers of modulus 1.
Hence, we may always write τ = e−iaq, where q is a real number. We project the eigenvalue
equation for Ta (i.e. the second relation in Eq. (7)) onto the basis x:

⟨x|Ta|ψ⟩ = e−iqa ⟨x|ψ⟩ . (8)

The operator Ta is unitary, so that T †
a = T−1

a = T−a. Therefore,

⟨x|Ta =
(
T †
a |x⟩

)† = (T−a |x⟩)† = (|x− a⟩)† = ⟨x− a| . (9)

Hence, the eigenvalue Eq. (8) reduces to:

ψ(x− a) = e−iqa ψ(x) . (10)

We now call ψ(x) = ψq(x), and introduce the function uq(x) = ψq(x)e−iqx. Replacing ψq(x) in
terms of uq(x) in Eq. (10), we conclude that uq(x− a) = uq(x), which proves the theorem in 1D.

The wavevector q appearing in Eq. (8) is defined up to any integer multiple of 2π/a. In other
words, the functions ψq and ψq+2π/a must represent the same quantum state. Hence, ψq and
ψq+2π/a must be equal up to an irrelevant constant phase, and the corresponding energies ϵq =
ϵq+2π/a should be equal. We choose the following convention:

ψq+2π/a = ψq , which is equivalent to: uq+2π/a(x) = exp(−i2πx/a)uq(x) . (11)

Thus, the independent functions ψq (or uq) are those for which q ∈] − π/a, π/a] (first Brillouin
zone), and the dispersion relation ϵq is a periodic function of q with the period 2π/a.

1.2.2. Crystal lattices in 3D: reciprocal lattice and duality

In the usual 3D Euclidean space of elementary geometry, no physical units are invoked, and we
may introduce an orthonormal basis (ei)1≤i≤3 by the requirement that ei · ej = δij . Orthonormal
bases are particularly convenient because they make it straightforward to extract the component
of any vector v =

∑
i viei along the basis vector ei0 , which may be expressed as a scalar product:

vi0 = ei0 · v, or equivalently: v =
3∑
i=1

ei (ei · v), that is, |v⟩ =

( 3∑
i=1

|ei⟩ ⟨ei|

)
|v⟩ . (12)

In the third version of Eq. (12), we have introduced the bra–ket notation so as to highlight that
this property is actually the closure relation familiar from quantum mechanics.

In the context of periodic crystalline lattices, the straightforward Eq. (12) is not applicable, for
two reasons. Both are linked to the fact that we wish our system of basis vectors, now called
(ai)1≤i≤3, to encode the spatial periodicity of the lattice. First, the vectors ai encode the spatial
extent of the unit cell. Hence, their moduli carry the unit of length. Thus, the scalar product
ai · ai has the dimension of a length squared, whereas δij is dimensionless, so that the vectors
ai may not be chosen to be normalised. Second, the basis vectors (ai) need not be orthogonal:
they are for a cubic unit cell, but in the general case they are not. In particular, they are not
orthogonal in the ubiquitous hexagonal close–packing lattice geometry.
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The extraction of the components (xi) of an arbitrary position vector r =
∑3
i=1 xiai in the

basis ai requires the calculation of the inverse of the Gram matrix G:x1
x2
x3

 = G−1

a1 · x
a2 · x
a3 · x

 where the 3 × 3 Gram matrix is (Gij) = (ai · aj) . (13)

The 3 × 3 matrices G and G−1 characterise the geometry of the unit cell. They may be calculated
once and for all as soon as the lattice structure is given. This is not a taxing step.

We now provide a geometrical interpretation for the matrix G−1, which allows us to write
Eq. (13) in a form almost as simple as Eq. (12). We introduce the three vectors (bi)1≤i≤3 whose
components in the basis (ak) correspond to the lines of the inverse Gram matrix G = (G−1

ik ):

bi = 2π
3∑
k=1

G−1
ik ak . (14)

This is equivalent to defining the basis (bi)1≤i≤3 as the dual basis of (ai)1≤i≤3. Indeed:

bi · aj = 2π
3∑
k=1

G−1
ik ak · aj = 2π

3∑
k=1

G−1
ik Gkj = 2π δij , (15)

where the second–to–last step follows from the definition of the Gram matrix elements Gkj =
ak · aj , and the last step is the statement G−1G = 1. The presence of the extra factor 2π will be
justified shortly. In terms of the vectors (bi), Eq. (13) reads:

xi0 = bi0 · r

2π
, or equivalently: r =

3∑
i=1

ai
bi · r

2π
, that is, |r⟩ =

(∑3
i=1 |ai⟩ ⟨bi|

2π

)
|r⟩ . (16)

The third version of Eq. (16) is very similar to the standard closure relation of Eq. (12). The only
difference is that it now involves the sum

∑
i |ai⟩ ⟨bi|, where the kets contain the direct–lattice

vectors ai whereas the bras contain the reciprocal lattice vectors bi.
This geometrical interpretation has a physical meaning. First, the moduli |ai| all have the

dimension of a length, whereas the moduli |bi| all have the dimension of an inverse length, i.e. of a
wavevector. Hence, though the bases (ai)1≤i≤3 and (bi)1≤i≤3 both span three–dimensional vector
spaces, these spaces do not coincide. Equation (14) shows that the basis (bi)1≤i≤3 actually spans
the vector space which is dual to position space, hence the name ‘reciprocal lattice vectors’ given
to the vectors (bi). Second, let us focus on the positions r =

∑
i xiai and wavevectors k =

∑
i kibi

whose components (xi) or (ki) are integers. In both cases, we obtain a lattice, i.e. a discrete set of
points endowed with the symmetries of the crystal. The positions with integer components each
correspond to an atom, and they are all equivalent from the point of view of the symmetry of the
crystal lattice (i.e. they all transform one into the other). The momenta with integer coefficients
also play a key role: they are those which enter in the Fourier series of a function of position u(r)
with the periodicity of the crystal lattice. Indeed, let us Fourier–expand u(r):

u(r) =
∑
k

cke
ik·r . (17)

The periodicity of u imposes u(r+aj) = u(r) for all three vectors (aj)1≤j≤3, so that all wavevectors
k appearing in the sum of Eq. (17) must satisfy exp(ik · aj) for 1 ≤ j ≤ 3, so that k · aj = 2πnj ,
with nj being an integer. We write k =

∑
i kibj . Then, using the duality Eq. (15), we find

k ·aj = 2πkj , so that kj = nj is an integer. This is why the definition of Eqs. (14) and (15) for the
dual basis (bj) includes an additional factor 2π with respect to the usual mathematical definition.

Hence, the real–space basis (ai) is the natural one for position vectors r, whereas the reciprocal–
space basis (bi) is the natural one for wavevectors k. In particular, in the expansions r =

∑
i xiai

and k =
∑
i kibi, the components xi and ki are all dimensionless.
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Similar duality properties appear in many other theories. They are usually represented in terms
of the covariant and contravariant components of tensors, of which kets and bras are one example.
Two other famous examples are the covariant and contravariant components of four–vectors in
special relativity, and of spinors representing the wavefunctions of particles with arbitrary spin.

1.2.3. Proof of Bloch’s theorem in 3D.

In this section, we extend the proof of Sec. 1.2.1 to the 3D case. We now need three translation
operators Taj = exp(−iaj ·p/ℏ), corresponding to the three direct–lattice basis vectors (aj)1≤j≤3.
These three operators commute with one another, [Tai , Taj ] = 0, because the three momentum
operators do so, [pi, pj ] = 0. Furthermore, the assumption of three–dimensional periodicity means
that the commutator [h, Tai

] = 0 for each of the three Tai
. To sum up, all four operators h and

(Taj
)1≤j≤3 commute with one another. Hence, there exists a basis of eigenstates where all four of

them are simultaneously diagonal:

h |ψ⟩ = ϵ |ψ⟩ and, for 1 ≤ j ≤ 3, Taj |ψ⟩ = τj |ψ⟩ . (18)

The three operators Taj are unitary, so that all three eigenvalues τj are complex numbers of
modulus 1. Thus, we write τj = exp(−i2π qj), where the qj ’s are three real numbers. We introduce
the following wavevector q, defined in terms of the qj ’s in the reciprocal lattice basis (bj)1≤j≤3:

q =
3∑
j=1

qj bj . (19)

Thanks to the duality Eq. (15), this wavevector satisfies:

q · ai =
3∑
j=1

qj bj · ai = 2π qi , (20)

so that the three eigenvalue equations for the translation operators now read:

Taj
|ψ⟩ = e−iq·aj |ψ⟩ for 1 ≤ j ≤ 3. . (21)

The end of the proof is very similar to the 1D case of Sec. 1.2.1. We project Eq. (21) onto the
position basis |r⟩ to find:

ψ(r − aj) = e−iq·aj ψ(r) . (22)

We define the function u(r) = exp(−iq · r)ψ(r). Expressing Eq. (22) in terms of u, we find
u(r − aj) = u(r) for all three lattice vectors aj , which concludes the proof of the theorem in 3D.

Similarly to the 1D case, the wavevector q labelling the Bloch wave ψq is defined up to a
reciprocal lattice vector k, meaning that the Bloch waves ψq and ψq+k represent the same quantum
state. Hence, ψq and ψq+k should be equal up to a constant phase, and the corresponding energies
ϵq = ϵq+k must be equal. We choose the following convention:

ψq+k = ψq , which is equivalent to: uq+k(r) = exp(−ik · r)uq(r) . (23)

Thus, the independent Bloch wavefunctions ψq are those for which q lies in the first Brillouin zone
(or any other set of wavevectors compatible with the periodicity of the reciprocal lattice), and the
dispersion relation ϵq is a periodic function of the wavevector q whose period in momentum–space
coincides with that of the reciprocal lattice.

1.3. Band structure
We now briefly describe the impact of the spatial periodicity of the single–particle Hamiltonian
h on the single–particle energy spectrum. We focus on the case of a separable potential, v(r) =
vx(x) + vy(y) + vz(z). This assumption is not necessary, but it simplifies the analysis, because the
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Figure 3 Generation of a 3D square optical lattice.
Along each of the three spatial directions x, y, z,
two propagating laser beams (or one retroreflected
beam) interfere to create a standing wave. The atoms
are confined near the nodes of the standing wave for
blue–detuned laser beams (ωL > ωA) and near the
antinodes for red–detuned laser beams (ωL > ωA).
Reproduced from Ref. [1].

single–particle eigenstates of h, ψ(r), may be sought in the form of products of 1D wavefunctions,
ψ(r) = ψx(x)ψy(y)ψz(z), each of which is an eigenstate of the 1D Hamiltonians

hx = p2
x

2m
+ vx(x) , hy =

p2
y

2m
+ vy(y) , hz = p2

z

2m
+ vz(x) . (24)

Such a factorisation is available for e.g. the standard 3D cubic lattice generated thanks to three
retro–reflected laser beams with equal wavelengths λ (see Fig. 3), in which case:

v(r) = v0x sin2(qRx) + v0y sin2(qRy) + v0z sin2(qRz) , (25)

In Eq. (25), the recoil momentum ℏqR, defined by qR = 2π/λ, defines the lattice parameter a, i.e.
the spatial period along all three directions x, y, z, through a = π/qR = λ/2. The factorisation
is not applicable for more complicated cases such as the 2D hexagonal (also called ‘triangular’)
lattice or the honeycomb lattice.

