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1 Reminders on the density matrix and the partial trace
1.1 Partial trace
We first consider one single Hilbert space EA. Let (|ai⟩) be a basis of EA. We are interested in the
vector space L (EA) of linear operators that map EA onto itself. The set of operators (|ai⟩ ⟨aj |)
is a basis of L (EA). This basis has a simple interpretation, at least if the dimension of EA is
finite. Any linear operator M in L (EA) may be expanded as M =

∑
i,j mij |ai⟩ ⟨aj |. Then, the

coefficient mij is the coefficient on the ith line and jth column of the usual matrix representation
of M in the basis (|ai⟩). The trace of M is defined, as usual, as:

Tr(M) =
∑

i

⟨ai|M |ai⟩ . (1)

Next, we consider two Hilbert spaces EA and EB . In the language of quantum information, EA

and EB represent the degrees of freedom accessible to Alice and Bob, respectively. We introduce
the joint Hilbert space E = EA ⊗ EB . We are interested in the vector space L (E ) of linear
operators that map E onto itself. Among all the linear operators acting on E , some may be
written as M = MA ⊗MB , where MA is a linear operator on EA and MB is a linear operator on
EB . For these linear operators, we define the partial trace over EB as follows:

TrB : L (E ) → L (EA )
MA ⊗MB 7→ TrB(MA ⊗MB) = Tr(MB)MA .

(2)

In Eq. (2), the input MA ⊗MB is a linear operator acting on E , the quantity Tr(MB) is the usual
trace of the operator MB (i.e. a number), and the output TrB(MA ⊗ MB) is a linear operator
acting on EA. Equation (3) shows, in particular, that the partial trace TrB does not depend on
any choice of bases for EA or for EB .

Any linear operator acting on E may be written as a linear combination of operators of the form
MA ⊗MB . Indeed, let (|ai⟩) be a basis of EA and (|bj⟩) a basis of EB , so that (|ai⟩⊗|bj⟩) is a basis
of E . Then, the set (|ai⟩ ⟨ai′ |⊗|bj⟩ ⟨bj′ |) is a basis of L (E ) whose elements have the required form.
Therefore, we may extend the definition of the partial trace TrB to all linear operators acting on
E by enforcing its linearity. Then, for any linear operator M acting on E :

Tr(M) = TrA[TrB(M)], (3)

i.e. the complete trace (which is a number) may be obtained by first taking the partial trace along
EB , so as to get an operator acting on EA, and then taking the trace along EA.
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1.2 Reduced density matrix
We assume that Alice and Bob have prepared a joint quantum state determined by the density
matrix ρ, which is a linear operator on the joint state E = EA ⊗ EB . Then, Alice and Bob have
travelled to different locations that are spatially separated, and they may no longer communicate.
Alice has kept her part of the system, described by the Hilbert space EA, and Bob has kept his,
described by the Hilbert space EB . Making a distinction between Alice’s and Bob’s subsystems
entails that they are distinguishable. We shall turn to identical particles starting from Sec. 2.

Alice may acquire information on the state ρ only by performing measurements on her part of the
system. These measurements may be described by averages of local operators, i.e. operators which
act only on EA while leaving the component along EB unchanged. In terms of tensor products,
these operators read MA = MA ⊗ 1B . Let us calculate the average value of MA in the state ρ:

⟨MA ⊗ 1B⟩ = Tr [ρ (MA ⊗ 1B)] . (4)

We wish to show that the average in Eq. (4) depends not on the full density matrix ρ, but rather
on a simpler operator, the reduced density matrix ρA, which may be deduced from ρ but contains
less information than ρ. The operator ρA acts on the Hilbert space EA (rather than on the larger
Hilbert space E ), and it gives the average of any local observable MA ⊗ 1 through the relation:

⟨MA ⊗ 1B⟩ = TrA(ρA MA) . (5)

In Eq. (5), ρA depends only on ρ and is independent of the considered local operator MA ⊗ 1A.
In order to construct ρA, we expand ρ as a sum of tensor products of the following form:

ρ =
∑

i,i′,j,j′

ρii′jj′ |ai⟩ ⟨ai′ | ⊗ |bj⟩ ⟨bj′ | =
∑
jj′

ρA
jj′ ⊗ |bj⟩ ⟨bj′ | . (6)

In Eq. (6), the coefficients ρii′jj′ are numbers, and the first equality follows from (|ai⟩ ⟨ai′ | ⊗
|bj⟩ ⟨bj′ |) being a basis of L (E ). The second equality follows from collecting all terms which
contain |bj⟩ ⟨bj′ |. Hence, the ρA

jj′ are linear operators acting on EA defined as:

ρA
jj′ =

∑
ii′

ρii′jj′ |ai⟩ ⟨ai′ | . (7)

We replace Eq. (6) into Eq. (4) to get:

⟨MA⟩ =
∑
jj′

Tr
[(
ρA

jj′ ⊗ |bj⟩ ⟨b′
j |
)

(MA ⊗ 1B)
]

=
∑
jj′

Tr
[(
ρA

jj′MA

)
⊗ (|bj⟩ ⟨bj′ |)

]
, (8)

where the second equality follows from the identity (SA ⊗ SB)(TA ⊗ TB) = (SATA) ⊗ (SBTB).
Next, we take the trace in two steps: first over EB and then over EA , i.e. we use Eq. (3). The

quantity TrB(|bj⟩ ⟨bj′ |) = δjj′ , with δij being the Kronecker symbol, and Eq. (8) reduces to:

⟨MA⟩ =
∑

j

Tr
(
ρA

jj MA

)
. (9)

In Eq. (9), both operators inside the trace are linear operators acting on EA. Finally, we recognise
the partial trace TrB(ρ) =

∑
j ρ

A
jj , as can be seen from the right–hand side of Eq. (6). Thus, the

average of the local operator MA ⊗ 1A satisfies Eq. (5), the operator ρA being defined as:

ρA = TrB(ρ) . (10)

Equations (5) and (10) are the key results of this section. They show that, by performing measure-
ments on her side of the system (that is to say, by acting on the space EA only), Alice cannot access
all the information concerning the quantum state ρ. The results of all of her local measurements
are piloted by the reduced density matrix ρA. Unlike the complete density operator ρ, which is a
linear operator acting on the joint Hilbert space E , the reduced density matrix acts on the smaller
Hilbert space EA encoding the degrees of liberty accessible to Alice. Taking the partial trace over
EB results in a loss of information on the system. We illustrate this in Sec. 1.3 on an example
from quantum information.
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1.3 An example from quantum information
We consider the case where the two Hilbert spaces EA and EB both represent a spin–1/2. We
introduce the four Bell states1, which are (maximally) entangled states of the two particles [1,
§ 1.3.6]:

|Φ±⟩ = 1√
2

(|↑⟩A |↑⟩B ± |↓⟩A |↓⟩B) , |Ψ±⟩ = 1√
2

(|↑⟩A |↓⟩B ± |↓⟩A |↑⟩B) . (11)

