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1 The Bose—Hubbard Hamiltonian

We consider a collection of cold bosonic atoms (e.g. 8"Rb) trapped inside an optical lattice po-
tential. This potential is a (3D, 2D, or 1D) periodic array of wells in which can be either shallow
(Fig. 1 left) of deep (Fig. 1 right). This optical potential results from a stationary light wave,
obtained e.g. by retro-reflecting a laser in each of the trapping directions.

The simplest description for ultracold bosonic atoms in a spatially periodic potential is the
Bose-Hubbard model, which involves two real parameters: the tunnelling amplitude J > 0 and
the interaction strength U. The corresponding (second—quantised) Hamiltonian reads:

H=-J ala; + g ni(n; —1) . 1
Z lay 5 Z (ni 1) (1)
In Eq. (1), the bosonic operator a;r creates a particle on the site ¢, and its conjugate a; annihilates
a particle on the same site. The sum <ij> is taken over all neighbouring sites < 4,7 >, and
the parameter J > 0 describes the amplitude for the tunnelling process of a particle from one site
to a neighbouring one. The operator n; = agai counts the number of particles on site 7, and the
parameter U sets the interaction strength between particles on the same site. Tunnelling between
non—neighbouring sites is neglected; the interaction between atoms in different sites is neglected.

Large systems described by the Hamiltonian of Eq. 1 exhibit a quantum phase transition, i.e.
a phase transition at zero temperature, because of the competition between (i) the tunnelling
mechanism proportional to J, which tends to delocalise particles over the whole lattice, and (%)
the interaction term proportional to U, which for repulsive interactions (U > 0) favours atom
numbers on each site satisfying n; < 1.

1. What is the criterion on U and J for the system to be (a) in the shallow-lattice regime of
Fig. 1 left? (b) in the deep—lattice regime of Fig. 1 right?
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Figure 1 Schematics of the ground state of an ultracold Bose gas trapped in an optical lattice in two
different regimes. Left: for a shallow optical lattice, the many—-body ground state is a macroscopic
coherent wavefunction delocalised over the whole lattice. Right: for a deep optical lattice, each atom is
localised at a given site.



Figure 2 Interference images obtained after switching off the optical lattice potentials. The initial barrier
height increases from (a) to (h). For low barrier heights (a), the interferogram has a very high visibility;
the visibility vanishes for high barriers (h). Reproduced from Ref. [1].

2 The superfluid—to—Mott insulator transition

In this section, we assume that the total number of atoms, N,, is equal to the total number of
sites of the optical lattice potential, N; = IN,, meaning that the filling factor of the lattice is 1.

2.1 The Mott insulator state
We call |M) the Mott insulator state, for which each lattice site contains a single atom:
M) =af - aly [vac) . (2)

2. What are the atom number fluctuations on each site?
Justify that the one-body density matrix p™) (i, ) = <M|a3aj|M) =0 for i # j.
Does the system exhibit coherence between two different sites?

3. Show that the energy (M|H|M) = 0.

4. In which of the two limits of Question 1 is |[M) an exact eigenstate of H?

2.2 The superfluid state
We call |SF) the superfluid state defined as follows:

N,
1 N 1 1
SF) = alMe lvac) = —— | — al vac) . 3
SF) = s kY vac) m(mz [vac) 3)
5. In which of the two limits of Question 1 is |SF) an exact eigenstate of H?

Prove it, and show that, for a 1D lattice, the corresponding energy is —2JN,.

HINT: Apply periodic boundary conditions and use Bloch’s theorem.

6. Justify that the average occupation number in the site ¢ is (SF|ajai|SF> =1.
Show that the off-diagonal one-body density matrix is p(1)(4,5) = <SF|a;raj|SF> =1
Does the system exhibit coherence between two given sites?
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2.3 The phase transition

In order to approximately determine the critical value of U/J for which the transition occurs, we
apply the variational approach to the family of N-body wavefunctions (|¥y)) defined by:

N

|Wy) = H [0089 |n; = 1) +sinf

=1

In the wavefunction of Eq. (4), all sites are in the same quantum state (Hartree—type ansatz).

7. In the many—body state |¥y), is the total number of atoms rigorously fixed?
If not, calculate its mean value < N > and its standard deviation AN.

8. Which value of 6 leads to |¥p) = |MI)?
For which value of 6 does |¥y) play the role of [SF)?

9. We call z the number of nearest neighbours for a given site.
What is z for a 1D lattice? for a 2D square lattice? for a 3D cubic lattice?

10. Show that the expectation value for the energy in the state |¥y) reads:

sin? 0

(Ug| H |Tg) = N [U — 2J(3+2V2) cos? 8] . (5)

11. Deduce from Eq. (5) that, if U/(2J) > (3 4+ 2v/2), the ground state is a Mott insulator,
whereas the ground state exhibits coherence for U/(zJ) < (3 + 2v/2).

12. In the vicinity of the critical point U/(2J) = 3 + 2v/2, we let p = sin(26)/2.
a) For |p| < 1, show that Eq. (5) reduces to:

2

NoJ (Ug|H|Wg) = %p4 - {(3 +2V2) - g]] 0. (6)

HINT: Use sin? 8 = p2 + p*.

b) Using Fig. 3, justify that we are dealing with a second—order phase transition.

c) @ What is the order parameter? Which is the broken symmetry?
HiINT: There is a link to Question 19 below.

