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Homework: BCS theory

The homework is not mandatory, it will not be marked

If you wish to do so, hand in a complete or partial solution at your convenience

before or on Sunday, December 22nd, 2024

so as to benefit from my correction and advice.
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Rydberg atoms: chaos & semiclassical physics
▶ Non–ergodicity of 3 interacting Rydberg atoms in a circular trap

This conceptually simple system is experimentally accessible
due to recent progress in Rydberg atom trapping in Paris and Palaiseau

[D.J. Papoular & B. Zumer, Phys. Rev. A 107, 022217 (2023)]

[D.J. Papoular & B. Zumer, Phys. Rev. A 110, 012230 (2024)]
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Two mechanisms impeding ergodicity
in the absence of disorder:

1. quantum mechanism: quantum scar [Heller PRL 1984]

2. classical mechanism: KAM tori (Kolmogorov, Arnold, Moser)
[Arnold, Mathematical Methods of Classical Mechanics, Springer (1989)])

Both mechanisms yield quantum eigenstates
localised near classical periodic trajectories

▶ Telling them apart requires a detailed understanding of the classical system
and accurate numerical calculations of the quantum eigenstates (not ground state!)

▶ Semiclassical analysis which goes beyond the WKB approach
Gutzwiller’s trace formula, Einstein–Brillouin–Keller theory
[M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer (1990)]

Spontaneous applications for a PhD position with me are welcome
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Outline of the tutorials for the first half ot the semester

▶ Problem 1: two–particle interference

▶ Problem 2: coherence and correlations in quantum gases

▶ Problem 3: lattice models, superfluid/Mott insulator transition

All problems describe experiments that have actually been performed

They all contain elements of theory and introduce calculation techniques

They all contain both standard questions and (very?) hard questions
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A bird’s eye view of the problem

Problem #3: Quantum Lattice Models

The Bose–Hubard Hamiltonian

▶ Brief review of periodic potentials and lattice models

Bloch’s theorem, Bloch and Wannier functions, energy bands

Hubbard Hamiltonian

▶ A quantum phase transition: Superfluid to Mott insulator

Gutzwiller ansatz, mean–field description of the phase transition

▶ Collapse and revival of coherence
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Review: Periodic potentials, lattice models

Mostly single–particle physics (no identical particles)

[Ziman, Principles of the Theory of Solids, CUP (1972), §1.4]

[Ashcroft & Mermin, Solid State Physics, Harcourt (1976), chap. 8]
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Example 1/3: discretised Schrödinger equation
▶ Start from the 1D Schrödinger equation in continuous 1D space:

h |ψ⟩ = ε |ψ⟩ with h = +
p2

2m
+ v(x) = −

ℏ2

2m
∂2

∂x2
+ v(x)

▶ Sample x every a: xn = n a (a sets the spatial resolution) and keep N values (xn)1≤n≤N

Finite–Differencing (FD) approximation: ψ′′(xn) ≈ [ψ(xn+1) − 2ψ(xn) + ψ(xn−1)] /a2

hFD = +
ℏ2

ma2
1 −

ℏ2

2ma2
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▶ What are the chosen boundary conditions for hFD?
Then, for v1 = · · · = vN = 0, hFD is a circulant matrix

▶ Free particle dispersion relation:
εFD

p = 2J[1 − cos(kpa)] with kp = p 2π/a, p ≥ 0 integer

1. For which wavelengths is hFD a good approximation to h?
2. Express J in terms of a
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Example 2/3: magnetism in a crystal: spin models
▶ Atomic spins fixed at lattice sites, exchange interaction between nearest neighbours

Heisenberg Hamiltonian: H = −J
∑
⟨l,l′⟩

sl · sl′ (J > 0 favours ferromagnetism)

paramagnetic ferromagnetic

magnetisation

para
magneticferromagnetic

▶ Ordered ferromagnetic phase below the Curie temperature Tc

The order parameter is the magnetisation M = ⟨s⟩
Spontaneous symmetry breaking: M = 0 for T > Tc , M ̸= 0 for T < Tc

▶ First–order or second–order phase transition?

▶ For Bose–Einstein condensation, what plays the role of the magnetisation M = ⟨s⟩?
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Example 3/3: benzene molecule C6H6

▶ Standard picture for the ground state:

Two–state system with different positions for the two double bonds

H

H H

H

HH

H

H H

H

HH

H 6+

H H

H

HH

▶ More refined picture, allowing for the description of excited states:

Start from molecule without the 3 double bonds: ion charged 6+

Lattice model: each C atom is a site which may accommodate up to 2 electrons

▶ What is the dimensionality of this lattice model? Which boundary conditions?

[Feynman Lectures on Physics, Basic Books (2010), vol. III, §15.4] 9 / 55



Review: Bloch’s theorem for a periodic potential
▶ If the single–particle trapping potential v(r) is spatially periodic,

seek the eigenstates of h = p2/(2m) + v(r) as Bloch waves ψb,q(r) = eiqr ub,q(r),
where the function ub,q(r) has the same spatial periodicity as the potential v(r)
The quasi–momenta q are in the Brillouin zone; the band index b is discrete.

▶ For example, 1D optical lattice with spatial period a: v(x) = v0 sin2(π x/a)
Typical scales: recoil momentum qR = π/a, recoil energy εR = ℏ2q2

R/(2m):
changes in momentum and energy for an atom at rest upon absorbing 1 photon of wavelength 2a

The energy spectrum ε = ℏ2q2/(2m) is replaced by one with band structure

Energy spectrum with band structure
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Limiting case 1/2: vanishing potential v0 ≪ εR
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The gray parabolas correspond to (p − n 2π/a)2/(2m), n integer, a = spatial period of v(x)

▶ The dispersion relation may be understood in two equivalent ways:

1. The single complete parabola for a single particle in free space
defined for all momenta p, single branch (‘extended zone scheme’)

2. Dispersion relation for a single particle in a periodic potential (qR = π/a)
quasimomenta in Brillouin zone −qR < q ≤ qR , multiple branches (‘reduced zone scheme’)