Hence, we specialise our analysis to the potential of Eq. (25), and exploit separability to reduce
the problem to the following 1D single–particle Hamiltonian:

hx = p2
x

2m
+ v0 sin2(qRx) . (26)

We now describe a method, presented e.g. in Ref. [2, Sec. 3.1], allowing for the numerical calculation
of the eigenfunctions and eigenvalues of hx. Thanks to Bloch’s theorem (see Sec. 1.2), we seek the
eigenstates of hx as Bloch waves ψqb, with ℏq being the quasi–momentum and b the band index:

ψqb(x) = eiqxuqb(x) , where uqb(x+ a) = uqb(x) . (27)

The function uqb is periodic, hence, it may be expanded into a Fourier series. Its spatial period is
a = π/qR, so that the relevant plane waves are those with periods a/j, with j being an integer:

uqb(x) =
∑
j∈Z

cj exp
[
i j

2π
a
x

]
, so that ψqb(x) =

∑
j∈Z

cj exp
[
i

(
q + j

2π
a

)
x

]
. (28)

The coefficients cj must now be chosen such that |ψqb⟩ is an eigenstate of hx. Let ϵ be the
corresponding eigenvalue, so that the Schrödinger equation reads:

ϵ ψqb(x) = − ℏ2

2m
ψ′′
qb(x) + v0 sin2(kx)ψqb(x) . (29)

Injecting Eq. (28) into Eq. (29), we obtain an equation on the coefficients cj :

ϵ

ϵR
cj =

[(
2j + q

qR

)2

+ v0

2ϵR

]
cj − v0

4ϵR
(cj−1 + cj+1) , (30)

where the recoil energy ϵR = ℏ2q2
R/(2m). Hence, the periodic character of the Bloch function

uqb(x) has allowed us to replace the differential eigenvalue problem of Eq. (29) by the matrix
eigenvalue problem of Eq. (30), which involves the discrete set of coefficients (cj). For a given value
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Figure 4 Band structure for the lattice potential V (x) = V0 sin2(πx/a), whose spatial period is a. Lengths
are expressed in units of a, wavevectors in units of the recoil wavevector qR = π/a, and energies in units
of the recoil energy ER = ℏ2q2

R/(2m). The two top graphs show the band structure for the small lattice
amplitude V0/ER = 0.5, where the effect of the potential is a perturbative opening of small gaps at the
edges of the Brillouin zone, i.e. near q = ±qR (free particle limit). The two bottom graphs show the band
structure for the large lattice amplitude V0/ER = 20, where the first two bands, corresponding to energies
≪ ER, are nearly flat because of the negligible tunnelling between the lattice sites (atomic limit). The two
graphs on the middle line show the band structure for V0/ER, away from these two limits. In all cases,
the left panel shows the periodic potential in terms of the real–space coordinate x (black) and the spread
in energies for the first five bands (coloured shaded areas), whereas the right panel shows the dependence
of the energies in each band on the wavevector q.
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of q, the ‘matrix’ (hij) = (hij(q)) involved in Eq. (30) is infinite in both directions i, j → ±∞. Its
coefficients satisfy:

hjj =
(

2j + q

qR

)2

+ v0

2ϵR
, hj−1,j = hj+1,j = − v0

4ϵR
, hij = 0 for |i− j| ≥ 2. (31)

Hence, (hij) is real, symmetric, and tridiagonal. Its first few eigenvectors and eigenvalues may be
found by truncating it to a finite–sized matrix, i.e. by replacing (hij) with (h̃ij) such that h̃ij = hij
for −p ≤ i, j ≤ p and h̃ij = 0 otherwise. Then, (h̃ij) is a (2p + 1) × (2p + 1) matrix which may
be diagonalised using the usual methods, yielding (2p+ 1) real eigenvalues and eigenvectors. The
low–energy eigenelements of (h̃ij) are good approximations to those of (hij). A given eigenvector
of (h̃ij) is an acceptable approximation if its components cj decrease sufficiently rapidly for |j| < p.
By contrast, if cp or c−p are not found to be very small, then this eigenvector (and all those with
higher energies) should be discarded and recalculated using a larger value for the cutoff p.

This method allows for the calculation of the first few eigenvalues (ϵb(q)) of (hij(q)), sorted by
increasing energies ϵ1(q) < ϵ1(q) < . . . . The set of energies ϵ1(q) for all values of q make up the
first band (shown in dark red in Fig. 4 for various values of the lattice depth V0/ER); the set of
ϵ2(q) make up the second band (red), . . . and the set of ϵb(q) make up the band of index b.

The listing 1 shows the short Python script, implementing this algorithm, which was used to
produce Fig. 4; the listing 2 allows for a straighforward visualisation of the results using Matplotlib.

1.3.1. Interpretation of the band structure in two limiting cases

The band structure obtained with the periodic 1D potential of Eq. (26) is shown on Fig. 4 for
various values of the lattice height v0. These dispersion relations may be understood through
simple arguments in two different limits: (i) the shallow lattice limit and (ii) the atomic limit.

Shallow lattice limit. This case corresponds to a lattice depth v0 ≪ ϵR which is small compared
to the recoil energy ϵR. It is illustrated by the two panels on the top line of Fig. 4. Deep in this
limit, the periodic potential no longer plays any role, and the dispersion relation ϵ(q) = ℏ2q2/(2m)
is the usual single parabola characteristic of a single particle in free space (Fig. 5, left panel).
It is defined for all wavevectors q and exhibits a single branch. One may also understand this
dispersion relation in a different way which is compatible with the presence of a weak periodic
potential. In this second picture, the various relevant parts of the parabola are folded into the
first Brillouin zone −qR < q ≤ qR (Fig. 5, right panel). Then, the dispersion relation is defined
only for wavevectors belonging to the first Brillouin zone, but it exhibits multiple branches, each
of which corresponds to a band. For nonvanishing lattice amplitudes v0 > 0, a small energy gap
opens up at the edges of each band (where the color code changes on Fig. 5).

“Atomic limit”. We consider a band which is such that the energies of all of its states are small
compared to v0 (for instance, the band represented in brown on the bottom line of Fig. 4). Then,
the tunnelling between the different sites of the lattice are negligible, as illustrated on Fig. 6.
Hence, all sites are nearly uncoupled, a situation which has historically been termed ‘atomic limit’
by condensed–matter physicists (though each well may contain more than one atom!). Then, the
translational symmetry of the problem ensures that all sites support a state with nearly the same
energy, giving rise to NL nearly–degenerate states (represented in red on Fig. 6). The very weak
tunnel coupling turns these degenerate states into a narrow band with a very small spread in
energies, i.e. a nearly flat band. Accordingly, the lowest–energy (brown) band is nearly invisible
on the bottom left panel of Fig. 4.

In this limit, the Bloch wavefunctions |ψ0k⟩ belonging to the deep band b = 0 may be expressed
exactly in terms of the wavefunctions of the degenerate bound states centred in the different wells.
We call2 w0(x) the (normalised) wavefunction of the bound state sitting in one reference well,

2The symbol w stands for “Wannier”: see the brief introduction to Wannier functions in Sec. 1.2.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 #Lattice potential is v(x)=v0*sin(kR*x)**2
5 #Unit of length: 1/kR; of momentum: kR; of energy: eR=(hbar*k)**2/(2m)
6

7 v0=5 #Lattice energy amplitude in units of eR
8 jM=10 #Maximum index for Fourier component
9 iM=2*jM+1 #Keep 2*jM+1 components

10 nq=101 #Number of momentum values to consider
11 qtab=np.linspace(-1,1,num=nq) #Array containing the different momenta
12

13 enmat=np.zeros((iM,nq)) #enmat has iM lines, nq columns
14 coeffsarray=np.zeros((iM,iM,nq)) #Store eigenvectors here
15 for iq in range(nq):
16 qval=qtab[iq]
17 m=np.zeros((iM,iM)) #Truncated matrix acting on Fourier coeffs
18 for i in range(iM): #Indices i shifted by iM to start at 0
19 m[i][i]=(2.*(i-jM)+qval)**2+.5*v0 #Diagonal matrix elements
20 if (i==0): #First line in the matrix
21 m[i][i+1]=-.25*v0 #Element above diagonal
22 elif (i==iM-1): #Last line in the matrix
23 m[i][i-1]=-.25*v0 #Element below diagonal
24 else: #Bulk of the matrix
25 m[i][i+1]=-.25*v0 #Element above diagonal
26 m[i][i-1]=-.25*v0 #Element below diagonal
27 #Eigenvectors and eigenvalues for q=qval
28 qenergiestab,qcoeffstab=np.linalg.eigh(m)
29 #Col. iq of enmat contains iM eigvals for qtab[iq]
30 enmat[:,iq]=qenergiestab
31 #Store eigenvectors: second index sets band, third index sets q
32 coeffsarray[:,:,iq]=qcoeffstab

Listing 1: Python/NumPy script for the calculation of the first few energy bands of the periodic
potential V (x) = V0 sin2(qRx), characterising e.g. an optical lattice. The potential amplitude
V0 = 5 selected on l. 7 of the listing corresponds to the second line of Fig. 4.
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33 #Plot first five bands (Fig. 4, second line, right panel)
34 plt.figure(1)
35 plt.plot(qtab,enmat[0,:],color='brown')
36 plt.plot(qtab,enmat[1,:],color='red')
37 plt.plot(qtab,enmat[2,:],color='orange')
38 plt.plot(qtab,enmat[3,:],color='green')
39 plt.plot(qtab,enmat[4,:],color='blue')
40 plt.xlim((-1,1))
41 plt.xticks(np.linspace(-1,1,num=3))
42 plt.xlabel('Position $x/a$')
43 plt.ylim((-1,30))
44 plt.yticks(np.linspace(0,30,num=4))
45 plt.ylabel('Energy $E/E_R$')
46 plt.axvline(x=0,color='lightgray',linestyle='dashed')
47 plt.show()
48

49 #Plot Fourier coefficients of Bloch functions
50 plt.figure(2)
51 plt.axvline(x=0,color='lightgray',linestyle='dashed')
52 plt.axhline(y=0,color='lightgray',linestyle='dashed')
53 plt.plot(np.arange(-jM,jM+1),coeffsarray[:,4,int((nq-1)/2)],'c-o')
54 plt.plot(np.arange(-jM,jM+1),coeffsarray[:,4,nq-1],'y-^')
55 plt.xlim((-10,10))
56 plt.xticks(np.linspace(-10,10,num=3))
57 plt.xlabel('Fourier mode index $j$ [mode $\exp(i\,j2\pi/a]$)')
58 plt.ylim((-1,1))
59 plt.yticks(np.linspace(-1,1,num=3))
60 plt.ylabel('Fourier coefficient $c_j$')
61 plt.text(-2.5,.85,'Band $b=4$',fontsize=15,color='blue')
62 plt.text(-.6,.15,'$q=0$',color='c')
63 plt.text(-6,-.6,'$q=\pi/a$', color='y')
64 plt.show()