13. For which geometry is the mean—field approach expected to be most accurate?

14. Use your answers to Questions 2 and 6 to interpret the experimental results of Fig. 2.



Figure 4 Quantum dynamics of a coherent state of the atoms owing to cold collisions. Here, we consider
a single well which initially contains multiple atoms whose wavefunction |c) is a coherent state at ¢ = 0
(a). As time evolves (a—g), the wavefunction |¢(t)) distorts due to the collisions between the atoms. For
a given time, the authors plot the overlap | (8](t)) |* of the state |1(t)) with an arbitrary coherent state
|8). Reproduced from Ref. [2].

3 Collapse and revival of the coherent matter—wave field

3.1 Modelling the quantum state of a single site with a coherent state

In this section, we assume that N, = vN;, where the integer v is the filling factor of the lattice.
We assume that the system is initially deep in the superfluid regime, so that its many—body
wavefunction is the quantum state |SF) of Eq. (3).

15. Show that, for N, large enough, |SF) practically coincides with the following state:

|Weon) = e Na/2exp (\/Na a};zo) [vac) . (7)

HINT: What is the probability distribution for the total number N of particles in the state |V on)?

16. Show that |U..n) factorises into a product of quantum states for each lattice site, each site
being in the same coherent state |a): [Weon) = |@1) - - |an,). Give the amplitude « of this
coherent state, and the corresponding mean particle number and variance.

3.2 Quantum dynamics of the state on a single site

For t < 0, the system is deep in the superfluid regime. At ¢t = 0, we abruptly increase the height
of the potential wells, so that J = 0. We focus on a single site of the lattice.

17. Using your answer to Question 16,
determine the initial quantum state |(t = 0)) of the single lattice site.

18. What drives the dynamics of this quantum state?
Justify that, for ¢t > 0, the site is in the following state:

() = e~lol"/2 nzz;) i P [—iUn(n —1)t/(2R)] n) . (8)
19. Show that the average value ¢(t) = (¢(t)|a|y(t)) satisfies:

o(t) = aexp [|OL|2 (e*iUt/h - 1)} . 9)

20. Show that the coherent character of the quantum state collapses at short times.
What sets the characteristic time for this collapse?
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Figure 5 Interference images demonstrating the collapse and revival of quantum coherence. Initially, the
gas is prepared in a superfluid state in a shallow lattice. At time ¢t = 0, the height of the potential barriers
is suddenly increased so as to isolate each site of the optical lattice. The gas is held in this deep lattice
for a variable time ¢, which increases from (a) to (g). Finally, the optical potential is turned off and the
gas expands, leading to the various interferograms. Reproduced from Ref. [2].

21.

22.

23.

The time evolution of the state |1 (t)) is illustrated on Fig. 4.

Argue why the dynamics of |¢(t)) is richer than that of ¢(¢). Justify that the characteristic
phase washout time is different for |¢(t)) and ¢(t).

Does the phase washout signal a complete loss of coherence?

Show that, for times that are integer multiples of tgr = h/U = 27h/U, the state |1(t)) exactly
coincides with the initial state, i.e. the system exhibits a revival of the initial coherence.

Show that, at the time ¢ = tp/2, the system is in a “Schrodinger cat” state, i.e. a superpo-
sition of two coherent states |ia) and |—ia), with the amplitudes ia and —ia:

—in/4; iw/4_
\/i(e lic) + €™/ %] za)) .

[(t/2) = (10)

What is the average value ¢(tr/2)?
HINT for the calculation of [¢(tg/2)): For any integer n, e #™n(n=1)/2 — [g=in/dginm/2 | gim/dg—inm/2]/\/3

24. Use your answers to Questions 17— 23 to interpret the experimental results shown in Fig. 5.



Further reading

INTRODUCTORY
Coherent states play a key role in Quantum Optics. A detailed description of their experimental production
and manipulation is given in Ref. [3, chaps. 3 & §].

Section 20.4 of Ref. [4] provides an introduction to the Poisson distribution applied to classical gases.

An accessible introduction to the physics of ultracold atoms in optical lattices may be found in §7.4.5 and
§14.4.3 of Ref. [5]. Section 26.3 of the same book provides simple ideas concerning the superfluid—to—Mott
insulator phase transition.

MORE ADVANCED

Broken symmetries and phase transitions are introduced in simple terms in Ref. [6, chap. 5]. Landau’s
approach for the description of critical phenomena is reviewed in Ref. 7, chap. 17].

The collapse and revival of quantum coherence were first observed in a Cavity Quantum ElectroDynamics
(CQED) experiment [8]. There, the cavity was initially prepared to contain a coherent state of the electro-
magnetic field. A single atom crossing the cavity underwent Rabi oscillations involving many frequencies
corresponding to each of the Fock—state components of the coherent state. Their Fig. 2 on p. 3 is particularly
eloquent: it presents the collapse and revival of the Rabi oscillations and shows how these signals can be
analysed to reconstruct the initial photon number distribution.
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