▶ Express the plane wave eipx in terms of a Bloch wave eiqx ub,q(x)
HINT: The ‘ceiling’ integer parts ⌈p/(2qR) − 1/2⌉ play a role; x ≤ ⌈x⌉ < x + 1
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Limiting case 2/2: very deep band v0 ≫ ε0

▶ If the energies of all states in the band are much smaller than v0,

tunnelling is negligible: all sites are uncoupled ‘atomic limit’

Each well supports an individual bound state with energy ε0

They are all degenerate and form a flat band

x

v(x)
v0

ε

a

▶ Write the Bloch function ψ0,q(x) = eiqx u0,q(x) in terms of the single–well state w0(x)
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Band structure as a function of the lattice depth
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Wannier functions: localised at the lattice sites
▶ Free particle: h = p2/(2m) eigenstates are plane waves |k⟩ with ⟨x |k⟩ = eikx/

√
2π

|x⟩ =
∫

dk |k⟩ ⟨k |x⟩ =
∫

dk |k⟩ e−ikx/
√

2π is localised, but not an eigenstate of h

▶ Similarly, Wannier functions are sums over all Bloch states in a given band:

wb,j(x) =
( a

2π

)1/2
∫ qR

−qR

dq ψb,q(x) e−i jaq so that wb,j(x) = wb,0(x − ja)
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▶ The Wannier functions are a normalised basis of single–particle wavefunctions

For well chosen phases of the Bloch functions, they are localised on the lattice sites

Beware: they are not Gaussians! their wings change signs
14 / 55



Numerical calculation of Bloch and Wannier functions
▶ The Bloch wave ψb,q(x) = eiqx ub,q(x) is defined by two conditions:

1. ψb,q is an eigenstate of h = p2/(2m) + v :

εψb,q = −ℏ2ψ′′
b,q/(2m) + v0 sin2(qRx)ψb,q

2. ub,q(x) is spatially periodic with period a:

expand it into a Fourier series involving the plane waves with period a/j :

ub,q(x) =
∑
j∈Z

cj exp
(

i
2π
a/j

x
)
, so that ψb,q(x) =

∑
j∈Z

cj exp
[
i
(

q + j
2π
a

)
x
]

▶ Combine the two conditions: [recoil momentum qR = π/a, energy εR = ℏ2q2
R/(2m)]

ε

εR
cj =

[(
2j + q

qR

)2

+ v0

2εR

]
cj − v0

4εR
(cj−1 + cj+1)

▶ Eigenvalue problem for real, symmetric, tridiagonal ‘infinite matrix’
Truncate to |j| ≤ jM ∼ 20 coefficients, and diagonalise numerically for given q

▶ The band structure, Bloch functions, and Wannier functions shown today

have been calculated and visualised with a Python script of ∼ 200 lines

[Bloch & Greiner, Adv. At. Mol. Opt. Phys. 52, 1 (2005), Sec. 3.1] 15 / 55
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Summary: band structure, Bloch & Wannier functions

▶ If the potential is spatially periodic,
e.g. v(x) = v0 sin2(πx/a) (1D optical lattice)

the dispersion relation within the first Brillouin zone
exhibits band structure  0
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▶ Eigenstates may be sought as Bloch waves ψb,q(x) = eiqx ub,q(x)
where the band function ub,q(x) has the same spatial periodicity as the potential

They satisfy ψb,q(x + a) = eiqa ψb,q(x) and extend over the whole lattice

▶ Wannier functions: basis of normalised wavefunctions which are NOT eigenstates

wb,j(x) =
( a

2π

)1/2
∫ qR

−qR

dq ψb,q(x) e−i jaq so that wb,j(x) = wb,0(x − ja)

The Wannier function wb,n is a linear combination of all Bloch functions of band b

▶ Bloch and Wannier functions play the roles of |p⟩ and |x⟩ states for a free particle
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The Hubbard model

It is the simplest model

for identical bosons or fermions on a lattice

in the presence of interactions

Bosons: [Cohen–Tannoudji & Guéry–Odelin, Advances in Atomic Physics,

World Scientific (2011), §26.3]

Fermions: [Georges, Condensed Matter Physics with Light and Atoms,

in Proceedings of the Varenna School of Physics Enrico Fermi CLXIV, IOS (2007)]
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The single–band approximation: Hubbard model
▶ 1D lattice with the spatial period a: discrete sites at positions xn = n a

The discrete sites are represented by the single–particle states {|n⟩}
A particle may hop from site |n⟩ to one of its 2 nearest neighbours: |n − 1⟩ or |n + 1⟩

h = −J
Nl∑

n=1

(
|n − 1⟩ ⟨n| + |n + 1⟩ ⟨n|

)
Possible geometries: infinite 1D lattice or ring (see next slide)

|n-1> |n+1>|n>

xa

▶ Look for eigenstates of h in the form of Bloch waves ψb,q(x) = eiqx ub,q(x)
ub,q(x) has period a and it is sampled every a therefore it is constant:

ψq(xn) = einqa

√
Nl

or equivalently: |ψq⟩ = 1√
Nl

Nl∑
n=1

einqa |n⟩ (Nl = number of sites)

▶ The Hubbard model supports a single band

It is applicable if both temperature and interaction energy ≪ band spacing

This requires a lattice which is deep enough: v0 ≳ εR

(
εR =

ℏ2k2
R

2m
, kR =

π

a

)
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Hubbard model: number of independent states
▶ Nl sites on a line with periodic boundary conditions

that is, Nl sites on a ring

▶ ‘Plane–wave’ states: |ψq⟩ = 1√
Nl

Nl∑
n=1

einqa |n⟩

All |ψq⟩ are actually Bloch states belonging to the same band with ub(x) = 1

The number of independent states |ψq⟩ is determined by two effects:

1. Periodic boundary conditions: ⟨Nl |ψq⟩ = ⟨0|ψq⟩, so that q = p
Nl

2π
a

(p integer)

2. Bloch wave structure: ⟨n + 1|ψq⟩ = eiqa ⟨n|ψq⟩
q and q + 2π/a yield the same Bloch state: the independent values of q are chosen in Brillouin Zone