Listing 2: Displaying the band energies and the Fourier coefficients of the Bloch functions using
Matplotlib. The first set of instructions displays the first five energy bands (band index b = 0
to 4). The second set of instructions displays the calculated coefficients cq defining three Bloch
functions pertaining to the band b = 4: Line 53 displays the coefficients related to q = 0, whereas
line 54 display those related to q = π/a.
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Figure 5 Dispersion relation ϵ(q) for a vanishingly small lattice amplitude v0 ≪ ϵR. Left: It may be
understood as the single parabola ϵ(q) = ℏ2q2/(2m) characteristic of a single particle in free space. Then,
it is defined for all wavevectors q and exhibits a single branch. Right: It may also be understood as the
dispersion relation for a periodic potential of spatial period a = π/qR. In this picture, it is defined only
for wavevectors belonging to the first Brillouin zone −qR < q < qR, and it exhibits multiple branches.
Each branch corresponds to a band. A weak non–vanishing lattice amplitude would lead to the opening of
small energy gaps at the edges of each band (q/qR ≈ n integer, where the color–code changes). On both
plots, the thin dashed lines show the single–particle parabolas shifted by integer multiples of 2π/a = 2qR.

x

v0

ε

Figure 6 If the energies ϵ of all states in the band
are small compared to the lattice height v0 (bottom
panels in Fig. 4), then tunnelling between the lattice
sites is negligible (“atomic limit”). All sites are un-
coupled. Each of them supports a bound state with
the energy ∼ ϵ: these bound states are nearly degen-
erate and give rise to a nearly flat band.

which we assume to be centred on x = 0. The wells are evenly spaced, two consecutive wells
being separated by the distance a, so that the well with index n is centred on x = na, and the
wavefunction of the bound state in this well is w0n(x) = w0(x− na). Due to the assumption that
tunnelling between the wells is negligible, the wavefunctions corresponding to different wells are
orthogonal, so that ⟨w0n|w0m⟩ = δn,m. The Bloch function |ψ0k⟩ is a linear combination of the
bound–state wavefunctions |w0n⟩:

ψ0k(x) =
∞∑

n=−∞
cn w0(x− na) , (32)

where the complex coefficients should be chosen such that ψ0k satisfies the Bloch property ψ0k(x+
a) = eiqaψ0k(x) for the quasimomentum k. Injecting this property into Eq. (32), we find:

+∞∑
n=−∞

cn w0(x− (n− 1)a) = eika
+∞∑

n=−∞
cn w0(x− na) . (33)

Shifting the index of the sum on the left–hand side of Eq. (33) by one unit, and collecting the
terms proportional to w0(x− na), this leads to:

+∞∑
n=−∞

(cn+1 − eikacn) w0(x− na) = 0 . (34)

Exploiting the orthogonality of the functions |w0n⟩, we obtain cn+1 = eikac0. Therefore, the Bloch
function |ψnk⟩ is determined up to the complex multiplicative factor c0 = c0k (which could a priori
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depend on the quasimomentum k):

ψ0k(x) = c0k

+∞∑
n=−∞

einka w0(x− na) . (35)

The corresponding band function u0k(x) reads:

u0k(x) = ψ0k(x) e−ikx = c0k

+∞∑
n=−∞

e−ik(x−na) w0(x− na) , (36)

and it is indeed spatially periodic with the period a, as expected.
Let us calculate the overlap between two Bloch wavefunctions with the quasimomenta k and k′:

⟨ψ0k|ψ0k′⟩ = c∗
0kc0k′

+∞∑
n=−∞

+∞∑
n′=−∞

e−inka e+ink′a

∫
dx w∗

0(x− na)w0(x− n′a)

= c∗
0kc0k′

+∞∑
n=−∞

ein(k−k′)a , (37)

where the second step follows from the orthonormality of the bound–state wavefunctions (|w0n⟩).
The sum of imaginary exponentials appearing in Eq. (37) is related to the “Sha function” X, also
called ‘grating function’ in optics and ‘Dirac comb’ in signal processing, which is an infinite series
of evenly–spaced Dirac peaks:

X(u) =
+∞∑
p=−∞

δ(u− p) =
+∞∑

n=−∞
ei2πnu . (38)

The second equality in Eq. (38) is readily established by expanding the periodic “function” X
into its Fourier series3. Injecting Eq. (38) into Eq. (37), we obtain:

⟨ψ0k|ψ0k′⟩ = c∗
0kc0k′ X

(
k − k′

2π/a

)
. (39)

Eq. (39) shows that, if k and k′ are not equal up to a reciprocal lattice vector (i.e. if there is no
integer p such that k′ = k+p 2π/a), then the Bloch wavefunctions |ψ0k⟩ and |ψ0k′⟩ are orthogonal,
as expected. By contrast, if k and k′ are equal up to a reciprocal lattice vector (i.e. if k′ = k+p 2π/a
for some integer p), then the overlap ⟨ψ0k|ψ0k′⟩ is infinite. This is also not a surprise: in this second
case, the two Bloch wavefunctions |ψ0k⟩ = |ψ0k′⟩ coincide, so that the sought overlap is actually
the squared norm of the Bloch function, ⟨ψ0k|ψ0k⟩. Just like plane waves, Bloch function are not
localised: they extend over all space, so that their squared norm

∫ +∞
−∞ dx |ψ0k(x)|2 = +∞.

A convenient way to normalise the Bloch wavefunctions (and hence to choose the value of the
constant c0k in Eq. (39)) is to exploit the spatial periodicity of the band function u0k(x). Instead
of integrating over the whole x axis from −∞ to +∞, we integrate over a single spatial period a,
say from x = −a/2 to x = a/2, and impose the condition:

1 =
∫ +a/2

−a/2
dx |ψ0k(x)|2 =

∫ +a/2

−a/2
dx |u0k(x)|2 . (40)

Replacing Eq. (36) into Eq. (40) leads to:

1 = |c0k|2
+∞∑

n=−∞

+∞∑
n′=−∞

eik(n′−n)a
∫ a/2

−a/2
dx w∗

0(x− na)w0(x− n′a) . (41)

3The truncated series DN (u) =
∑N

n=−N ei2πnu = sin[(2N + 1)πu]/ sin(πu) approximates X(u) for large u. For
any integer N , DN (u + 1) = DN (u) and

∫ 1/2
−1/2 duDN (u) = 1. It is instructive to plot DN (u) as a function of

u for various values of N , and observe how the divergence for u = 0 (or equivalently any other integer value of
u) builds up as N is increased.
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The integral in the right–hand side of Eq. (41) is non–zero only if the two bound–state wavefunc-
tions appearing there, w0(x − na) and w0(x − n′a), relate to the same well n = n′ = 0 selected
by the bounds of the integral. Hence, only the term n = n′ = 0 survives in the double sum, and
Eq. (41) reduces to |c0k|2 = 1. Therefore, up to an arbitrary phase, one may choose c0k = 1. This
is the normalisation convention used e.g. in Ref. [1, Sec. II.B].

1.3.2. Single–band approximation

If the temperature and the chemical potential are small enough compared to the energy spacing
between the lowest–energy band (represented in brown on Fig. 4) and the next–lowest one (rep-
resented in red), then one may replace the complete Hamiltonian by an approximate, single–band
Hamiltonian. In this context, the most frequently used model is the Hubbard Hamiltonian, whose
second–quantised form reads:

HHubbard = −J
∑
<i,j>

a†
iaj + U

2
∑
i

ni(ni − 1) . (42)

The Hamiltonian HHubbard of Eq. (42) is applicable both to fermions (‘Fermi–Hubbard’ model) and
to bosons (‘Bose–Hubbard model’). It holds in any dimension and for any lattice geometry (3D
cubic, 2D hexagonal, . . . ). The first sum, proportional to −J , describes the tunnelling between
nearest–neighbouring lattice sites < i, j >. It plays an equivalent role, in this lattice model, to the
kinetic energy term p2/(2m) in continuum–space models. The coefficient J > 0 is positive so as to
ensure that it is energetically favourable for a wave packet to spread over all sites (just like kinetic
energy is positive because it is energetically favourable for a wavepacket to spread throughout all
space). The second term, proportional to U , describes the on–site interaction between particles in
a given lattice site, whose number (which is not necessarily fixed) is given by the number operator
ni = a†

iai related to the site i. The coefficient U is positive for repulsive interactions (in which
case the presence of multiple particles within the same lattice site is energetically disfavoured)
and negative for attractive interactions (in which case the presence of multiple particles on the
same site is energetically favoured). The Hubbard model neglects interactions between particles
in different sites, hence, it is applicable in the case where the interaction between two particles has
a range which is shorter than the lattice spacing. In particular, it holds for neutral cold atoms,
whose interactions are often short–ranged. In the presence of longer–ranged interactions (Coulomb
interactions for ions, dipole–dipole interactions for atoms or molecules carrying a magnetic or
electric dipole moment, Rydberg atoms . . . ), the Hubbard model of Eq. (42) is no longer directly
applicable, but it may be generalised to account e.g. for nearest–neighbour interactions.

We have already encountered the first–quantised version of the Hubbard Hamiltonian (Eq. (5)
above). We shall study many of these properties in the context of this problem. In particular, we
shall analyse its band structure, and show that it supports only a single band, in Sec. 2.1.

2. Question 5: single–particle energy spectrum, superfluid state
In this question, we totally neglect on–site interactions: U = 0. Therefore, we are dealing with a
system of non–interacting particles governed by the following lattice Hamiltonian:

H = −J
∑
<i,j>

a†
iaj , (43)

where J > 0 is the tunnelling amplitude between nearest neighbours < i, j >.
In order to construct the many–particle ground state for this non–interacting system, we follow

the following two–step procedure: (i) We determine the single–particle eigenstates and energies;
(ii) We combine single–particle states so as to satisfy the considered quantum statistics.
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2.1. Single–particle eigenstates and energies for the Bose–Hubbard model
For simplicity, we focus on the case of a one–dimensional (1D) lattice, but the two– and three–
dimensional cases are very similar. In the 1D case, the discrete lattice sites are at the positions
xn = na, where n is an integer such that 1 ≤ n ≤ Nl and Nl is the total number of lattice sites.
We represent these Nl sites by the kets |n⟩. We use periodic boundary conditions, i.e. |0⟩ = |Nl⟩
and |Nl + 1⟩ = |1⟩. Under these conditions, each lattice site |n⟩ has two nearest neighbours which
are |n− 1⟩ and |n+ 1⟩, so that the single–particle Hamiltonian associated with Eq. 43 is:

h = −J
Nl∑
n=1

(
|n− 1⟩ ⟨n| + |n+ 1⟩ ⟨n|

)
. (44)

The single–particle Hamiltonian is spatially periodic, therefore we seek single–particle eigen-
states in the form of Bloch waves ψk,b(x), defined by:

ψk,b(x) = eikx uk,b(x) , (45)

where eikx is a plane wave and uk,b(x) is a spatially–periodic function whose period coincides
with that of the lattice, and which depends both on k and on a discrete index b. The quantity k
appearing in the plane wave is called the quasimomentum or crystal momentum; the choice of the
index b labelling uk,b defines the band.