We construct the density matrix ρ = |Φ+⟩ ⟨Φ+| corresponding to the pure state |Φ+⟩:

ρ = |Φ+⟩ ⟨Φ+| = 1
2

(|↑⟩A |↑⟩B + |↓⟩A |↓⟩B) (⟨↑|A ⟨↑|B + ⟨↓|A ⟨↓|B) . (12)

Expanding the product on the right–hand side of Eq. (12), we are left with linear combinations
of the four operators |↑⟩A |↑⟩B ⟨↑|A ⟨↑|B , |↑⟩A |↑⟩B ⟨↓|A ⟨↓|B , |↓⟩A |↓⟩B ⟨↑|A ⟨↑|B , |↓⟩A |↓⟩B ⟨↓|A ⟨↓|B .
Each of these operators is of the form MA ⊗ MB (for instance, |↑⟩A |↑⟩B ⟨↑|A ⟨↑|B = |↑⟩A ⟨↑|A ⊗
|↑⟩B ⟨↑|B), hence, we may directly apply Equation (2). We find:

• TrB(|↑⟩A |↑⟩B ⟨↑|A ⟨↑|B) = |↑⟩A ⟨↑|A;

• TrB(|↑⟩A |↑⟩B ⟨↓|A ⟨↓|B) = TrB(|↓⟩A |↓⟩B ⟨↑|A ⟨↑|B) = 0;

• TrB(|↓⟩A |↓⟩B ⟨↓|A ⟨↓|B) = |↓⟩A ⟨↓|A.

Thus, the reduced density matrix ρA reads:

ρA = TrB ρ = 1
2

(|↑⟩A ⟨↑|A + |↓⟩A ⟨↓|A) . (13)

Equation (13) shows that, if Alice does not communicate with Bob, the information she may
obtain by local measurements on her side of the system does not allow her to distinguish it from
a (non coherent) statistical mixture of |↑⟩A and |↓⟩A. Similar calculations show that any of the
four Bell states |Φ±⟩, |Ψ±⟩, would lead to the same reduced density matrix ρA given by Eq. (13),
which confirms that taking the partial trace along EB leads to an important loss of information.

2 Questions 1–4: 1–body density matrix for identical particles
2.1 Invariance of the density operator under particle exchange
We now consider a system of identical particles. The quantum states accessible to one of these
particles make up the single–particle Hilbert space E . For now, we use the first quantisation
formalism (we shall turn to second quantisation below). Hence, the considered system consists of
a fixed number N of particles. The acceptable N–particle wavefunctions |Ψ⟩ are the normalised
(anti–)symmetric elements in the N–particle Hilbert space EN = E (1) ⊗E (2) . . .⊗E (N), where the
Hilbert space E (j) pertains to particle j.

The density matrix describing a pure state |Ψ⟩ is ρ = |Ψ⟩ ⟨Ψ|. In the basis of spatial positions,
this linear operator acting on EN is characterised by the matrix elements ⟨r1, . . . , rN |ρ|r′

1, . . . r
′
N ⟩.

Exchanging particles 1, . . . , N amounts to applying the same permutation σ both on the bra and
on the ket of this matrix element, i.e. to considering ⟨rσ(1), . . . , rσ(N)|ρ|r′

σ(1), . . . r
′
σ(N)⟩. Therefore,

both for bosons and for fermions, the density matrix is symmetric under particle exchange:

For any permutation σ, ⟨rσ(1), . . . , rσ(N)|ρ|r′
σ(1), . . . r

′
σ(N)⟩ = ⟨r1, . . . , rN |ρ|r′

1, . . . r
′
N ⟩ . (14)

Equation (14) may be established by writing ρ as a statistical mixture of pure states: ρ =∑
i pi |Ψi⟩ ⟨Ψi|. For bosons, the states |Ψi⟩ are symmetric, and so are the operators |Ψi⟩ ⟨Ψi|.

1These are the four states that maximally violate Bell’s inequalities, signalling that Quantum Mechanics may not
be formulated in terms of local hidden variables.
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For fermions, the states |Ψi⟩ are antisymmetric, so that exchanging the particles according to the
permutation σ replaces |Ψi⟩ by (−)σ |Ψi⟩ and ⟨Ψi| by (−)σ ⟨Ψi|, hence, the operator |Ψi⟩ ⟨Ψi| is
symmetric. In both cases, ρ is a sum of symmetric operators, so that it is symmetric.

Finally, we cast Eq. (14) into an algebraic relation involving operators only (ie. without any
bras or kets). For that purpose, for any permutation σ, we introduce the permutation operator Pσ.
In order to define Pσ, it is sufficient to specify its action by defining its action on the N–particle
product states |u1⟩⊗|u2⟩⊗· · ·⊗|uN ⟩, with the |ui⟩’s being single–particle states (all many–particle
states may be written as linear combinations of such product states). The convention used at ICFP
(J. Dalibard and Y. Castin’s lecture notes, F. Chevy’s slides, . . . ) is the following2:

Pσ |u1⟩ ⊗ |u2⟩ ⊗ · · · ⊗ |uN ⟩ = |uσ(1)⟩ ⊗ |uσ(2)⟩ ⊗ · · · ⊗ |uσ(N)⟩ . (15)

Thanks to Eq. (15), Eq. (14) reduces to:

For any permutation σ, P †
σ ρPσ = ρ . (16)

Permutation operators Pσ are unitary, so that P †
σ = P−1

σ , and Eq. (16) also means that the density
operator ρ commutes with all permutation operators Pσ.

2.2 Single–particle operators and one–body density matrix
We consider a single–particle operator f acting on the single–particle subspace E . We extend f
to the N–particle Hilbert space EN by defining the operator F as follows:

F =
N∑

i=1
f (i) =

N∑
i=1

1
(1) ⊗ . . .⊗ 1

(i−1) ⊗f (i) ⊗ 1
(i+1) ⊗ . . .⊗ 1

(N) . (17)

The operator F defined by Eq. (17) is symmetric with respect to the N particles. In the term of
index i in the sum, f (i) acts only on the particle i and all other particles are unaffected.