▶ Combining the two conditions, we find Nl independent values of q

For instance, one may choose q = p
Nl

2π
a

with 0 ≤ p < Nl

With a single band, there are as many Bloch states |ψq⟩ as there are sites
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Hubbard model: 1–particle dispersion relation (qu. 5)

h = −J
Nl∑

n=1

(
|n − 1⟩ ⟨n| + |n + 1⟩ ⟨n|

)
and |ψq⟩ =

1√
Nl

Nl∑
n=1

einqa |n⟩

▶ Act with h on |ψq⟩ to get the corresponding energy:

h |ψq⟩ = −J
∑

n

(|n − 1⟩ ⟨n| + |n + 1⟩ ⟨n|) 1√
Nl

∑
m

eimqa |m⟩

= − J√
Nl

∑
n

einqa (|n − 1⟩ + |n + 1⟩)

= −J eiqa

(
1√
Nl

∑
n

ei(n−1)qa |n − 1⟩

)
− J e−iqa

(
1√
Nl

∑
n

ei(n+1)qa |n + 1⟩

)

-2

 0

 2

-π 0 π

E
n

er
g

y
 ε

(q
)/

J

Quasi-momentum q×a

Thanks to the periodic boundary condition:

h |ψq⟩ = −J(eiqa + e−iqa) |ψq⟩ = −2J cos(qa) |ψq⟩

ε(q) = −2 J cos(qa)
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From the full lattice Hamiltonian to the Hubbard model

▶ Spatially periodic lattice potential:

h = − ℏ2

2m
∂2

∂x2 + v(x)

▶ Single–band Hubbard approximation:

|n-1> |n+1>|n>

xa

hHubbard = −J
Nl∑

n=1

(
|n − 1⟩ ⟨n| + |n + 1⟩ ⟨n|

)

▶ We wish to choose J such that h ≈ hHubbard

The sites |n⟩ in hHubbard are the Wannier functions w0(x − na) of the first band of h

−J = ⟨n + 1| h |n⟩ =
∫

dx w0(x − a)
(

− ℏ2

2m
∂2

∂x2 + v(x)
)

w0(x)

22 / 55



Exercise: Beyond the Hubbard model
1. Show that, if the 1D Hamiltonian h is spatially periodic with the period a,

it may be presented in the following form
in terms of its Wannier functions |wb,n⟩ related to the band b and the site n:

h = −
∑

band b

∑
j,n∈Z

Jb,n |wb,j+n⟩ ⟨wb,j | with Jb,n = − ⟨wb,n| h |wb,0⟩ = J∗
b,−n

HINT: Justify that the bands are not mixed: there is a single sum on the band index b.

2. What is the physical meaning of the coefficients Jb,n?

3. Express these coefficients
in terms of the Fourier components of the dispersion relation εb(q) for the band b:

−Jb,n =
∫ π/a

−π/a

dq
2π/a

εb(q) einaq

HINT: ⟨wb,j |ψb,q⟩ = [a/(2π)]1/2 eijqa

▶ This exercise shows that the Hubbard Hamiltonian relies on two approximations:
(i) a single band is retained (ii) nearest–neighbour hopping
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Hubbard model: second quantisation (qu. 5)

h = −J
Nl∑

n=1

(
|n − 1⟩ ⟨n| + |n + 1⟩ ⟨n|

)
, |ψq⟩ =

1√
Nl

Nl∑
n=1

einqa |n⟩ , ε(q) = −2J cos(qa)

▶ “Creation operators transform like kets” the many–body Hamiltonian reads:

H = −J
Nl∑

n=1

(
a†

n−1 an + a†
n+1 an

)
= −J

∑
⟨i,j⟩

a†
i aj ( ⟨i,j⟩ : nearest neighbours )

▶ Ground state |SFNa ⟩ for bosons: all Na atoms in lowest–energy state |ψq=0⟩

|ψq=0⟩ = 1√
Nl

Nl∑
n=1

|n⟩ hence: a†
q=0 = 1√

Nl

Nl∑
n=1

a†
n

|SFNa ⟩ = 1√
Na!

a†Na
q=0 |vac⟩ = 1√

Na!

(
1√
Nl

Nl∑
n=1

a†
n

)Na

|vac⟩ “superfluid state”

Nl = number of lattice sites; Na = number of atoms; filling factor ν = Na/Nl atoms per site

▶ What is the ground state for Na fermions all in the same spin state?
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Bosons: annihilating an atom in superfluid state (qu. 6)

|SFNa ⟩ =
a†Na

q=0√
Na!

|vac⟩ with a†
q=0 =

1√
Nl

Nl∑
n=1

a†
n, [A,B C] = [A,B] C + B [A,C]

▶ Write aj |SFNa ⟩ in terms of a commutator:

aj |SFNa ⟩ = aj
1

√
Na!

a†Na
q=0 |vac⟩ =

1
√

Na!

(
[aj ,a

†NA
q=0] + a†NA

q=0 aj

)
|vac⟩ =

1
√

Na!
[aj , a

†NA
q=0] |vac⟩

[aj , a
†
q=0] =

1√
Nl

[aj , a
†2
q=0] = [aj , a

†
q=0] a†

q=0 + a†
q=0 [aj , a

†
q=0] =

2√
Nl

a†
q=0

[aj , a
†3
q=0] = [aj , a

†
q=0] a†2

q=0 + a†
q=0 [aj , a

†2
q=0] =

1√
Nl

a†2
q=0 + a†2

q=0
2√
Nl

=
3√
Nl

a†2
q=0

Then, by recursion: [aj , a
†Na
q=0] =

Na√
Nl

a†(Na−1)
q=0

aj |SFNa ⟩ =
1

√
Na!

Na√
Nl

a†(Na−1)
q=0 |vac⟩ =

√
Na

Nl

1√
(Na − 1)!

a†(Na−1)
q=0 |vac⟩ =

√
Na

Nl
|SFNa−1⟩

The result does not depend on the site index j

▶ Alternative derivation: first, show |SFNa ⟩ =
∑

n1+···+nNl
=Na

(
1

NNa
l

Na!
n1! · · · nNl !