For the lattice Hamiltonian of Eq. 44, the wavefunctions ψk,b(x), and hence the functions uk,b
and eikx, are defined at the discrete spatial points xn = na corresponding to the lattice sites
|n⟩. A suitable band function uk,b must have the same spatial period as that of the Hamiltonian,
meaning that uk,b(na) = uk,b((n + 1)a), so that uk,b must be constant. Therefore, the Hubbard
model supports only one band, a characteristic property which it is useful to keep in mind.

Because the band function uk,b is constant, the Bloch waves ψk,b reduce to ψk(xn) = einka/
√
Nl,

where the prefactor 1/
√
Nl has been chosen to ensure the normalisation ⟨ψk|ψk⟩ = 1. This may

be written in terms of kets:

|ψk⟩ = 1√
Nl

Nl∑
n=1

einka |n⟩ . (46)

Acting with h on |ψk⟩, one obtains:

h |ψk⟩ = −J
∑
n

(|n− 1⟩ ⟨n| + |n+ 1⟩ ⟨n|) 1√
Nl

∑
m

eimka |m⟩ (47)

= − J√
Nl

∑
n

einka(|n− 1⟩ + |n+ 1⟩) (48)

= −Jeika
(

1√
Nl

∑
n

ei(n−1)ka |n− 1⟩

)
− Je−ika

(
1√
Nl

∑
n

ei(n+1)ka |n+ 1⟩

)
. (49)

Thanks to the periodic boundary conditions, we replace each of the two sums in Eq. 49 by |ψk⟩:

h |ψk⟩ = −J(eika + e−ika) |ψk⟩ = −2J cos(ka) |ψk⟩ , (50)

which shows that |ψk⟩ is an eigenstate of h corresponding to the eigenvalue ϵk = −2J cos(ka).
The plane wave |ψk⟩, considered as a continuum–space function rather than just sampled on

the lattice sites, would also be an eigenstate of the Hamiltonian p2/(2m) representing a single
particle in free space. However, the periodicity of the lattice transforms the quadratic free–space
dispersion relation ϵ(k) = ℏ2k2/(2m) into the sinusoidal dependence ϵk = −2J cos(ka).

Which are the allowed independent values of k?

The relevant set of values of k is constrainted by two different phenomena.
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Figure 7 Single–particle energy spectrum for the
Hubbard model of Eq. 44.

First, the periodic boundary conditions require that eiNlka = 1. This means that the allowed
wavectors k may be labelled with an integer index p such that:

kp = p

Nl

2π
a
. (51)

For an infinite chain Nl → ∞, we recover a continuum of allowed values for k.
The second property, which is characteristic of periodic Hamiltonians, reduces the set of inde-

pendent values of k. The Bloch wave of Eq. 45 satisfies4:

ψk,b(x+ a) = eika ψk,b(x) . (52)

Equation 52, which is a concise but complete statement of Bloch’s theorem, fully characterises
the Bloch wave ψk,b(x). The wavevector k only appears in the phase factor eika, hence, values
of k which differ by an integer multiple of 2π/a play exactly the same role. Therefore, in order
to describe all available single–particle states, it is sufficient to restrict the values of k to an
interval of length 2π/a, called “first Brillouin zone”. It is because of this second constraint on
the independent values of k that, in the context of periodic lattice models, this quantity is called
“quasimomentum” rather than just momentum.

The energy spectrum of Eq. 50 is represented on Fig. 7. The ground–state, corresponding to
k = 0, has the energy ϵ0 = −2J and is non–degenerate. The maximum–energy state, corresponding
to k = π and the energy ϵπ = +2J , is also non–degenerate because the first Brillouin zone contains
either k = π/a or k = −π/a (the choice has no consequence), but not both. However, all other
states are twice degenerate: ϵk = ϵ−k, because the Hubbard Hamiltonian of Eq. 44 is invariant
under the parity operation (which maps |k⟩ onto |−k⟩).

2.2. Many–particle ground state for bosons
For identical bosons, the many–particle ground state is obtained by choosing all atoms to be in
the single–particle ground state:

|ψk=0⟩ = 1√
Nl

Nl∑
n=0

|n⟩ . (53)

There is no limit to the number Na of bosons that may be accommodated by this ground state.
Remembering that creation operators transform like kets, Eq. (53) may be used to express the

operator a†
k=0 in terms of the creation operators on single sites a†

n:

a†
k=0 = 1√

Nl

Nl∑
n=0

a†
n . (54)

4To derive Eq. (52) from Eq. (45), write ψk,b(x+ a) = eik(x+a) uk,b(x+ a) = eikaeikx uk,b(x) = eika ψk,b(x).
In order to check the equivalence of Eq. (52) with Bloch’s theorem, consider uk,b(x) = e−ikxψk,b(x).
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Therefore, the ground state for Na identical bosons is:

|SFNa⟩ = 1√
Na!

a†Na

k=0 |vac⟩ = 1√
Na!

(
1√
Nl

∑
i

a†
i

)Na

|vac⟩ . (55)

2.3. Many–particle ground state for fermions
[This paragraph is an addendum which does not correspond to a question in the problem set.]

For identical fermions, we must construct a Fermi sea using the single–particle states |ψk⟩.
If the lattice contains Nl lattice sites, then there are Nl independent single–particle states,

hence, the atom number must satisfy Na ≤ Nl.
We order the single–particle states (|ψj⟩)0≤j≤Nl−1 by increasing energies:

ϵ0 < ϵ1 = ϵ2 < . . . < ϵNl−3 = ϵNl−2 < ϵNl−1 , (56)

where we have made the degeneracies ϵk = ϵ−k explicit. We introduce the corresponding creation
operators (a†

j)0≤j≤Nl
, which may be expressed in terms of the operators a†

n (each of which creates
a fermion in the site n) using Eq. (46). Then, the fermionic ground state for Na atoms reads:

|ΨNa
⟩ = a†

0a
†
1 · · · a†

Na
|vac⟩ . (57)

If Na is even, with 2 ≤ Na ≤ Nl − 2, the ground state is two–fold degenerate. This is because the
highest–energy populated level may correspond to either |ψ+kF

⟩ or |ψ−kF
⟩, in accordance with

the invariance of the many–body Hamiltonian under the parity operation.

3. Question 6: one–body density matrix in the superfluid regime
3.1. Explicit expression for the superfluid state
In Eq. 55, Nl is the total number of sites in the lattice. The operator a†

i creates an atom in
the lattice site |i⟩, whereas a†

k=0 creates an atom in the single–particle ground state |k = 0⟩ =∑
i |i⟩ /

√
Nl. Equation 55 simply expresses the fact that all atoms are in the ground state |k = 0⟩.

First, we expand the parentheses on the right–hand side of Eq. 55 using the multinomial formula:

|SFNa
⟩ = 1√

Na!
1

N
Na/2
l

∑
n1+···+nNl

=Na

Na!
n1! · · ·nNl

!
a†n1

1 · · · a†nNl

Nl
|vac⟩ . (58)

Then, we act on |vac⟩ using the a†
i , accounting for the normalisation factors a†ni

i |vac⟩ =
√
ni! |ni⟩:

|SFNa
⟩ = 1

N
Na/2
l

∑
n1+···+nNl

=Na

(
Na!

n1! · · ·nNl
!

)1/2

|n1, . . . , nNl
⟩ , (59)

where the ket |n1, . . . , nNl
⟩ is the Na–particle state where site 1 contains n1 particles, . . . , and

site Nl contains nNl
atoms.

3.2. Annihilating a particle in the superfluid state
Now, we act on the Na–particle state |SFNa⟩ using the annihilation operator aj , which destroys
a particle on the lattice site i. This calculation may be carried out starting from the explicit
expression for |SFNa

⟩ given by Eq. (59) (see Sec. 3.2.1). The result may also be established in
terms of commutators (see Sec. 3.2.2 below).
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3.2.1. First method, starting from the explicit expression of the superfluid state

Here, we start from Eq. (59). Recalling that aj |nj⟩ = √
nj |nj − 1⟩, we obtain:

aj |SFNa⟩ = 1
N
Na/2
l

∑
n1+···+nNl

=Na

(
Na!

n1! · · ·nNl
!

)1/2 √
nj |n1, . . . , nj − 1, . . . , nNl

⟩ . (60)

Inside the parentheses on the right–hand side, we use Na! = Na(Na − 1)! in the numerator and
ni! = ni(ni − 1)! in the denominator. We also write NNa/2

l =
√
NlN

(Na−1)/2
l . This leads to:

aj |SFNa
⟩ =

√
Na
Nl

∑
n1+···+nNl

=Na

(
(Na − 1)!

n1! · · · (nj − 1)! · · ·nNl
!

)1/2

|n1, . . . , nj − 1, . . . , nNl
⟩ . (61)

Now, we inspect the Nl–uplets (n1, . . . , nNl
) over which the sum in Eq. 61 is performed. We retain

those Nl–uplets for which:

n1 + · · · + nj + · · · + nNl
= Na, that is, n1 + · · · + (nj − 1) + · · · + nNl

= Na − 1 . (62)

The second form of the condition of Eq. 62 is inapplicable to the Nl–uplets for which nj = 0;
however, these terms do not contribute to the sum because then aj |nj = 0⟩ = 0. Therefore,
Eq. 61 may be rewritten as:

aj |SFNa⟩ =
√
Na
Nl

∑
n1+···+(nj−1)+···+nNl

=Na

(
(Na − 1)!

n1! · · · (nj − 1)! · · ·nNl
!

)1/2

|n1, . . . , nj − 1, . . . , nNl
⟩ .

(63)
We change variables from nj ≥ 1 to ñj = nj − 1 ≥ 0. We then recognise on the right–hand side,
up to a numerical prefactor, the superfluid state |SFNa−1⟩ which contains (Na − 1) atoms. Hence:

aj |SFNa⟩ =
√
Na
Nl

|SFNa−1⟩ . (64)

Note that aj |SFNa⟩ does not depend on the site j in which the particle is annihilated.

3.2.2. Second method, using commutators

The action of the annihilation operator aj for any site j on the superfluid state |SFNa
⟩, summarised

by Eq. (64), may be established without using the explicit expression for |SFNa
⟩ given by Eq. (59).

Instead, we start from the following relation involving the commutator [aj , a†NA

k=0]:

aj |SFNa
⟩ = aj

1√
Na!

a†Na

k=0 |vac⟩ = 1√
Na!

(
[aj , a†NA

k=0] + a†NA

k=0aj

)
|vac⟩ = 1√

Na!
[aj , a†NA

k=0] |vac⟩ .

(65)
In Eq. (64), the first step follows from Eq. (55), and the last one reflects aj |vac⟩ = 0.