We wish to calculate the average ⟨F ⟩ = Tr(ρF ) of a single–particle F . Just as in the two–
subspace case of Sec. 1.2, it is not necessary to know the full density matrix ρ to calculate such
an average. We shall show that the averages of all single–particle operators are piloted by a single
operator which is much simpler than ρ, and which plays a role similar to that of the reduced
density matrix of Sec. 1.2. This operator is the one–body density matrix ρ(1), it acts on the
single–particle Hilbert space E , and gives the averages of all one–particle operators throgh the
relation (compare with Eq. (5) above):

⟨F ⟩ = Tr(ρ(1)f) . (18)

In Eq. (18), the left–hand side involves the average of an operator acting on the N–particle Hilbert
space EN . However, the right–hand side only involves operators acting on the single–particle
Hilbert space E , and the trace Tr = TrE is taken over that (much smaller) Hilbert space.

In order to construct ρ(1), we start from the general expression for the average of F in terms of
ρ, ⟨F ⟩ = Tr(Fρ), and use Eq. (17) to obtain:

⟨F ⟩ = Tr

[
ρ

(
N∑

i=1
f (i)

)]
=

N∑
i=1

Tr(ρ f (i)) . (19)

Exploiting the symmetry of ρ under particle exchange. We first note that the operator f (i),
acting only on particle (i), satisfies f (i) = P †

σf
(1)Pσ for any permutation σ such that σ(1) = i

2Cohen–Tannoudji, Diu, and Laloë [2] use the opposite convention P CDL
σ = P −1

σ (see their Eq. XIV.B.38).
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(simply check that all matrix elements of f (i) and P †
σf

(1)Pσ in a basis involving product states
|u1⟩ ⊗ |u2⟩ ⊗ · · · |uN ⟩ coincide). Then:

Tr(ρ f (i)) = Tr(ρ P †
σf

(1)Pσ)
= Tr(PσρP

†
σ f

(1))

= Tr(P †
σ−1ρPσ−1 f (1))

= Tr(ρ f (1)) .

(20)

In Eq. (20), the second step follows from Tr(AB) = Tr(BA), valid for any operators A and B.
The third step combines the unitarity of permutation operators, P †

σ = P−1
σ , with the property3

PσPσ′ = Pσ′◦σ applied with σ′ = σ−1. The final step follows from Eq. (16). Hence, the symmetry
of ρ with respect to particle exchange entails that all N terms in the sum of Eq. (19) are equal.

Construction of ρ(1). We now apply Eq. (3) to perform the trace in Eq. (20) in two steps: first
over the Hilbert space E (2) ⊗ . . .⊗E (N) (denoted by Tr2...N ), and then over the remaining Hilbert
space E (1) (denoted by Tr1). This yields:

⟨F ⟩ = Tr1

[
Tr2...N

(
ρf (1)

)]
= Tr1

[
(N Tr2...N ρ) f (1)

]
, (21)

where the final step follows from the fact that f (1) acts only on the space E (1).
Equation (21) confirms that we have constructed the one–body density matrix ρ(1), which reads:

ρ(1) = N Tr2...N [ρ] . (22)

The averages of all one–particle observables F may now be calculated thanks to Eq. (22), i.e.
using linear operators which act on the single–particle Hilbert space E only. The Hilbert space E
is considerably smaller than the N–particle Hilbert space EN , hence, using the one–body density
matrix ρ(1) (rather than the full density matrix ρ) strongly reduces the complexity of the calcu-
lations. This simplification helps in numerical problems, where ρ(1) is calculated only once and
then yields all one–body averages. It also helps conceptually, because it allows us to think about
the N–particle system in terms of one–particle “wavefunctions”. A famous example is the case
of a Bose–condensed system: in this particular case, ⟨r| ρ(1) |r′⟩ = ψ0(r)ψ∗

0(r′), where the con-
densate wavefunction ψ0(r) satisfies the Gross–Pitaevskii equation. Hence, we have replaced the
interacting N–particle problem, described by an N–particle wavefunction which obeys the (linear)
Schrödinger equation, by a single–particle wavefunction which obeys a (non–linear) equation.

Equation (22) is very similar to Eq. (13) above, with the important difference that there is an
extra factor of N on the right–hand side. Hence, the diagonal matrix elements of ρ(1) give the
density n(r), and ρ(1) is normalised to the total number of particles:

⟨r| ρ(1) |r⟩ = n(r) and Tr(ρ(1)) =
∫
d3r ⟨r| ρ(1) |r⟩ = N . (23)

2.3 First–order spatial correlations
We now justify that the matrix element ⟨r|ρ(1)⟩ |r′⟩ gives information about the spatial coherence
of the system between the two points r and r′. Spatial coherence is a notion that does not rely
on the presence of identical particles: it is still meaningful even if the system consists of a single
particle. A typical way to probe it is to perform an interference measurement related to Young’s
double slit setup, i.e. a first–order interference experiment. For this reason, spatial coherence is
also called “first–order spatial correlation”.

3Note the opposite orderings of σ and σ′ on either sign of the equal sign.
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In order to make the link between ⟨r|ρ(1)⟩ |r′⟩ and spatial coherence explicit, we apply Eq. (18)
to the specific case where the single–particle operator F corresponds to f = |r′⟩ ⟨r|. We find:

⟨F ⟩ =
N∑

i=1
⟨ |i : r′⟩ ⟨i : r| ⟩ = ⟨r|ρ(1)|r′⟩ , (24)

where the last step follows from the property Tr(A |u⟩ ⟨v|) = ⟨u|A|v⟩ which holds for all linear
operators A and kets |u⟩, |v⟩.

Let us first consider the case of a single particle in a pure state: ρ = ρ(1) = |ψ⟩ ⟨ψ|. The
wavefunction ψ(r) may be thought of as a wavepacket with the spatial extent σ. Then, the
average ⟨r|ρ(1)|r′⟩ = ψ(r)ψ∗(r′) may be non–zero only if |r − r′| < σ, which does correspond
to the usual definition of spatial coherence for a pure state. If the single particle is prepared
in a statistical mixture ρ = ρ(1), then, for r ̸= r′, the average being non–zero signals that the
off–diagonal matrix element of ρ between r and r′ is non–zero, which is the standard criterion for
coherence in a statistical mixture. Equation (24) generalises this criterion to the case of N identical
particles: the state ρ exhibits spatial coherence between the points at r and r′ if the process which
consists in destroying a particle at r and creating one at r′ has a non–zero expectation value.