)1/2

|n1, . . . ,nNl ⟩
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Bose–Hubbard model: on–site interactions (qu. 1)
▶ The bosonic atoms interact only if they are at the same lattice site:

U
2

a†
i a†

i ai ai = U
2

a†
i (ai a†

i − 1)ai = U
2

ni (ni − 1)

HHubbard = −J
∑

<i,j>

a†
i aj + U

2

∑
i

ni (ni − 1)

▶ Two typical energies: tunnelling between sites J > 0, interaction U > 0
One single dimensionless parameter: the ratio U/J

Shallow lattice U/J ≪ 1: macroscopic coherent wavefunction delocalised over the whole lattice

Deep lattice U/J ≫ 1: each atom is localised at a given site

Shallow lattice U/J ≪ 1 Deep lattice U/J ≫ 1

▶ For bosons interacting via the contact interaction g δ(r),
express U in terms of the Wannier function w0(r): U = g

∫
d3r |w0(r)|4

HINT: Expand the field operator Ψ̂†(r) into the single–particle Wannier functions |wbn⟩

▶ Fermions present in 2 internal states: show the interaction term is U ni↑ ni↓ 26 / 55



Mott–Insulator state: one–body density matrix (qu. 2)
▶ a†

i creates an atom on the site i .
We assume that there are as many atoms as there are lattice sites:

Na = Nl filling factor ν = Na/Nl = 1

▶ Mott insulator |MI⟩: one atom localised in each site

|MI⟩ = a†
1 · · · a†

Nl
|vac⟩

▶ |MI⟩ is a many–particle state (with the fixed number of particles Na = Nl )

1–body density matrix ⟨r|ρ(1)|r′⟩ = ⟨Ψ̂†(r′)Ψ̂(r)⟩ becomes ⟨i|ρ(1)
MI |j⟩ = ⟨MI|a†

j ai |MI⟩

▶ For i = j : mean atom number in site i ⟨i|ρ|i⟩ = ⟨MI|ni |MI⟩ = 1

▶ For i ̸= j , ai |MI⟩ = |1, · · · ,0i , · · · ,1⟩ and aj |MI⟩ = |1, · · · ,0j , · · · ,1⟩
ai |MI⟩ and aj |MI⟩ are orthogonal: ⟨i|ρ|j⟩ = 0

|MI⟩ exhibits no off–diagonal long–range order

▶ For any i , |MI⟩ is an eigenstate of ni = a†
i ai : ni |MI⟩ = |MI⟩

No atom number fluctuations on any site.
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Mott–insulator state: average energy (qu. 3 and 4)

HHubbard = −J
∑

<i,j>

a†
i aj +

U
2

∑
i

ni (ni −1) and |MI⟩ = a†
1 · · · a†

Nl
|vac⟩

▶ For each site i , ni |MI⟩ = |MI⟩, so |MI⟩ is an eigenstate of the interaction term:(
U
2

∑
i

ni (ni − 1)
)

|MI⟩ = 0

▶ The average kinetic energy is ⟨MI|

−J
∑

<i,j>

a†
i aj

 |MI⟩

It involves ⟨MI|a†
i aj |MI⟩ = ⟨j|ρ(1)

MI |i⟩ for i,j nearest neighbours

We have shown that ⟨j|ρ(1)
MI |i⟩ = 0 for i ̸= j , so average kinetic energy vanishes

Hence, the average (kinetic + interaction) energy is zero: ⟨MI|HHubbard|MI⟩ = 0

▶ |MI⟩ is NOT an eigenstate of the kinetic energy term
It generates terms like |1, · · · ,1, 2i , 0, 1, · · · ,1⟩ and |1, · · · ,1, 0, 2i , 1, · · · ,1⟩

|MI⟩ is an eigenstate of HHubbard in the deep lattice limit U ≫ J
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Superfluid state: summary of its properties (qu. 5)

-2

 0

 2

-π 0 π

E
n

er
g

y
 ε

(q
)/

J

Quasi-momentum q×a

▶ Shallow lattice U ≪ J: HHubbard = −J
∑

<i,j>

a†
i aj

Dispersion relation for the single band: ε(q) = −2J cos(qa)
1–atom ground state energy: −2J (TYPO in the printed text!)

Na–atom ground state: all atoms in |ψ0⟩ =
∑Nl

n=1 |n⟩ /
√

Nl

Each atom is delocalised over the whole lattice

No interaction: Na–atom ground state energy is −2J NA

|SFNa ⟩ = 1√
Na!

a†Na
k=0 |vac⟩ = 1√

Na!

(
1√
Nl

Nl∑
n=1

a†
n

)Na

|vac⟩

▶ Annihilate an atom in |SFNa ⟩: aj |SFNa ⟩ =
√

Na

Nl
|SFNa−1⟩

aj |SFNa ⟩ does not depend on the site j on which the atom is annihilated 29 / 55



Superfluid state: coherence between sites (qu. 6)
For the filling factor ν = Na/Nl , aj |SFNa ⟩ =

√
ν |SFNa−1⟩

▶ 1–body density matrix in superfluid state: ⟨i| ρ(1)
SF |j⟩ = ⟨SF| a†

j ai |SF⟩ = ν

▶ Average atom number per site: ⟨SF| ni |SF⟩ = ⟨i| ρ(1)
SF |i⟩ = ν

▶ Fluctuations on the atom number on site i :

⟨SF| n2
i |SF⟩ = ⟨SF| a†

i aia†
i ai |SF⟩ = ⟨SF| a†

i (1 + a†
i ai)ai |SF⟩

= ⟨SF| ni |SF⟩ + ⟨SF| a†
i a†

i aiai |SF⟩ = ν + ν2

The last step uses the thermodynamic limit: Na → ∞ and Nl → ∞ with Na/Nl = ν

Variance of atom number on each site: ∆n2
i = ⟨n2

i ⟩ − ⟨ni⟩2 = ν

The atom number variance satisfies ∆n2
i = ⟨ni ⟩

▶ In the thermodynamic limit, show that ni obeys a Poisson distribution

HINT: justify that the superfluid state is nearly a tensor product of coherent states on each site.