Thanks to Eq. (64), the calculation of aj |SFNa⟩ now hinges on the evaluation of the commutators
[aj , a†p

k=0], where p is a positive integer. Starting from Eq. (54), we first obtain:

[aj , a†
k=0] = 1√

Nl
. (66)

Next, we recall the property [A,BC] = [A,B]C +B[A,C] stating that commutators [A, ·] behave
like derivatives. Hence:

[aj , a†2
k=0] = [aj , a†

k=0] a†
k=0 + a†

k=0 [aj , a†
k=0] = 2√

Nl
aj , (67)
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where the second step relies on Eq. (66). Similarly:

[aj , a†3
k=0] = [aj , a†2

k=0] a†
k=0 + a†

k=0 [aj , a†2
k=0] = 2√

Nl
a†2
k=0 + a†2

k=0
1√
Nl

= 3√
Nl

a†2
k=0 , (68)

where we have used both Eq. (66) and (67). An immediate recursion then yields:

[aj , a†p
k=0] = p√

Nl
a

†(p−1)
k=0 for any integer p ≥ 0. . (69)

Injecting Eq. (69), applied for p = Na, into the last step of Eq. (65), we conclude:

aj |SFNa⟩ = 1√
Na!

Na√
Nl
a

†(Na−1)
k=0 |vac⟩ =

√
Na
Nl

1√
(Na − 1)!

a
†(Na−1)
k=0 |vac⟩ =

√
Na
Nl

|SFNa−1⟩ ,

(70)
where the final result coincides with Eq. (64), as expected.

3.2.3. Thermodynamic limit: approximate site–wise factorisation of the superfluid state

Thermodynamic limit. In this limit, both the number of atoms, Na, and the number of sites,
Nl, are sent to infinity (experimentally speaking, they are chosen to be very large), but with the
constraint that the filling factor ν = Na/Nl should remain constant. This limit leads to a number
of simplifications. In particular, the result a2

j |SFNa⟩ = [Na(Na − 1)]1/2/Nl |SFNa−2⟩, which holds
regardless of the value of Na, reduces to a2

j |SFNa
⟩ = ν |SFNa−2⟩ in the thermodynamic limit.

Combining this result with Eq. (64), and using the bosonic commutation relation a†
jaj = aja

†
j − 1,

we conclude that, in the superfluid state |SFNa
⟩, the average number of atoms on site j, ⟨nj⟩ =

⟨SFNa
|nj |SFNa

⟩, is equal to the variance ∆n2
j = ⟨SFNa

|n2
j |SFNa

⟩ − ⟨nj⟩2 of this atom number:

In the thermodynamic limit, ⟨nj⟩ = ∆n2
j = ν . (71)

Equation (71) suggests that the statistical distribution of the atom number ni on a given site,
calculated in the many–particle state |SFNa

⟩, may be expected to be Poissonian.

Site–wise factorised state |Ψcoh⟩. The intuition behind the approximation introduced in this
section is that, in the thermodynamic limit, the superfluid states |SFNa

⟩ and |SFNa−1⟩, respectively
comprised of Na and Na − 1 atoms, should be very similar. Then, Eq. (64) indicates that |SFNa

⟩
is an approximate eigenstate of the annihilation operator aj corresponding to the eigenvalue

√
ν.

Therefore, we shall compare |SFNa
⟩ to the state |Ψcoh⟩ defined as follows:

|Ψcoh⟩ =
Nl⊗
j=1

|
√
ν

(j)⟩ , (72)

with |
√
ν

(j)⟩ being the coherent state5 for the site j such that aj |
√
ν

(j)⟩ =
√
ν |

√
ν

(j)⟩. The state
|Ψcoh⟩ exhibits three important properties:

1. It is factorised as a tensor product of wavefunctions each corresponding to a given site (j);

2. All sites are represented by the same single–site wavefunction |sqrtν(j)⟩;

3. Unlike for |SFNa⟩, whose total number of atoms is well–defined (equal to Na), the state |Ψcoh⟩
is not an eigenstate of the operator n1 + · · · + nNl

, i.e. the total atom number fluctuates.

5Coherent states and their most important properties are briefly reviewed in Appendix A of these notes.
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Explicit expression for |Ψcoh⟩. In Eq. (72), we replace the coherent state |
√
ν

(j)⟩ by its explicit
expression given by Eq. (126), and then expand the tensor product:

|Ψcoh⟩ =
Nl⊗
j=1

e−ν/2
+∞∑
nj=0

(
νnj

nj !

)1/2

|n(j)⟩


= e−Nlν/2

+∞∑
n1=0

· · ·
+∞∑
nNl

=0

(
νn1+···+nNl

n1! · · ·nNl
!

)(1/2)

|n1 . . . nNl
⟩ . (73)

In Eq. (73), we replace the filling fraction ν by its expression ν = Na/Nl. Furthermore, the
presence of the term νn1+···+nNl suggests that it is favourable to reorganise the multiple sums on
the atom numbers n1, . . . , nNl

in the following way: First, we fix the total atom number N ; then,
we choose the positive values of n1, . . . , nNl

such that n1 + · · · + nNl
= N . This leads to:

|Ψcoh⟩ =
+∞∑
N=0

(
e−Na

NN
a

N !

)1/2 ∑
n1+···+nNl

=N

(
1
NN
l

N !
n1! · · ·nNl

!

)1/2

|n1 . . . nNl
⟩ , (74)

In Eq. (74), we recognise that the inner sum (taken on the atom numbers nj ≥ 0 such that
n1 + · · · + nNl

= N) matches the explicit expression for |SFN ⟩ given by Eq. (59). Hence,

|Ψcoh⟩ =
+∞∑
N=0

(
e−Na

NN
a

N !

)1/2

|SFN ⟩ . (75)

The state |Ψcoh⟩ is actually a coherent state of the annihilation operator ak=0 (see also questions
15 and 16 of the problem set, and their solution in Sec. 6 of the present notes). To establish this
result, we replace |SFN ⟩ in Eq. (75) by its expression in terms of a†N

k=0 |vac⟩ given by Eq. (55):

|Ψcoh⟩ = e−Na/2
+∞∑
N=0

1
N !

(
√
Naa

†
k=0)N |vac⟩ = e−Na/2 exp

(√
Na a

†
k=0

)
|vac⟩ , (76)

where the second step follows from the definition of the exponential of the operator
√
Na a

†
k=0.

Finally, Eq. (126) in the appendix allows us to conclude.

Discussion of the state |Ψcoh⟩. Let us summarise Eqs. (72) and (75) above in a single equation:

|Ψcoh⟩ =
Nl⊗
j=1

|
√
ν

(j)⟩ =
+∞∑
N=0

(
e−Na

NN
a

N !

)1/2

|SFN ⟩ . (77)

The state |Ψcoh⟩ is a linear superposition of the superfluid states6 |SFN ⟩ for all possible values
of the total particle number N , reflecting the fact that, in in this state, the total particle number
is not conserved. The probability pN for finding N particles in the system may be read directly off
the right–hand side of Eq. (77): it is the square of the amplitude of the component along |SFN ⟩,
that is to say, pN = e−Na NN

a /N !. This is a Poisson distribution, so that the mean value ⟨N⟩ of
the total atom number and its variance ∆N2 are equal: ⟨N⟩ = ∆N2 = Na. Thus, the standard
deviation ∆N satisfies ∆N/ ⟨N⟩ = 1/

√
Na.

In the thermodynamic limit, Na is very large, hence, ∆N/ ⟨N⟩ is very small. This means that
the fluctuations on the total atom number N are neglibible, and the distribution is strongly peaked

6For two different atom numbers N ̸= N ′, the states |SFN ⟩ and |SFN′ ⟩ are orthogonal. This follows from their
being eigenvectors of the hermitian operator N̂ giving the total atom number, for different eigenvalues. Indeed,
N̂ |SFN ⟩ = N |SFN ⟩ and ⟨SFN′ | N̂ = N ′ ⟨SFN′ | (the property involving bras relies on the hermiticity of N̂).
Hence, ⟨SFN′ |N̂ |SFN ⟩ = N ⟨SFN′ |SFN ⟩ = N ′ ⟨SFN′ |SFN ⟩, so that (N ′ −N) ⟨SFN′ |SFN ⟩ = 0.
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around its mean value Na. Therefore, the coherent state |Ψcoh⟩ is a very good approximation for
the superfluid state |SFNa⟩. It offers a number of advantages compared to the exact superfluid
state. In particular, its expression in terms of a product of coherent states on each site (first
equality of Eq. (77)) shows that the probability distribution for the atom number on a given site
is indeed Poissonian, as conjectured above at the beginning of Sec. 3.2.3.

Replacing a quantum state with a fixed number of particles with another state whose particle
number presents small fluctuations is analogous to going, in statistical physics, from the canonical
ensemble, where the particle number is rigorously fixed, to the grand–canonical ensemble, where
the particle number fluctuates around its average value set by the chemical potential. This type
of reasoning is ubiquitous. The most famous example is the derivation of the Bose–Einstein and
Fermi–Dirac quantum statistics in the grand–canonical ensemble, discussed in Problem 2. We
shall see an illustration of its usefulness in this problem, in the context of the collapse–and–revival
phenomenon (see Sec. 6 below). It is also an important step in the Bardeen–Cooper–Schrieffer
theory for the superfluidity of spin–balanced Fermi gases [3, §4.3].

3.3. Calculation of the one–body density matrix
In the present discrete case, the one–body density matrix is defined as:

ρ(1)(i, j) = ⟨SF|a†
iaj |SF⟩ . (78)

For a given pair of sites i and j, we use Eq. 64 to evaluate both aj |SF⟩ and ⟨SF| a†
i = (ai |SF⟩)†.

We thus find:
ρ(1)(i, j) = Na

Nl
⟨SFNa−1|SFNa−1⟩ = ν , (79)

where we have introduced the filling factor ν = Na/Nl. Equation 79 holds for all i and j, including
i = j. The fact that ρ(1) is equal to a constant for large |i− j| signals the presence of off–diagonal
long–range order, i.e. of a Bose–Einstein condensate.

4. Quests. 10–12: mean–field description of the phase transition
We consider the full Bose–Hubbard Hamiltonian:

H = −J
∑
<i,j>

a†
iaj + U

2
∑
i

ni(ni − 1) . (80)

The term proportional to J describes hopping between nearest–neighbouring sites < i, j >; the
term proportional to U represents the on–site interaction.