3 Ideal gases in their ground state (zero temperature)
In this section, we consider ideal quantum gases in the absence of any external electric or magnetic
field). The single–particle Hamiltonian reads:

h = p2

2m
+ U(r) . (25)

The term U(r) is the trapping potential, which acts on each particle in the system individually
(this is not an interaction term).

3.1 Question 7: Different types of trapping potentials
In the context of cold quantum gases, three types of trapping potentials are routinely considered:

1. Harmonic traps. In this case, U(r) = m(ω2
1x

2 + ω2
2y

2 + ω2
3z

2)/2. This type of trap may be
obtained experimentally through various means: it corresponds to the generic behaviour of
a function U(r) near a minimum. If the three frequencies (ωi)1≤i≤3 are equal, the trap is
isotropic and the system is rotationally invariant in 3D. If ω3 ≫ ω1,2, the system is effectively
2D, and may be used to probe e.g. the Berezinskii–Kosterlitz–Thouless crossover. If ω2,3 ≫
ω1, the system is effectively 1D and may be used to probe e.g. the role of integrability.

2. Box traps. Here, U(r) = 0 inside some large volume V , and U(r) = +∞ outside this volume.
Then, the system is uniform inside V and the role of the trapping potential is minimal. This
may be achieved experimentally in 3D using a Digital Micromirror Device (DMD), which is
very similar to the one used in videoprojectors. In 2D, other techniques are available, such
as the projection onto the atomic sample of the image of a suitable mask. This trapping
geometry has been used to investigate e.g. the condensation dynamics of an ideal Bose gas,
as well as the propagation of sound in a weakly–interacting Bose gas.

3. Optical lattices. Here, the potential U(r) is spatially periodic. In the most frequent imple-
mentation, each lattice site (i.e. spatial period) exhibits a single minimum. This is achieved
through the interference of two counterpropagating laser beams in each trapping direction.
This type of potential allows for the realisation of lattice models, and it has been used to
experimentally investigate e.g. the superfluid–to–Mott insulator transition (which will be
discussed in Problem 3).
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3.2 Question 8: The ideal Bose gas at T = 0
Here, we consider the case of non–interacting bosons. We further assume that the ground state
of the single–particle Hamiltonian is non–degenerate. Let ϵ0 be the ground–state energy, and |ϕ0⟩
be the corresponding wavefunction, so that h |ϕ0⟩ = ϵ0 |ϕ0⟩.

At T = 0, all of the particles of the system are in the ground state4. Hence, the system is in a
pure state described by the following many–particle wavefunction:

|Ψ⟩ = |ϕ(1)
0 ⟩ ⊗ . . .⊗ |ϕ(N)

0 ⟩ . (26)

Thus, the one–body density matrix reads:

⟨r′| ρ(1) |r⟩ = ⟨r′| Tr2...N (|Ψ⟩ ⟨Ψ|) |r⟩ = N ϕ0(r′)ϕ∗
0(r) . (27)

For a uniform system, ϕ0 does not depend on r: we write ϕ0(r) =
√
n, where n = N/V is the

spatial density of particles. Then, Eq. (27) yields ⟨r′|ρ(1)|r⟩ = n. Hence, the off–diagonal elements
of the system do not decay with |r − r′|. This signals that the coherence length is infinite. This
Bose–condensed system is said to exhibit off–diagonal long range order.

We now turn to a harmonically trapped system. For simplicity, we assume that the trap is
isotropic ω1 = ω2 = ω3 = ω0. Then, the single–particle ground state wavefunction reads ϕ0(r) =
exp[−r2/(2l20)]/π3/4, where the harmonic oscillator length l0 = [ℏ/(mω0)]1/2. Hence, Eq. (27)
yields ⟨r′|ρ(1)|r⟩ = N exp[−(r2 + r′2)/(2l20)]/π3/2. Here, the one–body density matrix does not
depend only on (r − r′), because the system is not translationally invariant. The off–diagonal
elements of ρ(1) decay to zero exponentially for r, r′ > l0. The coherence length reflects the finite
size of the system, which is set by the oscillator length l0.

3.3 Questions 9–11: The ideal Fermi gas at T = 0
3.3.1 Fermionic ground–state wavefunction

We consider a fixed number N of identical fermions of mass m. We assume that they are all in
the same internal state (“fully polarised Fermi gas”), so that the spin does not play any role in
the thermodynamics of the system.

We focus on the zero–temperature case, T = 0, so that the system is in its ground state. In the
first–quantisation formalism, the N–particle ground state wavefunction is a determinant involving
the N lowest–energy single–particle states ϕ1(r), . . . , ϕN (r):

ψ(r1, . . . , rN ) = 1√
N !

∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕN (r1)

...
...

ϕ1(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣ =
∑

σ∈SN

ϵ(σ)ϕσ(1)(r1) · · ·ϕσ(N)(rN ) . (28)

In Eq. 28, the right–hand side expresses the determinant in terms of a sum over all permutations
σ acting on N elements, i.e. all elements of the symmetric group SN , weighted by their signatures
ϵ(σ) = ±1.

3.3.2 Fermi wavevector for a uniform Fermi gas

The Fermi wavector kF is the modulus of the wavevector corresponding to the highest–energy
populated mode in the ground state. Its expression directly follows from the Pauli principle: each
single–particle state may be populated by at most one atom. In the ground state, the populated
single–particle states are the N lowest–energy states, corresponding to the smallest values for |k|.

4This is not true for an ideal Fermi gas: see below. Distinguishable particles would also go to the ground state
for T = 0, but this “thermally frozen” regime occurs for much lower temperatures than for identical bosons.
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Uniform 1D Fermi gas. The result obtained in the thermodynamic limit should not depend on
the chosen boundary conditions. We choose periodic boundary conditions, so that the single–
particle wavefunctions are plane waves eikx/

√
L which satisfy eikL = 1, where L is the size of the

box. This means that the allowed wavevectors are kn = n2π/L, with n spanning all (positive and
negative) integers. The corresponding energies are ℏ2k2

n/(2m).
Neglecting the small parity effect, kF = 2πN/(2L) = πρ, where the factor 1/2 follows from the

fact that the states with wavevectors k and (−k) have the same energy. The Fermi wavevector
depends only on the 1D density ρ = N/L.

Uniform 3D Fermi gas. We choose periodic boundary conditions applied to a cubic box with
volume V = L3. The single–particle states are now plane waves exp(ik · r)/L3/2. The allowed
wavevectors are k = 2π/L (n1ex + n2ey + n3ez), with n1, n2, and n3 being (positive or negative)
integers. The volume occupied by a single mode is δ3k = (2π/L)3.

