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1 The Bose–Hubbard Hamiltonian
We consider a collection of cold bosonic atoms (e.g. 87Rb) trapped inside an optical lattice po-
tential. This potential is a (3D, 2D, or 1D) periodic array of wells in which can be either shallow
(Fig. 1 left) of deep (Fig. 1 right). This optical potential results from a stationary light wave,
obtained e.g. by retro–reflecting a laser in each of the trapping directions.

The simplest description for ultracold bosonic atoms in a spatially periodic potential is the
Bose–Hubbard model, which involves two real parameters: the tunnelling amplitude J > 0 and
the interaction strength U . The corresponding (second–quantised) Hamiltonian reads:

H = −J
∑

<i,j>

a†
iaj + U

2
∑

i

ni(ni − 1) . (1)

In Eq. (1), the bosonic operator a†
i creates a particle on the site i, and its conjugate ai annihilates

a particle on the same site. The sum
∑

<i,j> is taken over all neighbouring sites < i, j >, and
the parameter J > 0 describes the amplitude for the tunnelling process of a particle from one site
to a neighbouring one. The operator ni = a†

iai counts the number of particles on site i, and the
parameter U sets the interaction strength between particles on the same site. Tunnelling between
non–neighbouring sites is neglected; the interaction between atoms in different sites is neglected.

Large systems described by the Hamiltonian of Eq. 1 exhibit a quantum phase transition, i.e.
a phase transition at zero temperature, because of the competition between (i) the tunnelling
mechanism proportional to J , which tends to delocalise particles over the whole lattice, and (ii)
the interaction term proportional to U , which for repulsive interactions (U > 0) favours atom
numbers on each site satisfying ni ≤ 1.

1. What is the criterion on U and J for the system to be (a) in the shallow–lattice regime of
Fig. 1 left? (b) in the deep–lattice regime of Fig. 1 right?

Figure 1 Schematics of the ground state of an ultracold Bose gas trapped in an optical lattice in two
different regimes. Left: for a shallow optical lattice, the many–body ground state is a macroscopic
coherent wavefunction delocalised over the whole lattice. Right: for a deep optical lattice, each atom is
localised at a given site.
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Figure 2 Interference images obtained after switching off the optical lattice potentials. The initial barrier
height increases from (a) to (h). For low barrier heights (a), the interferogram has a very high visibility;
the visibility vanishes for high barriers (h). Reproduced from Ref. [1].

2 The superfluid–to–Mott insulator transition
In this section, we assume that the total number of atoms, Na, is equal to the total number of
sites of the optical lattice potential, Nl = Na, meaning that the filling factor of the lattice is 1.

2.1 The Mott insulator state
We call |M⟩ the Mott insulator state, for which each lattice site contains a single atom:

|M⟩ = a†
1 · · · a†

N |vac⟩ . (2)

2. What are the atom number fluctuations on each site?
Justify that the one–body density matrix ρ(1)(i, j) = ⟨M|a†

iaj |M⟩ = 0 for i ̸= j.
Does the system exhibit coherence between two different sites?

3. Show that the energy ⟨M|H|M⟩ = 0.

4. In which of the two limits of Question 1 is |M⟩ an exact eigenstate of H?

2.2 The superfluid state
We call |SF⟩ the superfluid state defined as follows:

|SF⟩ = 1√
Na!

a†Na

k=0 |vac⟩ = 1√
Na!

(
1√
Nl

∑
i

a†
i

)Na

|vac⟩ . (3)

5. In which of the two limits of Question 1 is |SF⟩ an exact eigenstate of H?
Prove it, and show that, for a 1D lattice, the corresponding energy is −2JNa.
Hint: Apply periodic boundary conditions and use Bloch’s theorem.

6. Justify that the average occupation number in the site i is ⟨SF|a†
iai|SF⟩ = 1.

Show that the off–diagonal one–body density matrix is ρ(1)(i, j) = ⟨SF|a†
iaj |SF⟩ = 1.