We apply the variational principle and, hence, restrict our analysis to the following family of
trial wavefunctions, where the state |Ψθ,ϕ⟩ characterising the whole lattice factorises into a tensor
product of single–site states |χi⟩ which are the same for all sites (Hartree–type ansatz):

|Ψθ,ϕ⟩ =
Nl⊗
i=1

|χ(i)
θ,ϕ⟩ where |χ(i)

θ,ϕ⟩ = cos θ |1⟩ + sin θ e
−iϕ |0⟩ + eiϕ |2⟩√

2
. (81)

4.1. Order parameter and identification of the two phases
The order parameter in the site i is defined as the complex number ψi given by the average of the
annihilation operator ai:

ψi = ⟨Ψθ,ϕ|ai|Ψθ,ϕ⟩ = ⟨χ(i)|ai|χ(i)⟩ , (82)
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where the second equality follows from the site–factorised form of Eq. 81. Furthermore, all lattice
sites are in the same state |χ⟩, so that ψ = ψi does not depend on the lattice site i. We first
calculate aj |χ(j)⟩ = cos θ |0⟩ + eiϕ sin θ |1⟩, and then obtain:

ψ = 1
2

(
1 + 1√

2

)
sin(2θ)eiϕ . (83)

For θ = 0 (and arbitrary ϕ), |Ψ0,ϕ⟩ = |MI⟩, and ψ = 0, signalling that the Mott–insulating
phase exhibits no coherence. The absence of coherence can be understood from the fact that the
atom number is well–defined in each site (we have chosen it equal to 1).

On the contrary, for 0 < θ < π/2, ψ ̸= 0, meaning that the system does exhibit coherence.
All of these states constitute the superfluid phase. The modulus |ψi| of the order parameter ψ
is maximal for θ = π/4, hence, the states |Ψπ/4,ϕ⟩ may be identified as the deep superfluid state
|SF⟩ in the mean–field approximation.

4.2. One–body density matrix
Thanks to the site–factorised form of Eq. 81, the one–body density matrix reduces to:

⟨Ψθ,ϕ|a†
iaj |Ψθ,ϕ⟩ = ⟨χ(i)χ(j)|a†

iaj |χ
(i)χ(j)⟩ = ⟨χ(i)|a†

i |χ
(i)⟩ ⟨χ(i)|aj |χ(i)⟩ = ψ∗

i ψj = |ψ|2 , (84)

where we have used Eq. 82 defining ψi = ψ. We replace ψ by its expression (Eq. 83) and obtain
the following result for the density matrix ρ(i,j)

MF in the mean–field (MF) approximation:

ρ
(i,j)
MF = ⟨Ψθ,ϕ|a†

iaj |Ψθ,ϕ⟩ = 1
4

(
3
2

+
√

2
)

sin2(2θ) . (85)

Note that ρ(i,j)
MF vanishes in the Mott–Insulator phase (θ = 0), and non–zero for any 0 < θ < π,

in which case it is independent of the lattice sites i, j. In particular, the system does exhibit
off–diagonal long–range order in the superfluid phase.

4.3. Contribution of the hopping term
The mean value of the hopping term is related to the uniform value of the off–diagonal density
matrix. We call z the number of nearest neighbours of a given state, and obtain:

⟨Ψθ,ϕ| − J
∑
<i,j>

a†
iaj |Ψθ,ϕ⟩ = −JNlzρMF = −Nl

2
sin2 θ (3 + 2

√
2) cos2 θ Jz . (86)

4.4. Contribution of the on–site interaction energy
The on–site interaction term may be calculated from the following on–site average:

⟨Ψθ,ϕ|ni(ni− 1)|Ψθ,ϕ⟩ = ⟨χ(i)|ni(ni− 1)|χ(i)⟩ . (87)

We first calculate ni(ni − 1) |χ(i)⟩ =
√

2 sin θeiϕ |2⟩, and then ⟨χ(i)|ni(ni − 1) |χ(i)⟩ = sin2 θ. Each
site contributes equally to the total energy, therefore:

⟨Ψθ,ϕ|U
2

Nl∑
i=1

ni(ni − 1)|Ψθ,ϕ⟩ = Nl
2

sin2 θ U . (88)
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4.5. Total energy and second–order phase transition
Combining Eqs. 86 and 88, we finally obtain:

ϵ(θ) = 2
NlzJ

⟨Ψθ,ϕ|H|Ψθ,ϕ⟩ = sin2 θ

(
U

zJ
− (3 + 2

√
2) cos2 θ

)
. (89)

Equation 89 shows that the phase of the system depends on whether U/(zJ) is greater or smaller
than the critical value 3 + 2

√
2.

If U/(zJ) > 3 + 2
√

2, the term in the parentheses in Eq. 89 is always positive, and ϵ(θ) reaches
its minimum value 0 for θ = 0. Hence, the system is in the Mott–Insulator phase, with ψ = 0.

On the other hand, if U/(zJ) < 3 + 2
√

2, we introduce the angle θ0 such that cos(2θ0) =
U/[zJ(3 + 2

√
2)]. Then, ϵ(θ) is minimal for θ = θ0. The order parameter ψ = (1/

√
2 +

1) sin(2θ0)eiϕ/2 is nonzero, meaning that the system is in the superfluid phase. The energy
ϵ(θ0) = −(3 + 2

√
2) sin4(θ0) < 0 being negative confirms that the superfluid phase is energetically

favoured compared to the Mott–Insulator phase (whose energy is 0).
The energy is continuous at the critical point U/(zJ) = 3 + 2

√
2 (where ϵ = 0), which indicates

that we are dealing with a second–order phase transition.
Furthermore, this energetical analysis confirms that there is no constraint on the phase ϕ. The

choice of the value of ϕ when entering the superfluid phase is an example of a broken symmetry.
Buckling and the para–to–ferromagnetic transition, which are both second–order transitions as
well, are also associated with broken symmetries.

5. Question 14: Time–of–flight expansion and Bragg diffraction
In the experiments by Greiner and coworkers [4, 5] analysed in this problem, the coherence between
the lattice sites was probed using a frequently used technique known as “time–of–flight” (ToF).
At the time tM at which the measurement should be performed, the optical lattice is suddenly
switched off. Then, the matter waves associated with each lattice site are no longer confined, so
that they freely expand and interfere. After an expansion time TToF which is chosen sufficiently
long for the waves from all sites in the sample to overlap, the spatial density of the gas is imaged,
leading to the experimental interferograms of Figs. 2 and 4 in the problem set.

This time–of–flight protocol affords a straightforward analysis if two conditions are met: (i) The
expansion is sufficiently long for the initial size of the cloud (before its expansion) to be negligible;
(ii) The interactions between the particles are sufficiently weak for their role to be negligible at
all times during the expansion phase (though interactions are not negligible in the presence of the
lattice for t < tM ). We shall assume both of these conditions to be satisfied in the following.

5.1. Time–of-flight expansion starting from a lattice potential
Under these two conditions, turning off the lattice causes the atoms to expand from their initial
position r ≈ 0 with a momentum ℏk, i.e. a velocity ℏk/m, which remains unchanged in the course
of the expansion. Hence, at atom which is at the final position rf at the end of the expansion had
a momentum ℏk just before the lattice was turned off which satisfies the relation:

rf = ℏk

m
TToF . (90)

Equation (90) shows that probing the final density distribution nf (r) at the end of the expansion
amounts to probing the momentum distribution n(k) just before the expansion, in direct analogy
with optical diffraction experiments. Therefore, we now focus on the momentum distribution
n(k) = a†

kak, and more precisely on its average ⟨n(k)⟩.
In order to characterise this momentum distribution, we must relate the creation operator a†

k

for a particle with the momentum ℏk to the creation operators a†
j for a particle in the lattice site

23



j. Thus, we must relate the wavefunction for the single–particle momentum state |k⟩ to that of a
single particle in the lattice site |j⟩:

|k⟩ =
∑
j

⟨j|k⟩ . (91)

The state |k⟩ is related to the continuum position state |r⟩ through the plane–wave matrix element
⟨r|k⟩ = exp(ik · r)/

√
V , so that it is enough to relate |r⟩ to the lattice site wavefunction |j⟩:

|k⟩ =
∑
j

∫
d3r ⟨j|r⟩ ⟨r|k⟩ =

∑
j

∫
d3r ⟨j|r⟩ exp(ik · r)√

V
. (92)

The wavefunction ⟨j|r⟩ is localised on the site j:

⟨r|j⟩ = w0j(r) = w0(r − rj) , (93)

where the second step follows from the discrete translational invariance of the lattice, and rj is
the spatial position of the lattice site j. The function w0j(r) = w0(r −rj) is the Wannier function
corresponding to the lowest–energy band and the site j, and it may be chosen real (see Sec. 1.2).
Combining Eqs. (92) and (93), we obtain:

|k⟩ =
∑
j

|j⟩
∫
d3r w∗

0(r − rj)e
ik·r

√
V

=
∑
j

|j⟩ exp(ik · rj)
∫
d3r w∗

0(r − rj)e
ik·(r−rj)

√
V

. (94)

Finally, a change of variables in the integral on the right–hand side of Eq. (94) yields:

|k⟩ =

∑
j

|j⟩ eik·rj

 w∗
0(k) , with w∗

0(k) = ⟨j = 0|k⟩ . (95)

The form of Eq. (95) is familiar from the theory of the optical diffraction by a periodic grating. It
is the product of two terms: the first one describes the interference of plane waves originating from
all lattice sites, whereas the second one is the Fourier transform w0(k) of the Wannier function
w0(r) associated with the single site at r = 0.

Recalling that creation operators transform like kets, Eq. (95) directly translates into a relation
between the creation operators a†

k and a†
j :

a†
k =

∑
j

a†
j e

ik·rj

 w∗
0(k) . (96)

This yields the following expression for the number operator nk:

nk = |w0(k)|2
∑
j,j′

eik·(rj−rj′ ) a†
jaj′ . (97)

Finally, we average Eq. (97) over multiple realisations of the experiment to obtain:

⟨nk⟩ = |w0(k)|2
∑
j,j′

eik·(rj−rj′ ) ρjj′ , with ρjj′ = ⟨a†
jaj′⟩ . (98)

5.2. Application to the superfluid–to–Mott insulator transition
5.2.1. Expansion from the Mott insulator phase

We first consider a time–of–flight expansion starting from a trapped gas in the Mott insulator
phase. Then, the order parameter ψ = 0, meaning that the one–body density matrix ρjj′ = 0 for
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all j ̸= j′. Therefore, the only surviving terms in the sum of Eq. (98) are those for which j = j′.
Then, ρjj = ⟨nj⟩ = 1 for all sites j. Thus, the momentum–space density distribution satisfies:

⟨nk⟩ = |w0(k)|2 Nl . (99)

It is proportional to the total number Nl of lattice sites, reflecting the incoherent sum of the plane
waves in Eq. (98). It gives rise to the incoherent background visible on Figs. (2g,f) of the problem
set, whose spatial structure is dictated by the Fourier transform w0(k) of the Wannier function
w0j related to the lowest band and any given lattice site j.