The Fermi wavevector is now defined by:

N =
∑

|k|≤kF

1 =
(
L

2π

)3 ∑
|k|≤kF

δ3k ≈
(
L

2π

)3 ∫
|k|≤kF

d3k = L3

6π2 k
3
F . (29)

In Eq. 29, we have replaced the sum over all wavevectors by an integral and used the fact that the
volume of a sphere of radius kF is 4πk3

F /3. Hence, in the 3D case, the Fermi wavevector reads:

kF = (6π2n)1/3 , (30)

and, just like in the 1D case, it only depends on the density n = N/L3.

3.3.3 First–order spatial correlation function at T = 0

The N–particle density matrix representing the ground state is ρN = |Ψ⟩ ⟨Ψ|. We start from the
expression for g1(r, r′) in terms of the trace over N − 1 particles:

g1(r, r′) = N Tr2,...,N (ρN ) = N

∫
d3r2 . . . d

3rNψ
∗(r′, r2, . . . , rN )ψ(r, r2, . . . , rN ) . (31)

We replace both functions ψ and ψ∗ by their expressions in terms of determinants given by Eq. 28.
This leads to:

g1(r, r′) = N

N !
∑

σ∈SN

∑
τ∈SN

ϵ(σ)ϵ(τ) ϕ∗
σ(1)(r

′)ϕτ(1)(r)∫
d3r2 ϕ

∗
σ(2)(r2)ϕτ(2)(r2) . . .

∫
d3rN ϕ∗

σ(N)(rN )ϕτ(N)(rN ) . (32)

Because of the orthogonality of the single–particle wavefunctions, each of the (N − 1) integrals∫
d3rkϕ

∗
σ(k)(rk)ϕτ(k)(rk) is either one or zero: it reduces to δσ(k),τ(k), with δij being the Kronecker

symbol. If the two permutations σ and τ satisfy σ(k) = τ(k) for 2 ≤ k ≤ N , they also satisfy
σ(1) = τ(1), therefore the double sum on σ and τ reduces to a single sum on σ:

g1(r, r′) = N

N !
∑

σ∈SN

ϕ∗
σ(1)(r

′)ϕσ(1)(r) . (33)

Finally, in order to describe a permutation σ ∈ SN , we need to give (i) the value σ(1), which
may be any integer from 1 to N , and (ii) the image of all other integers σ(k) for k ≥ 2, for which
there are (N − 1)! possibilities once σ(1) has been chosen. This leads to the final expression for
g1(r, r′):

g1(r, r′) =
N∑

k=1

ϕ∗
k(r′)ϕk(r) . (34)

Note that Eq. 34 may be derived in a sraightforward way using the second–quantisation formalism
(see Sec. 4.2.2 below).
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g(1) function for a 1D uniform Fermi gas. We start from Eq. 34 and replace the one–particle
wavefunctions ϕ(r) by plane waves eikx/

√
L. Using the definition of kF given in Sec. 3.3.2, we

obtain:

g(1(x, x′) =
∑

|k|≤kF

eik(x−x′)

L
≈ L

2π

∫ kF

−kF

dk
eik(x−x′)

L
. (35)

Thanks to the parities of the trigonometric functions, this last integral evaluates to:

g(1)(x, x′) = 1
π

sin[kF (x− x′)]
x− x′ = ρ sinc [kF (x− x′)] . (36)

g(1) function for a 3D uniform Fermi gas. We start from Eq. 34 with ϕ(r) = exp(ik · r)/L3/2.
Letting R = r − r′, we obtain:

g(1)(R) =
∑

|k|≤kF

d3k
exp(ik · r)

V
= 1

(2π)3

∫
|k|≤kF

exp(ik · R) . (37)

We integrate over d3k using spherical coordinates of axis R:

g(1)(R) = 1
(2π)3

∫
|k|≤kF

dk

∫ π

0
kdθ

∫ 2π

0
k sin θdϕ eikR cos(θ) . (38)

The integral over dϕ gives a factor 2π, and the integral over θ is elementary:

g(1)(R) = 1
2π2R3

∫ kF R

0
du u sinu . (39)

Finally, the remaining integral may be evaluated by parts, leading to:

g(1)(R) = n
sin(kFR) − kFR cos(kFR)

(kFR)3/3
. (40)

4 Finite temperatures and first steps with interactions
We now turn to the second quantisation formalism, which has three key advantages. First, the
total number N of particles need no longer be fixed, so that we may analyse systems using both
the canonical ensemble (where N is fixed) and the grand–canonical ensemble (where the average
value ⟨N⟩ is fixed through the value of the chemical potential µ). Second, second quantisation
allows for convenient calculations at non–zero temperatures. Third, the one–body density matrix
may be expressed as an average involving the field operator, a definition which holds even in the
presence of interactions between the particles.

4.1 Question 12: One–body density matrix in terms of a and a† operators
In Section 2.3, we have pointed out the link between the one–body density matrix ρ(1) and the
single–particle operator F =

∑
i f

(i) with f = |r′⟩ ⟨r|. We have shown that the matrix element
⟨r|ρ(1)|r′⟩ of one–body density matrix corresponding to a quantum state defined by the complete
density matrix ρ is the average ⟨F ⟩ = Tr(ρF ) of the operator F taken in the state ρ (see Eq. (24)):

⟨r|ρ(1)|r′⟩ = ⟨F ⟩ . (41)

Let us now express the average on the right–hand side of Eq. (41) in terms of second–quantisation
operators. We introduce a basis (|ψα⟩) of single–particle states, i.e. of the subspace E (1). The
states |ψα⟩ are normalised and orthogonal; at this stage, they satisfy no other constraint. We call
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aα the annihilation operator in the state |ψα⟩ and a†
α the corresponding creation operator. The

single–particle operator F may be expressed in terms of these operators as follows:

F =
∑
α,β

⟨ψα|f |ψβ⟩ a†
αaβ =

∑
α,β

ψ∗
α(r′)ψβ(r) a†

αaβ . (42)

In Eq. (42), both indices α and β span all single–particle states |ψα⟩. The first equality is a general
property of single–particle operators, and it holds both for bosons and for fermions. The second
equality follows from the specific choice f = |r′⟩ ⟨r|. Averaging Eq. (42) in the state defined by ρ
and using Eq. (41), we find:

⟨r|ρ(1)|r′⟩ =
∑
α,β

ψ∗
α(r′)ψβ(r) ⟨a†

αaβ⟩ . (43)

We shall now apply Eq. (43) to two specific choices of the single–particle basis (|ψα⟩). First, for
ideal gases, we shall choose this basis such that the single–particle Hamiltonian is diagonal, which
will allow for the explicit calculation of ρ(1) at non–zero temperatures for Boltzmann, Bose, and
Fermi statistics. Second, in the general case, we shall choose the continuous position basis |(r)⟩,
yielding an expression of ρ(1) in terms of the field operator Ψ̂(r).