▶ For any two sites i and j , ⟨i|ρ(1)
SF |j⟩ ̸= 0: quantum coherence between the two sites

lim ⟨i|ρ(1)
SF |j⟩ ̸= 0 for |i − j| → ∞: Off–diagonal long–range order!
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SUMMARY: Bose–Hubbard Hamiltonian

HHubbard = −J
∑

<i,j>

a†
i aj + U

2

∑
i

ni (ni − 1)

SHALLOW LATTICE LIMIT U/J ≪ 1

Superfluid state |SF⟩

|SFNA ⟩ = 1√
NA!

a†NA
k=0 |vac⟩

▶ Filling factor ⟨ni⟩ = NA/NL = ν

▶ Variance ∆n2
i = ν

▶ ⟨SF| a†
j ai |SF⟩ = ν

Off–diagonal long–range order

DEEP LATTICE LIMIT U/J ≫ 1

Mott Insulator state |MI⟩

|MI⟩ = a†
1 · · · a†

NL
|vac⟩

▶ Filling factor ⟨ni⟩ = NA/NL = 1

▶ No atom number fluctuations ∆ni = 0

▶ ⟨MI| a†
j ai |MI⟩ = δij

NO off–diagonal long–range order
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Rydberg atoms: chaos & semiclassical physics
▶ Non–ergodicity of 3 interacting Rydberg atoms in a circular trap

This conceptually simple system is experimentally accessible
due to recent progress in Rydberg atom trapping in Paris and Palaiseau

[D.J. Papoular & B. Zumer, Phys. Rev. A 107, 022217 (2023)]

[D.J. Papoular & B. Zumer, Phys. Rev. A 110, 012230 (2024)]

𝜃1

𝜃2

𝜃3

d12

d23

d31R

Two mechanisms impeding ergodicity
in the absence of disorder:

1. quantum mechanism: quantum scar [Heller PRL 1984]

2. classical mechanism: KAM tori (Kolmogorov, Arnold, Moser)
[Arnold, Mathematical Methods of Classical Mechanics, Springer (1989)])

Both mechanisms yield quantum eigenstates
localised near classical periodic trajectories

▶ Telling them apart requires a detailed understanding of the classical system
and accurate numerical calculations of the quantum eigenstates (not ground state!)

▶ Semiclassical analysis which goes beyond the WKB approach
Gutzwiller’s trace formula, Einstein–Brillouin–Keller theory
[M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer (1990)]

Spontaneous applications for a PhD position with me are welcome
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The Quantum Phase Transition between
the Superfluid and Mott–Insulator phases

Phase transition at zero temperature

driven by quantum vacuum fluctuations

(this problem presents Gutzwiller’s mean–field theory for bosons)

[Cohen–Tannoudji & Guéry–Odelin, Advances in Atomic Physics,

World Scientific (2011), §7.5.4, §14.4.3, §26.3]

Mott insulators in condensed–matter physics (i.e. involving fermions):

[Mott, Physics Today 31, 11, 42 (1978)]
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Site–factorised wavefunctions: Gutzwiller ansatz
▶ We have described the system in two opposite limits:

SHALLOW LATTICE LIMIT U/J ≪ 1

Superfluid state |SF⟩

DEEP LATTICE LIMIT U/J ≫ 1

Mott Insulator state |MI⟩

▶ Now, we turn to the intermediate regime U ∼ J
Variational approach using a family of trial wavefunctions |Ψθ,ϕ⟩

The family {|Ψθ,ϕ⟩} is indexed by two real parameters: 0 ≤ θ ≤ π/4 and −π < ϕ < π

|Ψθ,ϕ⟩ =
Nl⊗

i=1

|χ(i)
θ,ϕ⟩ where |χ(i)

θ,ϕ⟩ = cos θ |1⟩ + sin θ e−iϕ |0⟩ + eiϕ |2⟩√
2

1. |Ψθ,ϕ⟩ = tensor product of wavefunctions |χ(i)
θ,ϕ⟩ representing single sites

Hartree–type ansatz: neglect correlations between sites

2. All sites are represented by the same wavefunction |χ(i)
θ,ϕ⟩ (translational invariance)

▶ Where have you encountered a similar (but different!) Hartree–type ansatz?
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Gross–Pitaevskii equation as a Hartree–type ansatz

H =
N∑

i=1

[
p2

i

2m
+ Vtrap(ri)

]
+ 1

2

N∑
i=1

∑
j ̸=i

Vint(|ri − rj |) with Vint(r) = g δ(r)

Beware: Dirac peak ‘potentials’ should be handled with care! (problem if lim
r→0

(rψ) ̸= 0)

▶ Hartree ansatz factorised in terms of particles all in the same quantum state |ψ⟩

Ψ(r1, . . . ,rN) = ψ(r1) · · ·ψ(rN) neglects correlations between the atoms

▶ Minimise ⟨Ψ|H|Ψ⟩ under the constraint ⟨Ψ|Ψ⟩ = 1

The Lagrange multiplier is the chemical potential µ

− ℏ2

2m
∇2ψ + Vtrap(r)ψ(r) + g N |ψ(r)|2 ψ(r) = µψ(r)

▶ Link with the order parameter: ψ(r) = 1√
N

⟨Ψ̂(r)⟩
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Gutzwiller ansatz: atom number statistics (qu. 7)

|Ψθ,ϕ⟩ =
Nl⊗

i=1

|χ(i)
θ,ϕ⟩ where |χ(i)

θ,ϕ⟩ = cos θ |1⟩ + sin θ
e−iϕ |0⟩ + eiϕ |2⟩

√
2

▶ |χ(i)⟩ is not an eigenstate of n̂i : the atom number on each site fluctuates

⟨Ψθ,ϕ|n̂i |Ψθ,ϕ⟩ = ⟨χ(i)
θ,ϕ|n̂i |χ(i)

θ,ϕ⟩ = cos2 θ×1 +
sin2 θ

2
×0 +

sin2 θ

2
×2 = 1

⟨Ψθ,ϕ|n̂2
i |Ψθ,ϕ⟩ = ⟨χ(i)

θ,ϕ|n̂2
i |χ(i)