5.2.2. Expansion from the superfluid phase

In the superfluid phase, the system exhibits long–range order. The ansatz of Eq. (81) leads to:

Diagonal elements: ρjj = 1 , off–diagonal elements: ρjj′ = |ψ|2 > 0 . (100)

Hence, Eq. (98) reduces to:

⟨nk⟩ = |w0(k)|2
Nl(1 − |ψ|2) + |ψ|2

∑
j,j′

eik·(rj−rj′ )

 . (101)

In Eq. (101), the first term inside the parentheses, which is proportional to Nl, reflects the differ-
ence 1−|ψ|2 > 0 between the diagonal and off–diagonal values of the one–body density matrix (see
Eq. (100)). The double sum over j, j′ is the squared modulus of

∑
j e

ik·rj , which is the multidi-
mensional analog of Eq. (38) (in the experiment of Ref. [5], the optical lattice is 3D). Accordingly,
the value of ⟨nk⟩ depends on whether or not k is a reciprocal lattice vector:

• If k is not a reciprocal lattice vector, then the phases of the plane waves in the sum over
j, j′ vary very quickly from one site to the next, so that the sum averages to 0. Hence, the
density distribution reduces to the incoherent signal ⟨nk⟩ = |w0(k)|2Nl(1 − |ψ|2). It has a
structure similar to (99), except that it is weighted by (1 − |ψ|2), so that the background
is less important for systems that were prepared deep in the superfluid phase and becomes
more prominent for systems initially closer to the Mott–insulator phase, a dependence which
is visible on Figs. (2a–f) of the problem sheet.

• If k is a reciprocal lattice vector, then all plane waves in the sum over j, j′ are equal to 1:

⟨nk⟩ = |w0(k)|2
(
Nl(1 − |ψ|2) + N2

l |ψ|2
)

≈ |w0(k)|2|ψ|2N2
l . (102)

A strongly constructive interference effect occurs, and the signal is now proportional to
N2
l (rather than to Nl in all other cases). Considering that Nl ∼ 105, this is a strong

enhancement and leads to very well–defined peaks, in the momentum distribution, which
are clearly visible on Figs. (2a–f) of the problem sheet.

The phenomenon whereby reciprocal lattice vectors lead to strong constructive interference
and, hence, to well–defined peaks in the momentum distribution, is fully analogous to the Bragg
diffraction of e.g. light through periodic gratings [6, §10.2] or X–rays by crystals [7, chap. 6].
The strong–intensity diffraction peaks relate to the reciprocal lattice vectors and, hence, may be
analysed to reconstruct the crystal structure. For example, Figs. 2 and 5 of the problem sheet
show that, in the experiments of Refs. [4] and [5], the reciprocal lattice of the optical lattice is
a square lattice. The lattice whose reciprocal lattice is square is also a square lattice, hence, the
optical lattice used in the experiments by Greiner and coworkers was a square lattice.
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6. Questions 15–16: coherent state & its sitewise factorisation
The collapse–and–revival experiment of Ref. [4] was performed using a fixed number of atoms
Na ∼ 105 forming a very pure Bose–Einstein condensate inside the lattice. For t < 0, the lattice
is shallow and the system is deep in the superfluid regime: U ≪ J , meaning that interactions are
negligible, so that all atoms occupy the single–particle ground state of the lattice. This corresponds
to the exact many–particle state |SFNa

⟩ = a†Na

k=0 |vac⟩ /
√
Na!. This exact many–particle state is

difficult to manipulate because it spans all lattice sites.
As anticipated in Sec. 3.2.3 above, we replace the exact many–particle state |SFNa

⟩ with the
approximate state |Ψcoh⟩ defined by Eq. (72). In contrast to the derivation provided in Sec. 3.2.3,
Questions 15 and 16 of the problem set actually suggest starting from Eq. (76) and deriving
Eq. (72). This is readily done by replacing a†

k=0 in Eq. (76) by its expression in terms of the
creation operators a†

j on the site j, given by Eq. (54). The single–particle states |j⟩ representing
different lattice sites are orthogonal, hence, the corresponding creation operators a†

j commute and
one can replace the exponential of the sum in Eq. (76) by a product of exponentials:

|Ψcoh⟩ = e−Nlν/2 exp

(
√
ν

Nl∑
n=0

a†
n

)
|vac⟩ =

Nl∏
j=1

[
e−ν/2 exp

(√
ν a†

j

)]
|vac⟩ =

Nl∏
j=1

|
√
ν

(j)⟩ ,

(103)
where |

√
ν

(j)⟩ is a coherent state on the site j with the average atom number ν.
Replacing the state |SFNa

⟩ by |Ψcoh⟩ entails that the atom number is no longer rigorously fixed,
but its mean value is Na and its standard deviation is ∆Na =

√
Na. For Na ∼ 105, the ratio

∆NA/Na ≈ 5 × 10−3, so that the atom number fluctuations are negligible and, to a very good
approximation, |Ψcoh⟩ reproduces the physics of the exact many–body state.

Note that the single–site coherent states |
√
ν

(j)⟩ do not have a fixed atom number. The average
atom number in each site is ν and the fluctuations are ∆ν =

√
ν. The filling factor ν = Na/Nl ≈ 3

in the experiment of Ref. [4]. Hence, ∆ν/ν = 1/
√
ν ≈ 0.58, so that these atom number fluctuations

are not negligible. However, this does not invalidate the use of the multiple–site coherent state
|Ψcoh⟩, whose atom number fluctations are indeed small compared to the total atom number Na.

To sum up, replacing the exact many–particle state, which has a fixed atom number, with the
coherent state |Ψcoh⟩, whose particle number fluctuations are nonzero but very small, allows us
to factorise the many–particle state into the product of Eq. (103), where each term in the product
relates to a single lattice site.

7. Questions 17 & 18: quantum dynamics in a deep lattice
At the time t = 0, we abruptly increase the lattice height to such a large value that the tunnelling
between lattice sites is completely negligible. Thus, for t ≥ 0, the coefficient J = 0, and the lattice
sites evolve independently from each other. The product form for the many–particle wavefunction
of Eq. (103) shows that all sites play the same role. Therefore, we focus on a given site j and call
its quantum state |ψ(j)(t)⟩.

The many–particle wavefunction is continuous at t = 0, hence, just after the abrupt change
in the lattice height, |ψ(j)(t = 0)⟩ = |

√
ν⟩ is the coherent state with the mean atom number ν

introduced in Eq. (103). Using the series representation for a coherent state given by Eq. (126),
we may rewrite it as a sum over the single–site Fock states nj :

|ψ(j)(t = 0)⟩ = e−ν/2
∞∑
n=0

√
νn

n!
|n(j)⟩ . (104)

The quantum dynamics of |ψ(t)⟩ for t > 0 is dictated by the single–site Hamiltonian H(j) =
Un̂j(n̂j − 1)/2. Each Fock state |n(j)⟩ in Eq. (104) is an eigenstate of H(j) with the energy
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Un(j)(n(j) − 1)/2, hence, its time evolution reduces to the phase e−iUn(j)(n(j)−1)t/(2ℏ). This leads
to the following expression for |ψ(t)⟩:

|ψ(t)⟩ = e−ν/2
∞∑
n=0

√
νn

n!
exp

(
−iU

ℏ
n(n− 1)

2
t

)
|n⟩ . (105)

8. Question 19: coherent matter–wave field on each site
The order parameter ϕ(t) is a complex number which is defined just like in Question 12: ϕ(t) =
⟨ψ(t)|a|ψ(t)⟩. We first calculate a |ψ(t)⟩:

a |ψ(t)⟩ =
√
νe−ν/2

∞∑
n=1

√
νn−1

(n− 1)!
exp

(
−iU

ℏ
n(n− 1)

2
t

)
|n− 1⟩ (106)

=
√
νe−ν/2

∞∑
n=0

√
νn

n!
exp

(
−iU

ℏ
(n+ 1)n

2
t

)
|n⟩ . (107)

Then, we take the scalar product with ⟨ψ(t)|:

ϕ(t) =
√
νe−ν

∞∑
n=0

νn

n!
exp

[
i
U

ℏ
t

(
n(n− 1)

2
− n(n+ 1)

2

)]
(108)

=
√
νe−ν

∞∑
n=0

νn

n!
exp

(
i
U

ℏ
t n

)
(109)

=
√
ν exp

[
ν
(
e−iUt/ℏ − 1

)]
. (110)

The order parameter ϕ(t) exhibits revivals for all integer multiples of the time trev = h/U = 2πℏ/U ,
in agreement with the revival times for the full quantum state |ψ(t)⟩.

9. Question 23: Schrödinger cat state at t = tR/2
We first rewrite Eq. 105 in terms of t/tR:

|ψ(t)⟩ = e−ν/2
∞∑
n=0

νn/2
√
n!

exp
(

−i 2π t

tR

n(n− 1)
2

)
|n⟩ . (111)

We consider the time t = tR/2, so that:

|ψ(tR/2)⟩ = e−ν/2
∞∑
n=0

νn/2
√
n!

exp
(

−iπn(n− 1)
2

)
|n⟩ . (112)

Now, we use the relation e−iπn(n−1)/2 = [e−iπ/4einπ/2 + eiπ/4e−inπ/2]/
√

2, which is simply a
statement on the parity of n. This leads to:

|ψ(tR/2)⟩ = e−ν/2
∞∑
n=0

νn/2
√
n!

1√
2

[
e−iπ/4einπ/2 + eiπ/4e−inπ/2

]
|n⟩ (113)

= e−ν/2
∞∑
n=0

1√
2

[
e−iπ/4 (

√
νeiπ/2)n√
n!

+ eiπ/4 (
√
νe−iπ/2)n√

n!

]
|n⟩ (114)

= 1√
2

[
e−iπ/4 |

√
νeiπ/2⟩ + eiπ/4 |

√
νe−iπ/2⟩

]
. (115)
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Equation 115 shows that |ψ(tR/2)⟩ is a superposition of two coherent states, both of which contain
the same mean number of atoms ν, but with different phases π/2 and −π/2. This macroscopic
superposition is a Schrödinger–cat state. It is clearly visible on the numerical Fig. 4d.

However, the interference experiment performed by Greiner et al was not sensitive to the full
quantum state |ψ(t)⟩ but only to the coherent matter wave field ϕ(t). This latter quantity does
not show any signature of the superposition state. Instead, Eq. 110 shows that ϕ(tR/2) =

√
νe−2ν .

At t = tR/2, the order parameter is exponentially suppressed, in accordance with the absence of
observed fringes on Fig. 5d.

10. Question 20: collapse at short times
10.1. Collapse of the order parameter ϕ(t)
We first calculate the modulus |ϕ(t)| of the order parameter ϕ(t):

|ϕ(t)| =
√
ν exp

[
ν

(
cos
(
Ut

ℏ

)
− 1
)

− iν sin
(
Ut

ℏ

)]
=

√
ν exp

[
−ν
(

1 − cos
(
Ut

ℏ

))]
. (116)

The typical decay time tc is given by:

ν

(
1 − cos

(
Utc
ℏ

))
= 1, that is, 1 − cos

(
Utc
ℏ

)
= 1
ν
. (117)

Assuming that the atom number per site ν is sufficiently large, the collapse occurs for a time which
is small compared to tR and we may expand the cosine to leading order in t/tR. This leads to:

tc =
√

2
ν

ℏ
U

= 1
2π

√
2
ν
trev . (118)

This is the typical collapse time observed in the experiment, which is sensitive to ϕ(t).

10.2. Wash–out of the initial coherent state
The dynamics of |ψ(t)⟩ is richer than that of ϕ(t), as previously illustrated by the Schrödinger–
cat nature of |ψ(tR/2)⟩ to which ϕ(tR/2) is insensitive. It is worth pointing out that the typical
timescale tC over which the inital coherent state |ψ(t = 0)⟩ gets distorted is not proportional to
the same power of ν as the timescale over which ϕ(tR/2) collapses7.