4.2 Ideal gases at non–zero temperatures
4.2.1 Ideal gases and second quantisation

The constituents of the ideal gas do not interact which each other, so that the many–particle
Hamiltonian H is actually a single–particle operator. Hence, it may be expressed in terms of the
single–particle Hamiltonian h acting on the subspace E (1):

H = h(1) + h(2) + . . .+ h(N) =
∑
α,β

⟨ψα|h|ψβ⟩ a†
αaβ . (44)

In Eq. (44), h(i) acts only on the particle i, and the states (|ψα⟩) are a basis of the single–particle
subspace E (1) as in Sec. 4.1. The single–particle Hamiltonian h is a hermitian operator, so we may
choose a basis of (orthogonal and normalised) states (|ϕα⟩) in which it is diagonal: h |ϕα⟩ = ϵα |ϕα⟩,
where ϵα is the energy corresponding to the single–particle state |ϕα⟩. Choosing the basis (|ϕα⟩)
in Eq. (44) and using the property ⟨ψα|h|ψβ⟩ = δαβ ϵα, we obtain an expression for H involving a
sum over a single index α:

H =
∑

α

ϵα a
†
αaα =

∑
α

ϵα n̂α , (45)

the operator n̂α = a†
αaα being the particle number operator in the mode α. Equation (45) reflects

the intuition behind the many–particle Hamiltonian of an ideal gas: the contribution to the total
energy of the single–particle state α is its energy ϵα multiplied by its occupation number nα.

Equation (45) shows that H conserves the occupation number in each mode, in the sense that the
commutator [H, n̂α] = 0 for any single–particle state α. This conservation property is expressed
in terms of a true commutator both for bosons and for fermions. It reflects the fact that H and
the particle–number operators n̂α may be simultaneously diagonalised in the same many–particle
basis. This basis is the set of Fock states (|(nα)⟩), which have both well-defined energies and
well–defined particle numbers in each mode. A given Fock states is defined by giving the sequence
(nα) of integers specifying the occupation number in each mode. Hence, they satisfy:

n̂γ |(nα)⟩ = nγ |(nα)⟩ and H |(nα)⟩ =

(∑
α

ϵαnα

)
|(nα)⟩ . (46)

We now show that, at thermal equilibrium, the many–body density matrix ρ is diagonal in the
Fock–state basis (|(nα)⟩), both in the canonical ensemble and in the grand–canonical ensemble.
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Canonical ensemble. In this ensemble, the total number of particles N is fixed. Therefore, the
acceptable Fock states |(nα)⟩ satisfy

∑
α nα = N . The N–particle Hilbert space is spanned by all

acceptable Fock states. The Hamiltonian H is diagonal in the Fock–state basis, because Fock states
have a well–defined energy. Therefore, for any value of the inverse temperature β = 1/(kBT ), the
operator exp(−βH) is also diagonal in this basis:

exp(−βH) |(nα)⟩ = exp

(
−β
∑

α

nαϵα

)
|(nα)⟩ . (47)

We introduce the canonical partition function ZC , which is a number defined by:

ZC = Tr[exp(−βH)] =
∑
(nα)

exp

(
−β
∑

α

nαϵα

)
, (48)

where the sum is taken over all Fock states with the total particle number N , i.e. over all integer
sequences (nα) such that

∑
α nα = N . The many–particle density matrix in the canonical ensemble

is ρC = exp(−βH)/ZC . It is the product of a number (1/ZC) by an operator which is diagonal in
the Fock–state basis (exp(−βH)), so that it is itself diagonal in the Fock–state basis.

Grand–canonical ensemble. In this ensemble, the total particle number N is not rigorously
fixed, but its average value ⟨N̂⟩ is, through the choice of the chemical potential µ. We consider
the operator H − µN̂ , which reads:

H − µN̂ =

(∑
α

ϵαn̂α

)
− µ

(∑
α

n̂α

)
=
∑

α

(ϵα − µ) n̂α , (49)

where we have used both Eq. (45) and the relation N̂ =
∑

α n̂α. Equation (49) shows that H−µN̂
is diagonal in the Fock–state basis. Therefore, so is the operator exp[−β(H−µN̂)] for any inverse
temperature β:

exp[−β(H − µN̂)] |(nα)⟩ = exp

[
−β

(∑
α

(ϵα − µ)nα

)]
|(nα)⟩ . (50)

We introduce the grand–canonical partition function ZGC , which is a number defined by:

ZGC = Tr
[
exp[−β(H − µN̂)]

]
=
∑
(nα)

exp

[
−β
∑

α

(ϵα − µ)nα

]
. (51)

Unlike for the canonical ensemble, there is no constraint on the occupation numbers (nα) of the
specific states (other than the Pauli exclusion for fermions). Therefore, ZGC factorises into a
product of grand–canonical partition functions Z(α)

GC for each mode:

ZGC =
∏
α

Z
(α)
GC with Z

(α)
GC = exp

[
−β
∑
nα

(ϵα − µ)nα

]
. (52)

The factorisation of Eq. (52) is the key feature which makes the grand–canonical ensemble partic-
ularly suited to the description of ideal quantum gases. We turn to the grand–canonical density
matrix, defined by ρGC = exp(−β(H − µN̂))/ZGC . It is a number (1/ZGC) multiplied by an op-
erator which is diagonal in the Fock–state basis (exp[−β(H − µN̂)]), therefore it is itself diagonal
in the Fock–state basis.
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4.2.2 Question 15: One–body density matrix for ideal gases

We now show that, for ideal gases, if the one–body density matrix ρ(1) is expanded in terms of the
creation and annihilation operators for the single–particle states |ϕα⟩ which are eigenstates of the
single–particle Hamiltonian h, then Eq. (43) only involves a sum over a single index α spanning
all single–particle states.