θ,ϕ⟩ = cos2 θ×12 +
sin2 θ

2
×02 +

sin2 θ

2
×22 = 1+sin2 θ

Variance: (∆ni )2 = ⟨n2
i ⟩ − ⟨ni ⟩2 = sin2 θ and mean square deviation: ∆ni = sin θ

▶ |Ψθ,ϕ⟩ is factorised with respect to the sites: ni = independent random variables

⟨N⟩ =
Nl∑

i=1

⟨ni ⟩ = Nl , ⟨∆N2⟩ =
Nl∑

i=1

⟨∆n2
i ⟩ = Nl sin2 θ, ∆N =

√
Nl sin θ

▶ The fluctuations vanish for θ = 0 (and any ϕ). |Ψθ=0,ϕ⟩ = |MI⟩ exactly!
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Gutzwiller ansatz: order parameter (qu. 8)

|Ψθ,ϕ⟩ =
Nl⊗

i=1

|χ(i)
θ,ϕ⟩ where |χ(i)

θ,ϕ⟩ = cos θ |1⟩ + sin θ
e−iϕ |0⟩ + eiϕ |2⟩

√
2

▶ In the continuum: Ψ(r) = ⟨Ψ̂(r)⟩ On the lattice: ψi = ⟨Ψθ,ϕ| ai |Ψθ,ϕ⟩

▶ |Ψθ,ϕ⟩ is factorised sitewise, all sites have the same wavefunction |χθ,ϕ⟩

ψi = ⟨χ(i)
θ,ϕ| ai |χ(i)

θ,ϕ⟩ =
[

cos θ ⟨1| +
sin θ
√

2

(
eiϕ ⟨0| + e−iϕ ⟨2|

)][
cos θ |0⟩ + sin θ eiϕ |1⟩

]
ψ = 1

2

(
1 + 1√

2

)
sin(2θ) eiϕ and |ψ|2 = 1

4

(
3
2

+
√

2
)

sin2(2θ)

The order parameter ψ = ψi does not depend on the site i

▶ ψ = 0 for θ = 0: Mott–insulator state |MI⟩

ψ ̸= 0 for all θ such that 0 < θ ≤ π/4: ‘superfluid phase’

|ψ| is maximal for θ = π/4: deep superfluid state

|Ψθ=π/4,ϕ⟩ =
Nl⊗

i=1

[
1√
2

|1(i)⟩ + 1
2

(
e−iϕ |0(i)⟩ + eiϕ |2(i)⟩

) ]
≈ |SF⟩
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Gutzwiller ansatz: 1–body density matrix (qu. 8 & 10)

|Ψθ,ϕ⟩ =
Nl⊗

i=1

|χ(i)
θ,ϕ⟩ where |χ(i)

θ,ϕ⟩ = cos θ |1⟩ + sin θ
e−iϕ |0⟩ + eiϕ |2⟩

√
2

▶ Mean–field one–body density matrix: ⟨i|ρMF|j⟩ = ⟨Ψθ,ϕ| a†
j ai |Ψθ,ϕ⟩

Gutzwiller wavefunction neglects correlations between different sites: mean–field approach

We have already calculated ⟨i|ρMF|i⟩ = ⟨i|ni |i⟩ = 1

Off–diagonal element: ⟨i|ρMF|j⟩ = ⟨χ(i)χ(j)|a†
j ai |χ(i)χ(j)⟩ = ⟨χ(j)|a†

j |χ(j)⟩ ⟨χ(i)|ai |χ(i)⟩

⟨i|ρMF|j⟩ = |ψ|2 = 1
4

(
3
2

+
√

2
)

sin2(2θ)

▶ ρ
(1)
MF does not depend on ϕ

Its off–diagonal elements ⟨i|ρMF|j⟩ vanish for θ = 0 (state |MI⟩)

⟨i|ρMF|j⟩ ̸= 0 for 0 < θ ≤ π/4, off–diagonal long–range order: SF phase

⟨i|ρMF|j⟩ is maximal for θ = π/4 (≈ state |SF⟩)
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Number of nearest–neighbouring sites (qu. 9 & 13)
▶ Coordination number z = number of nearest neighbours for a given lattice site

z depends on the dimensionality and the considered lattice

1D lattice, one atom per unit cell
z = 2

2D square lattice, one atom per unit cell
z = 4

3D cubic lattice, one atom per unit cell
z = 6

▶ For higher z, mean–field theory is more accurate
1. cf. Ising model: mean–field theory is exact on a fully–connected graph

2. In lower dimensions, the role of fluctuations is enhanced

e.g. Mermin–Wagner theorem ‘forbids’ long–range order in 2D and 1D
[Peierls, Surprises in Theoretical Physics, Princeton Univ. Press (1979), §4.1] 40 / 55



Gutzwiller ansatz: average energy (qu. 10)

HHubbard = −J
∑

<i,j>

a†
i aj +

U
2

∑
i

ni (ni −1) , ⟨Ψθ,ϕ|n̂i |Ψθ,ϕ⟩ = 1, ⟨Ψθ,ϕ|n̂2
i |Ψθ,ϕ⟩ = 1+sin2 θ

▶ Hopping: ⟨Ψθ,ϕ|(−J a†
i aj)|Ψθ,ϕ⟩ = −J ⟨j|ρMF|i⟩ = −J

4

(
3
2

+
√

2
)

sin2(2θ)∑
⟨i,j⟩: first choose site (among Nl ), then choose nearest neighbour (among z): Nl z such terms

▶ Interaction: ⟨Ψθ,ϕ|U
2

ni (ni − 1)|Ψθ,ϕ⟩ = U
2

(
⟨Ψθ,ϕ|n2

i |Ψθ,ϕ⟩ − ⟨Ψθ,ϕ|ni |Ψθ,ϕ⟩
)

= U
2

(1 + sin2 θ − 1) = U
2

sin2 θ∑
i : choose a site (among Nl ): Nl such terms. Reminders: ⟨ni ⟩ = 1 and ⟨n2

i ⟩ = 1 + sin2 θ

▶ Total average energy:

2
Nl z J

⟨Ψθ,ϕ|HHubbard|Ψθ,ϕ⟩ = sin2 θ

[
U
z J

−
(

3 + 2
√

2
)

cos2 θ

]
= ε(θ)