Does the system exhibit coherence between two given sites?
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Figure 3 Plot of the function ϵ(θ) =
2 ⟨Ψθ|H|Ψθ⟩ /(NzJ) as a function of ρ = sin(2θ)/2,
for values of U/(zJ) below (blue) and above (red)
the critical value U/(zJ) = 3 + 2

√
2 (green).

2.3 The phase transition
In order to approximately determine the critical value of U/J for which the transition occurs, we
apply the variational approach to the family of N–body wavefunctions (|Ψθ⟩) defined by:

|Ψθ⟩ =
Nl∏
i=1

[
cos θ |ni = 1⟩ + sin θ |ni = 0⟩ + |ni = 2⟩√

2

]
. (4)

In the wavefunction of Eq. (4), all sites are in the same quantum state (Hartree–type ansatz).

7. In the many–body state |Ψθ⟩, is the total number of atoms rigorously fixed?
If not, calculate its mean value < N > and its standard deviation ∆N .

8. Which value of θ leads to |Ψθ⟩ = |MI⟩?
For which value of θ does |Ψθ⟩ play the role of |SF⟩?

9. We call z the number of nearest neighbours for a given site.
What is z for a 1D lattice? for a 2D square lattice? for a 3D cubic lattice?

10. Show that the expectation value for the energy in the state |Ψθ⟩ reads:

⟨Ψθ|H |Ψθ⟩ = N
sin2 θ

2

[
U − zJ(3 + 2

√
2) cos2 θ

]
. (5)

11. Deduce from Eq. (5) that, if U/(zJ) > (3 + 2
√

2), the ground state is a Mott insulator,
whereas the ground state exhibits coherence for U/(zJ) < (3 + 2

√
2).

12. In the vicinity of the critical point U/(zJ) = 3 + 2
√

2, we let ρ = sin(2θ)/2.
a) For |ρ| ≪ 1, show that Eq. (5) reduces to:

2
NzJ

⟨Ψθ|H|Ψθ⟩ = U

zJ
ρ4 −

[
(3 + 2

√
2) − U

zJ

]
ρ2 . (6)

Hint: Use sin2 θ ≈ ρ2 + ρ4.

b) Using Fig. 3, justify that we are dealing with a second–order phase transition.

c)
�

What is the order parameter? Which is the broken symmetry?
Hint: There is a link to Question 19 below.

13. For which geometry is the mean–field approach expected to be most accurate?

14. Use your answers to Questions 2 and 6 to interpret the experimental results of Fig. 2.
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Figure 4 Quantum dynamics of a coherent state of the atoms owing to cold collisions. Here, we consider
a single well which initially contains multiple atoms whose wavefunction |α⟩ is a coherent state at t = 0
(a). As time evolves (a–g), the wavefunction |ψ(t)⟩ distorts due to the collisions between the atoms. For
a given time, the authors plot the overlap | ⟨β|ψ(t)⟩ |2 of the state |ψ(t)⟩ with an arbitrary coherent state
|β⟩. Reproduced from Ref. [2].

3 Collapse and revival of the coherent matter–wave field
3.1 Modelling the quantum state of a single site with a coherent state
In this section, we assume that Na = νNl, where the integer ν is the filling factor of the lattice.
We assume that the system is initially deep in the superfluid regime, so that its many–body
wavefunction is the quantum state |SF⟩ of Eq. (3).

15. Show that, for Na large enough, |SF⟩ practically coincides with the following state:

|Ψcoh⟩ = e−Na/2 exp
(√

Na a
†
k=0

)
|vac⟩ . (7)

Hint: What is the probability distribution for the total number N of particles in the state |Ψcoh⟩?

16. Show that |Ψcoh⟩ factorises into a product of quantum states for each lattice site, each site
being in the same coherent state |α⟩: |Ψcoh⟩ = |α1⟩ · · · |αNl

⟩. Give the amplitude α of this
coherent state, and the corresponding mean particle number and variance.