We start from the general expression, in terms of the many–body density matrix ρ, for the
average ⟨a†

αaβ⟩ which appears in Eq. (43): ⟨a†
αaβ⟩ = Tr[ρ a†

αaβ ]. This trace may be evaluated in
any many–particle basis. We choose to work in the Fock–state basis |(nγ)⟩:

⟨a†
αaβ⟩ =

∑
(nγ )

⟨(nγ)|ρa†
αaβ |(nγ)⟩ =

∑
(nγ )

⟨(nγ)|ρ|(nγ)⟩ ⟨(nγ)|a†
αaβ |(nγ)⟩ , (53)

where the second step follows from ρ being diagonal in the Fock–state basis (see Sec. 4.2.1).
The matrix element on the right is the scalar product between the states aα |(nγ)⟩ and aβ |(nγ)⟩.
Both of these states have well–defined occupation numbers in each single–particle mode, meaning
that they are both proportional to Fock states. Their overlap may be non–zero only if they are
proportional to the same Fock state, which requires α = β. Hence:

⟨a†
αaβ⟩ = δαβ ⟨a†

αaα⟩ = δαβ ⟨n̂α⟩ . (54)

Therefore, in the case of ideal gases described in the single–particle basis which diagonalises the
single–particle Hamiltonian h, Eq. (43) reduces to:

⟨r|ρ(1)|r′⟩ =
∑

α

πα ϕ
∗
α(r′)ϕα(r) with πα = ⟨n̂α⟩ . (55)

Equation (55) encompasses our previous results concerning the one–body density matrix of ideal
gases. For bosons at zero temperature, the ground state of the system corresponds to N particles
in the state ϕ0 (and no particles in the excited states), so that π0 = N and Eq. (55) reduces to
Eq. (27). For spin–polarised fermions at zero temperature, the ground state is a Fermi sea, so that
πα = 1 for all states such that ϵα < EF and πα = 0 otherwise, thus Eq. (55) reduces to Eq. (34).

In Eq. (55), the populations ϕα = ⟨n̂α⟩ are the average values of the particle number operator
in the considered many–body state ρ. They are all positive and satisfy

∑
α πα = N = ⟨N̂⟩. If

ρ = |(nα)⟩ ⟨(nα)| represents a pure Fock state, then πα = nα is an integer for any α. However, the
(πα) need not be integers. For example, if ρ is a thermal state for an ideal quantum gas described
in the grand–canonical ensemble, then the populations reflect the quantum statistics:

For bosons, πα = 1
eβ(ϵα−µ) − 1

; For fermions, πα = 1
eβ(ϵα−µ) + 1

. (56)

We shall now use Eqs. (55) and (56) to calculate the one–body density matrix at non–zero temper-
ature for uniform ideal gases obeying Boltzmann statistics, Bose statistics, and Fermi statistics.

4.2.3 Question 16: g(1) function for a uniform classical gas

The single–particle Hamiltonian is h = p2/(2m), its eigenstates are plane waves exp(ik · r)/
√
V ,

and the corresponding energies are p2/(2m) with p = ℏk. The occupation numbers satisfy the
Maxwell–Boltzmann distribution, i.e. the population of a single–particle state with the wavevector
k is proportional to exp(−βE), with E = p2/2m and β = 1/(kBT ):

π(p) = α exp(−βp2/2m) . (57)

The prefactor α is determined by the total number of particles:

N =
∫∫

d3x d3p

h
π(p) = α

∫∫
d3x d3p

h
exp(−βp2/2m) , (58)
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where the integral is taken over all phase space. The integral over d3x gives the total volume
V . The integral over d3p may be performed using polar coordinates, letting u = βp2/(2m),
and finally remembering that Γ(3/2) =

√
π/2. Introducing the thermal de Broglie wavelength

ΛT = h/
√

2πmkBT , we obtain:

π(p) = N
Λ3

T

V
exp(−βp2/2m) . (59)

We now use Eq. (55):

g(1)(r, r′) =
∑

α

πα ϕ
∗
α(r′)ϕα(r) = NΛ3

T

V

∫
d3k

(2π)3 exp(ik · R) exp[−βℏ2k2/(2m)] , (60)

with R = r′ − r. Equation 60 shows that g(1)(r, r′) is the Fourier transform of a Gaussian of
width mkBT/ℏ2, i.e. g(1)(r, r′) is a Gaussian of width ℏ2/(mkBT ). We finally find:

ρ(1)(R) = ρ exp(−πR2/Λ2
T ) . (61)

4.2.4 Question 17: g(1) function for a uniform 3D Bose gas

Thermodynamics. We consider a uniform system with periodic boundary conditions. Hence,
the single–particle states are the plane waves ϕk(r) = exp(ik · r)/

√
V , where V . These states

are labelled by the wavevector k and correspond to the single–particle energies ϵk = ℏ2k2/(2m).
The thermodynamics of the uniform 3D Bose gas are conveniently described by expressing the
chemical potential in terms of the density. For a sufficiently large system, the predictions of all
thermodynamic ensembles coincide. We describe the gas in the grand–canonical ensemble5, where
the analysis is the simplest thanks to the uncoupling between the single–particle modes. The total
number N of particles satisfies:

N =
∑

k

πk , where πk = 1
eβ(ϵk−µ) − 1

= 1
z−1eβϵk − 1

. (62)

In Eq. (62), the population πk of the single–particle state |ϕk⟩ satisfies the Bose–Einstein distri-
bution with the inverse temperature β = 1/(kBT ) and the chemical potential µ. We have also
introduced the fugacity z = eβµ. In order for all populations πk to be positive, the chemical
potential µ must be smaller than all ϵk’s, i.e. µ must be negative, which means 0 < z < 1.

In the thermodynamic limit, the difference between consecutive values of k is very small: 2π/L
in each direction, which corresponds to the small k–space volume (2π)3/V . We wish to replace
the discrete sum in Eq. (62) by an integral, using the following substitution where we have made
apparent the small k–space volume we have just derived:∑

k

F (k) ≈
∫

d3k

(2π)3/V
F (k) . (63)

For that purpose, the contribution π0 of the ground state (wavefunction ϕ0(r) = 1/
√
V ) must be

carefully accounted for. Indeed, for z close to 1 (i.e. for µ → 0−), π0 = 1/(z−1 − 1) becomes very
large. This contribution is completely neglected in the integral approximation: Indeed, exploiting
the fact that πk = πk depends on the modulus k = |k| only, we may write

∫
d3kπk =

∫
dk 4πk2πk,

so that the weight affected to π0 vanishes like k2. Hence, whenever the population of π0 is
macroscopic (that is, when it is comparable to N , which occurs for all temperatures below the
critical condensation temperature TB), π0 = 1/(z−1 − 1) must be explicitly retained in the sum
over all modes:

N = π0 +
∫

d3k

(2π)3/V

1
z−1 eβϵk − 1

. (64)

5The grand–canonical ensemble is fully applicable for the calculation of quantities related to ρ(1). However, it is
treacherous when used to calculate quantities related to ρ(2) in the presence of a condensate [3] [4, § 3.3].