▶ Mean–field result: for given U/(zJ), find the phase by minimising ε(θ)

No dependence on ϕ: spontaneously broken symmetry
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Gutzwiller ansatz: phase diagram (qu. 11)

-0.005

 0

 0.005

 0.01

 0.015

 0  0.1  0.2  0.3

U/(zJ)=5.85

U/(zJ)=5.81

5.83

ε(
θ

)

ρ=sin(2θ)/2

▶ For given U/(z J),
phase determined by minimising:

ε(θ) = sin2 θ

[
U
z J

−
(

3 + 2
√

2
)

cos2 θ

]
▶ Plot ε against ρ = sin(2θ)/2, directly related to

order parameter ψ = (1 + 1/
√

2) eiϕ ρ

▶ If U/(zJ) > (3 + 2
√

2): the term in the brackets is always > 0,
minimum reached for θ = 0: Mott–Insulator phase with ψ = 0

▶ If U/(zJ) < (3 + 2
√

2): introduce 0 < θ0 ≤ π

4
such that cos(2θ0) = U/(zJ)

3 + 2
√

2
dε/dθ = (3 + 2

√
2) sin(2θ) [cos(2θ0) − cos(2θ)] minimum reached for θ = θ0

ψ = 1
2

(
1 + 1√

2

)
sin(2θ0) eiϕ ̸= 0 superfluid phase

superfluid insulator ▶ In mean–field theory, dimensionality and lattice geometry
are encoded in the coordination number z

42 / 55



Superfluid to insulator: 2nd order phase transition (qu. 12)
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ε(
θ

)

ρ=sin(2θ)/2

ρ = sin(2θ)/2 = ψ e−iϕ/(1 + 1/
√

2)

▶ For given (z J)/U,
phase determined by minimising:

ε(ρ) = 1
2

U
zJ

[
1 − (1 − 4ρ2)1/2

]
− (3 + 2

√
2) ρ2

Value ρ at which minimum is reached sets order parameter

▶ Plot ρ and ε = 2E/(NJz) as a function of (z J)/U
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Superfluid to insulator: critical exponent (qu. 12)

-0.005

 0

 0.005

 0.01
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 0  0.1  0.2  0.3

U/(zJ)=5.85

U/(zJ)=5.81

5.83

ε(
θ

)

ρ=sin(2θ)/2

▶ For given (z J)/U,
phase determined by minimising:

ε(ρ) = 1
2

U
zJ

[
1 − (1 − 4ρ2)1/2

]
− (3 + 2

√
2) ρ2

▶ ρ is small on both sides of transition: expand ε(ρ)

ε(ρ) = ρ2
(

U
z J

−
[

U
z J

]
crit

)
+ ρ4 U

z J

▶ No term ∝ ρ: for U/(zJ) > [U/(zJ)]crit, energy is minimal for ρ = 0, i.e. |MI⟩ phase
The term ∝ ρ2 changes signs at transition: ρ = 0 is a local maximum for U/(zJ) < [U/(zJ)]crit

No term ∝ ρ3 to avoid first–order phase transition

The term ∝ ρ4 is positive to ensure stability of |MI⟩ at transition point U/(zJ) = [U/(zJ)]crit

▶ In the superfluid phase (U/(zJ) < 3 + 2
√

2), solve for ρ as a function of zJ/U:

ρ =
[

3 + 2
√

2
2

]1/2 [
zJ
U

− 1
3 + 2

√
2

]1/2

so the critical exponent is β = 1/2

▶ Beyond–mean–field calculations confirm the transition is second–order; in 2D, β = 0.348,

like the Λ transition in liquid 4He [Sanders & Holthaus, J. Phys. A 55, 255001 (2019)] 44 / 55



Bosons: grand–canonical phase diagram; trapped gas
HHubbard−µN = −J

∑
<i,j>

a†
i aj + U

2

∑
i

ni (ni − 1) −µN

▶ Homogeneous system: chemical potential µ sets average filling factor n̄ = Na/Nl

Three energies J, U, µ yield two independent adimensional parameters: J/U, µ/U

x

y

V(r)

▶ Trapped system: local density approximation µ = V (r) + µ(r)
Corresponds to the Thomas–Fermi approximation for the Gross–Pitaevskii equation

1 experiment probes many values of µ: vertical segment of homogeneous phase diagram

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §IV] 45 / 55



Time–of–flight expansion from a lattice

[original experimental figure from: Greiner et al, Nature 419, 51 (2002)]

[Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, 885 (2008), §II.C & §IV.B]

46 / 55



Diffraction of optical waves by a periodic structure
▶ Diffraction by a 2D grating

▶ Diffraction by a 3D crystal Bragg’s law: 2d sin θ = n λ

X-ray diffraction by SiO2

Diffraction figure = (background due to one scatterer)×(spots due to grating)
The position of the spots is dictated by the reciprocal lattice of the grating

[Hecht, Optics, 5th edition, Pearson (2016), chap. 10] 47 / 55



Time–of–flight expansion (qu. 14)
▶ We prepare the system in a stationary state inside a trap and a lattice

At t = 0, we switch off both trap and lattice: the gas undergoes free expansion

▶ Matter waves from lattice wells expand and interfere

▶ Expansion from an isotropic trap conserves isotropy

▶ What happens if the trap is not isotropic?

▶ We make two assumptions, both well satisfied in Greiner’s experiment (2002):
1. Long expansion time: the initial size of the cloud is negligible
2. During the expansion, interactions between atoms play no role

Interactions do play a key role before the expansion!