3.2 Quantum dynamics of the state on a single site
For t < 0, the system is deep in the superfluid regime. At t = 0, we abruptly increase the height
of the potential wells, so that J = 0. We focus on a single site of the lattice.

17. Using your answer to Question 16,
determine the initial quantum state |ψ(t = 0)⟩ of the single lattice site.

18. What drives the dynamics of this quantum state?
Justify that, for t > 0, the site is in the following state:

|ψ(t)⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

exp [−iUn(n− 1)t/(2h̄)] |n⟩ . (8)

19. Show that the average value ϕ(t) = ⟨ψ(t)|a|ψ(t)⟩ satisfies:

ϕ(t) = α exp
[
|α|2

(
e−iUt/h̄ − 1

)]
. (9)

20. Show that the coherent character of the quantum state collapses at short times.
What sets the characteristic time for this collapse?
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Figure 5 Interference images demonstrating the collapse and revival of quantum coherence. Initially, the
gas is prepared in a superfluid state in a shallow lattice. At time t = 0, the height of the potential barriers
is suddenly increased so as to isolate each site of the optical lattice. The gas is held in this deep lattice
for a variable time t, which increases from (a) to (g). Finally, the optical potential is turned off and the
gas expands, leading to the various interferograms. Reproduced from Ref. [2].

21. The time evolution of the state |ψ(t)⟩ is illustrated on Fig. 4.
Argue why the dynamics of |ψ(t)⟩ is richer than that of ϕ(t). Justify that the characteristic
phase washout time is different for |ψ(t)⟩ and ϕ(t).
Does the phase washout signal a complete loss of coherence?

22. Show that, for times that are integer multiples of tR = h/U = 2πh̄/U , the state |ψ(t)⟩ exactly
coincides with the initial state, i.e. the system exhibits a revival of the initial coherence.

23. Show that, at the time t = tR/2, the system is in a “Schrödinger cat” state, i.e. a superpo-
sition of two coherent states |iα⟩ and |−iα⟩, with the amplitudes iα and −iα:

|ψ(tR/2)⟩ = 1√
2

(
e−iπ/4 |iα⟩ + eiπ/4 |−iα⟩

)
. (10)

What is the average value ϕ(tR/2)?
Hint for the calculation of |ψ(tR/2)⟩: For any integer n, e−iπn(n−1)/2 = [e−iπ/4einπ/2 +eiπ/4e−inπ/2]/

√
2.

24. Use your answers to Questions 17– 23 to interpret the experimental results shown in Fig. 5.
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Further reading
Introductory

• Coherent states play a key role in Quantum Optics. A detailed description of their experimental production
and manipulation is given in Ref. [3, chaps. 3 & 8].

• Section 20.4 of Ref. [4] provides an introduction to the Poisson distribution applied to classical gases.
• An accessible introduction to the physics of ultracold atoms in optical lattices may be found in §7.4.5 and

§14.4.3 of Ref. [5]. Section 26.3 of the same book provides simple ideas concerning the superfluid–to–Mott
insulator phase transition.

More advanced

• Broken symmetries and phase transitions are introduced in simple terms in Ref. [6, chap. 5]. Landau’s
approach for the description of critical phenomena is reviewed in Ref. [7, chap. 17].

• The collapse and revival of quantum coherence were first observed in a Cavity Quantum ElectroDynamics
(CQED) experiment [8]. There, the cavity was initially prepared to contain a coherent state of the electro-
magnetic field. A single atom crossing the cavity underwent Rabi oscillations involving many frequencies
corresponding to each of the Fock–state components of the coherent state. Their Fig. 2 on p. 3 is particularly
eloquent: it presents the collapse and revival of the Rabi oscillations and shows how these signals can be
analysed to reconstruct the initial photon number distribution.
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