In Eq. 111, the atom number n follows a Poisson distribution centred on the mean value ν, with
the standard deviation δν =

√
ν. The timescale tC characterising the wash–out of the phase of

the full quantum state may be estimated by expressing that the phase variation of the oscillation
over the width δν of the atom number distribution is of the order of 2π:

δ

(
2π tC
tR

n(n− 1)
2

)
= 2π . (119)

The differential appearing in Eq. 119 should be evaluated for n = ν. We thus obtain:

tC
tR

(ν − 1/2)δν = 1, that is, tC
tR

≈ ν−3/2 . (120)

For the last step of Eq. 120, we have assumed ν ≫ 1/2.
Therefore, the phase of the initial coherent state is washed out over a time which scales with

ν−3/2, i.e. faster than the collapse time for ϕ(t) (which scales with 1/ν). However, this does not at
all mean that the quantum coherence is fully lost, as shown by the occurrence of the superposition
state at t = tR/2 and the full revival at t = tR.

7I thank Pierre Pelletier for his useful comment regarding this point (October 2018).
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11. Fig. 4: graphical representation (Husimi function, theory)
This section is a brief comment on Fig. 4 of the problem sheet, which graphically illustrates
the quantum dynamics of the state |ψ(t)⟩. The experiment was sensitive only to the mean–field
parameter ϕ(t), which was measured through a time–of–flight expansion (see Sec. 5). Therefore,
the experiment provided no signature of the Schrödinger cat state |ψ(tR/2)⟩ obtained at half
the revival time tR (see Eq. (115)). We now discuss how this quantum superposition state may
be represented graphically through an appropriate theoretical analysis of the single–site state
|ψ(t)⟩ = |ψ(j)(t)⟩.

The idea is to expand the single–site quantum state, defined by the density matrix ρ, onto
a suitable set of quantum states. We know that coherent states play a key role in the theory
considered here, hence, we consider the average value of ρ in all coherent states |β⟩:

Qρ(β) = 1
π

⟨β|ρ|β⟩ . (121)

For a given ρ, the function Q|ρ⟩(β), called Husimi function (see e.g. Ref. [§3.1.3][8]), is defined for
all coherent states |β⟩, i.e. for all complex numbers β. Its values are real and positive, hence, it
is readily rendered graphically (see e.g. Fig. 4 of the problem set). For a pure state ρ = |ψ⟩ ⟨ψ|,
it reduces to Q|ψ⟩(β) = | ⟨β|ψ⟩ |2/π, i.e. it specifies the squared overlap of |ψ⟩ with all coherent
states |β⟩.

The Husimi function involves only diagonal elements of ρ (or squared overlaps | ⟨β|ψ⟩ |). Never-
theless, thanks to the overcompleteness of the set of coherent states (see Sec. A.3), this function
fully characterises the quantum state ρ. Indeed, combining the series representation of coherent
states given by Eq. (126) with the definition of Eq. (121), one obtains:

Qρ(β) = 1
π

∞∑
m,n=0

β∗mβn√
m!n!

⟨m|ρ|n⟩ . (122)

In Eq. (122), β is a complex number, so that β and β∗ may be seen as two independent quantities
with respect to which one may take derivatives. All (diagonal and non–diagonal) matrix elements
of ρ in the Fock–state basis are then obtained through:

⟨m|ρ|n⟩ = π√
m!n!

∂m+nQρ(β)
(∂β∗)m(∂β)n

. (123)

Let us now focus on Fig. 4 of the problem set, which represents the Husimi function Q|ψ⟩(β) of
the single–site state |ψ(t)⟩ at various times t.

• At the initial time t = 0, the site is in the coherent state |
√
ν⟩, and Eq. (128) immediately

provides Q|ψ(0)⟩(β) = exp(−|β−
√
ν|2)/π: the Husimi function is a Gaussian centred on

√
ν

(i.e. on the horizontal axis), with a 1/e width of 1 (see Fig. 4a).

• At the revival time t = tR, |ψ(tR)⟩ = |ψ(0)⟩ = |
√
ν⟩, so that Fig. 4g is identical to Fig. 4a.

• At the time tR/2, the site is in the Schrödinger–cat state of Eq. (115), which consists in a
quantum superposition of two coherent states: |

√
νeiπ/2⟩ and |

√
ν⟩ e−iπ/2. For ν = 3, the

distance between the two points i
√
ν and −i

√
ν, both on the imaginary axis (2

√
3 ≈ 3.46),

is greater than the sum of the 1/e widths of the Gaussian Husimi functions corresponding
to the two coherent states (2 × 1 = 2). Hence, these two components in the Husimi function
are well separated and show up as two non–overlapping Gaussians in Fig. 4d.

• For other times, the Husimi function exhibits an intricate pattern, reflecting the quantum
dynamics driven by the atomic collisions within a given site (Figs. 4b, c, e, f).
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A. Brief reminder on bosonic coherent states
We consider a given single–particle state |ψ⟩ for a bosonic system (or a given mode of the elec-
tromagnetic field). We call a the annihilation operator relative to this mode. The (normalised)
eigenstates of the operator a, which are multiple–particle states, are called coherent states.

A.1. Definition and explicit expression
The operator a is not hermitian, nor does it commute with a†. Hence, the usual diagonalisa-
tion theorems are inapplicable. However, its eigenvalue spectrum may be derived from general
principles. Let us consider an eigenstate |α⟩ of the operator a corresponding to the eigenvalue α:

a |α⟩ = α |α⟩ . (124)

We expand |α⟩ onto the Fock–state basis:

|α⟩ =
∞∑
n=0

cn |n⟩ (125)

Combining Eqs. (124) and (125) yields cn+1 = α cn/
√
n+ 1, so that cn = c0 α

n/
√
n! . Finally, the

normalisation condition imposes |c0|2 = exp(−|α|2). Hence, for any complex number α, there is a
single normalised coherent state |α⟩ (up to an unimportant phase factor), which reads8:

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ = e−|α|2/2 exp(αa†) |vac⟩ . (126)

In Eq. (126), the last step follows from the series expansion ez =
∑
n≥0 z

n/(n!) combined with
the expression |n⟩ = a†n |vac⟩ /

√
n! for the number state |n⟩.

Note that the eigenvalue spectrum of a consists of all complex numbers, in stark constrast to
hermitian operators whose eigenvalues are all real.

A.2. Particle number statistics
The coherent state |α⟩ is not an eigenstate of the number operator n̂ = a†a, hence, it does not
correspond to a fixed number of particles. Starting from the series expression for |α⟩ in Eq. (126),
one finds the following probability distribution for the particle number n:

pn = e−|α|2 |α|2n

n!
. (127)

Equation (127) is a Poisson distribution with the mean value ⟨n⟩ = |α|2. Hence, its standard
deviation is ∆n =

√
⟨n⟩ = |α|, so that ∆n/ ⟨n⟩ = 1/

√
⟨n⟩. Therefore, if the average particle

number ⟨n⟩ is sufficiently large, then ∆n ≪ ⟨n⟩, meaning that the fluctuations on the particle
number are negligible compared to its mean value. In this situation, the coherent state |α⟩ with
|α|2 = n provides a very good approximation to the Fock state |n⟩, and it is often much easier to
use (in particular, see Secs. 3.2.3 and 6 above).

8Alternately, the state |α⟩ of Eq. (126) being an eigenstate of a may also be seen directly by writing a |α⟩ =
e−|α|2/2[a, exp(αa†)] |vac⟩ and using [a, f(a†)] = f ′(a†), valid for any function f(z) which may be expanded
into a power series in z. The normalisation of the explicit expression on the right–hand side of Eq. (126) may be
directly checked using Glauber’s formula eXeY = exp(X+Y +[X,Y ]/2), which holds for any operators X and Y
such that [X, [X,Y ]] = [Y, [X,Y ]] = 0: apply it first to X = αa and Y = α∗a†, then to X = α∗a† and Y = αa,
and compare the results. Finally, Glauber’s formula leads to the alternate form |α⟩ = exp(αa† − α∗a) |vac⟩,
which involves the unitary operator D(α) = exp(αa† − α∗a) called ‘displacement operator’.
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A.3. Over–completeness
The linearly independent eigenvectors of a hermitian operator are orthogonal. This property does
not hold for the operator a. Indeed, considering two coherent states |α⟩ and |β⟩ corresponding to
the eigenvalues α and β, and using the series expansion of Eq. (126), we find:

⟨α|β⟩ = exp[−(|α|2 + |β|2 − 2α∗β)/2] , so that: | ⟨α|β⟩ |2 = exp[−|α− β|2] . (128)

Equation (128) shows that two coherent states are never exactly orthogonal. However, their
overlap is negligible if the difference between their amplitudes is sufficiently large.

We now show that any vector |ψ⟩ may be expanded onto the set of coherent states. More
specifically, we show the relation:

1
π

∫
d2α |α⟩ ⟨α| = 1 , (129)

where the integral
∫
d2α is taken over the complete complex plane. For that purpose, we consider

the matrix element of the left–hand side of Eq. (129) between the two Fock states ⟨m| and |n⟩:

⟨m|
[

1
π

∫
d2α |α⟩ ⟨α|

]
|n⟩ = 1

π

∫
d2α ⟨m|α⟩ ⟨α|n⟩ = 1

π

∫
d2α e−|α|2 αmα∗n

√
m!

√
n!

. (130)

In Eq. (130), the last step follows from the expression ⟨n|α⟩ = e−|α|2/2 αn/
√
n! (see Eq. (126)).

We express the integral on the right–hand side of Eq. (130) in polar coordinates:

⟨m|
[

1
π

∫
d2α |α⟩ ⟨α|

]
|n⟩ = 1

π

∫
dr rdθ e−r2 rn+m

√
m!

√
n!
ei(m−n)θ . (131)

The angular part of the integral of Eq. (131) gives
∫ 2π

0 dθ ei(m−n)θ = 2π δnm. Hence:

⟨m|
[

1
π

∫
d2α |α⟩ ⟨α|

]
|n⟩ = δnm

∫
dr 2r r

2n

n!
e−r2

. (132)

The change of variables u = r2 finally yields:

⟨m|
[

1
π

∫
d2α |α⟩ ⟨α|

]
|n⟩ = δnm

∫
du

un

n!
e−u = δnm

Γ(n+ 1)
n!

= δnm , (133)

which completes the proof.
Overcompleteness means that the decomposition onto the set of coherent states is not unique.

For example, the vacuum state |vac⟩ = |0⟩ is the coherent state corresponding to the eigenvalue
α = 0, may also be expanded thanks to Eq. (129) to obtain:

|0⟩ = 1
π

∫
d2α e−|α2|/2 |α⟩ . (134)

31



References
[1] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[2] I. Bloch, M. Greiner, Adv. At. Mol. Opt. Phys. 52, 1 (2005).

[3] P. G. de Gennes, Superconductivity of metals and alloys, Perseus (1966).
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