▶ Then, after the expansion time T ,
an atom that initially had the momentum ℏk is at the position rf = v t = ℏ kt/m
Probing final density distribution amounts to probing initial momentum distribution

Analogous to optical diffraction
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Expanding a plane wave onto the Wannier functions
▶ We need the momentum distribution ⟨nk⟩ = ⟨a†

kak⟩ in the state |Ψ⟩ before expansion

No lattice during expansion, hence, ℏk is the true momentum (NOT quasi–momentum)

To obtain a†
k, we first calculate |k⟩ in terms of the Wannier functions wb,j(r) = wb,0(r − aj)

|k⟩ =
∑
b,j

|wb,j⟩ ⟨wb,j|k⟩ =
∑
b,j

|wb,j⟩
∫

d3r ⟨wb,j|r⟩ ⟨r|k⟩

=
∑
b,j

|wb,j⟩
∫

d3r w∗
b,0(r − rj)

exp(i k · r)
(2π)3/2

=
∑
b,j

|wb,j⟩
∫

d3r w∗
b,0(r − rj)

exp[i k · (r − rj)]
(2π)3/2 exp(i k · rj)

=
∑

b

∑
j

|wb,j⟩ exp(i k · rj)

 w∗
b,0(k)

b = band index, rj = position of site j, wb,0(k) = ⟨k|wb,0⟩

▶ The contribution of each band b has
the same structure as the electromagnetic field diffracted from a grating:

Product of the interference of plane waves originating from all lattice sites
and the Fourier transform of a single slit or lattice site 49 / 55



The momentum distribution ⟨Ψ|nk|Ψ⟩
For a single band, |k⟩ =

∑
j

|wj⟩ exp(i k · rj)

 w∗
0 (k)

▶ Creation operators transform like kets

a†
k =

∑
j

a†
j ei k·rj

w∗
0 (k) and ak =

∑
j′

aj′ e−i k·rj

w0(k)

▶ nk = a†
k ak = |w0(k)|2

∑
j,j′

eik·(rj−rj′ ) a†
j aj′

▶ The momentum distribution ⟨Ψ|nk|Ψ⟩ at t = 0, i.e. just before the expansion
is the expectation value of nk in the many–body quantum state |Ψ⟩

⟨Ψ|nk|Ψ⟩ = |w0(k)|2
∑
j,j′

eik·(rj−rj′ ) ⟨j′|ρ(1)|j⟩

The density matrix ⟨j′|ρ(1)|j⟩ = ⟨Ψ|a†
j aj′ |Ψ⟩ reflects the phase (superfluid or insulator)

⟨j ′|ρ(1)
SF |j⟩ = δj,j′ + |ψ|2(1 − δj,j′ ) ⟨j ′|ρ(1)

MI |j⟩ = δj,j′ 50 / 55



Expansion starting from Mott-Insulator phase (qu. 14)

⟨Ψ|nk|Ψ⟩ = |w0(k)|2
∑
j,j′

eik·(rj−rj′ ) ⟨j′|ρ(1)|j⟩

▶ In the Mott–Insulator phase |MI⟩ (filling factor ν = Na/Nl = 1)

only the diagonal density matrix elements are non–zero: ⟨j′|ρ(1)
MI |j⟩ = δj,j′

⟨MI|nk|MI⟩ = N |w0(k)|2

▶ After a long expansion time T , the density distribution reflects ⟨n(k)⟩
Signal dictated by Fourier transform w0(k) of the Wannier function
‘Incoherent’, i.e. no constructive interference, scales with N

MI
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Expansion starting from superfluid phase (qu. 14)

⟨Ψ|nk|Ψ⟩ = |w0(k)|2
∑
j,j′

eik·(rj−rj′ ) ⟨j′|ρ(1)|j⟩ and |ψ|2 =
1
4

(
3
2

+
√

2
)

sin2(2θ) < 0.73

▶ In the superfluid phase |SF⟩ (filling factor ν = Na/Nl = 1)

All density matrix elements ̸= 0: ⟨j′|ρ(1)
SF |j⟩ = δj,j′ + |ψ|2(1 − δj,j′ ) = (1 − |ψ|2)δj,j′ + |ψ|2

⟨Ψθ,ϕ|nk|Ψθ,ϕ⟩ = N |w0(k)|2 (1 − |ψ|2) + |w0(k)|2 |ψ|2
∑
j,j′

eik·(rj−rj′ )

If k is not a reciprocal lattice vector: N |w0(k)|2 (1 − |ψ|2) incoherent background

If k is a reciprocal lattice vector: N2 |w0(k)|2 |ψ|2 constructive interference peak

SF

SF 52 / 55



Collapse and revival of the coherence of a matter wave
▶ Prepare the system deep in the superfluid phase

At time t = 0, abruptly increase the height of the wells to isolate them
At t = 0, the state of each well i is almost a coherent state for ai

Study the quantum dynamics for t > 0: piloted by interactions U

▶ Collapse: coherence vanishes at short times, i.e. order parameter ψ goes to 0

Revivals: ψ returns to its maximum value periodically in time (T = h/U)

▶ The experimental approach is similar: time–of–flight expansion from a lattice
[Greiner et al, Nature 419, 51 (2002)]

Theory: description of the state of a single site using the Husimi function
i.e. a quantum state ρ is fully determined by its average value in all coherent states ⟨β|ρ|β⟩

▶ This experiment involving many atoms in an optical lattice (2002)
is closely related to a previous experiment (1996) involving
1 Rydberg atom in a cavity containing a coherent EM field [Brune PRL 76, 1800 (1996)]

▶ Good luck! I shall post a detailed solution.
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A new observation scheme: Quantum gas microscope
▶ Site–resolved measurement in a 2D optical lattice, both for bosons and for fermions

No time–of–flight expansion; averages & fluctuations extracted from single image

▶ Shine near–resonant light onto the trapped atoms
and collect multiple fluorescence photons
using a high–resolution microscope objective
High resolution allows for site–resolved detection

▶ Light–induced collisions cause
atoms on the same lattice site to be lost by pairs:
Measurement of parity of the occupation of each site

[Bloch, Dalibard, Nascimbène, Nature Physics 8, 267 (2012)] 54 / 55



FERMIONS: Mott (n = 1) and band (n = 2) insulators
[Greif et al, Science 351, 953 (2016)]

▶ Metallic / Insulator phases told apart through atom–number fluctuations σ2 = ∆n2 on each site:

metallic phases have larger fluctuations; insulator phases have smaller fluctuations.

▶ Which of the two insulator phases is/are due to the presence of interactions?
HINT: the free–particle band structure plays a key role. 55 / 55