13



We now expand the integrand in increasing powers of z:

1
z−1 eβϵk − 1

= z e−βϵk

1 − z e−βϵk
=

∞∑
l=1

zl e−lβϵk , (65)

the convergence of the series on the right–hand side being ensured by the condition z < 1. Re-
placing Eq. (65) into Eq. (62) and integrating the series term by term, we find:

N = π0 + V

Λ3
T

g3/2(z) , where g3/2(z) =
∞∑

l=1

zl

l3/2 . (66)

In Eq. (66), the function g3/2(z) is called ‘polylogarithm’ or ‘Bose function’ of order 3/2. It is a
monotonously increasing function of z which behaves like g3/2(z) ≈ z for small z; it reaches the
finite value ζ(3/2) = 2.61 for z → 1.

Two cases are now possible depending on the value of the temperature T . First, for large T
(more specifically, for T greater than the critical condensation temperature TB), π0 is negligible
compared to N , and Eq. (66) reduces to:

For T > TB , nΛ3
T = g3/2(z) . (67)

The parameter nΛ3
T appearing in Eq. (67) is called the ‘phase–space density’ and plays a key role

in the description of cold quantum gases, bosonic or fermionic. We may write nΛ3
T = (ΛT /n

−1/3)3,
so that the phase–space density is directly related to the ratio of the coherence length ΛT of a single
particle to the mean interparticle spacing n−1/3. Quantum effects are expected if the coherence
length exceeds the interparticle spacing, i.e. for phase–space densities nΛ3

T ≳ 1. More specifically,
if T decreases, then ΛT increases, and therefore so does z. For bosons, Eq. (67) remains valid as
long as z < 1. The Bose transition occurs for z = 1, at which point g3/2(z) reaches its maximum
value ζ(3/2), corresponding to the temperature TB such that:

nΛ3
TB

= ζ(3/2) , which means: kBTB = ℏ2

mn−2/3
2π

[ζ(3/2)]2/3 . (68)

Apart from the numerical prefactor 2π/[ζ(3/2)]2/3 ≈ 3.31, the critical temperature kBTB is the
kinetic energy ℏ2/(mn−2/3) corresponding to the mean interparticle spacing n−1/3.

Second, for small T (more specifically, for T < TB), z is always equal to 1. Hence, the populations
πk of all states but |ϕ0⟩ are maximal: the thermal component of the Bose gas is said to be
‘saturated’. The maximum thermal population NT = N − π0 satisfies:

NT

N
= V

NΛ3
T

g3/2(1) = ζ(3/2)
nλ3

TB

Λ3
TB

Λ3
T

= (T/TB)3/2 . (69)

In Eq. (69), the first step follows from Eq. (66) with z = 1, and the last one uses Eq. (68). All
particles in excess of this maximum value go to the ground state, leading to a value of π0 which
is of the order of N . Writing π0 = N −NT , we finally obtain the condensate fraction π0/N :

For T < TB , π0/N = 1 −
(
T

TB

)3/2

. (70)

Reduced density matrix. We start from the general expression for g(1)(r, r′):

g(1)(r, r′) =
∑

k

πk ϕ
∗
k(r′)ϕk(r) =

∑
k

πk
exp[ik · (r − r′)]

V
, (71)

where the πk’s are given by Eq. (62). As expected from the translational symmetry of the problem,
g(1)(R) depends only on R = r − r′. Following Eq. (64), we explicitly retain the contribution of
π0 and replace the sum over all other modes by an integral:

g(1)(R) = π0

V
+
∫

d3k

(2π)3
1

z−1eβϵk − 1
exp[ik · R] . (72)
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Figure 1 First–order spatial correlation functions g(1)(R) of uniform an ideal quantum gases. The bosonic
case is shown on the left and the fermionic one on the right. In both cases, distances R = |r − r′| are
expressed in units of the mean interparticle distance n−1/3, and g(1)(R) in units of the uniform density n.

We expand the Bose factor using Eq. (65), and integrate the series term by term to finally obtain:

g
(1)
Bose(R)
n

= π0

N
+ 1
nΛ3

T

∞∑
l=1

zl

l3/2 exp
(

−π

l

R2

Λ2
T

)
, (73)

where n is the uniform density of the gas. The final result depends on R = |R|, as expected from
the rotational symmetry. The bosonic first–order spatial correlation function g

(1)
Bose is shown on

the left panel of Fig. 1. Let us now discuss Eq. (73) for various temperature regimes. For very
high T , the fugacity z is small, and we may retain only the leading term in the sum of Eq. (73),
which coincides with the classical result of Eq. (61). For temperatures which are not so high, but
still greater than TB , the condensate fraction π0/N vanishes. Multiple terms in the sum over l
may survive, but they all decay exponentially with a characteristic length set by ΛT : hence, the
coherence length is ∼ ΛT . We now turn to the case of temperatures T < TB . Then, a condensate
is present, so that π0/N > 0. The first–order correlation function no longer vanishes for R → ∞:
instead, it reaches the asymptotic value π0/N . Thus, the coherence length is infinite, which signals
that the system remains coherent over a long spatial range. In other words, a Bose–condensed
system exhibits an order identified by the fact that off–diagonal elements of the reduced density
matrix remain non–zero for R → ∞. Therefore, Bose–Einstein condensation is also referred to as
off-diagonal long–range order.

4.2.5 g(1) function for a uniform Fermi gas

Thermodynamics. The single–particle wavefunctions |ϕk⟩ and energies ϵk are the same as in
Sec. 4.2.4. However, the populations πk now reflect Fermi statistics:

N =
∑

k

πk , where πk = 1
eβ(ϵk−µ) + 1

= 1
z−1eβϵk + 1

. (74)

For high temperatures, the fugacity z > 0 is very small just like for Bose gases: this means that
µ is negative and large compared to kBT or, equivalently, that the system is well described by
Boltzmann statistics. However, the low–temperature behaviour of the chemical potential is very
different from its bosonic counterpart. The chemical potential µ is defined as the energy required
to add a particle to the system. For fermions at very low temperature, the many–particle system
is a ‘Fermi sea’ where all single–particle states are occupied up to the maximum energy EF (see
Sec. 3.3). Therefore, adding a particle to the system costs an energy very close to EF , meaning
that µ = EF . Hence, the fugacity z ≈ exp(βEF ) goes to +∞ in the limit of very low temperatures.
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Thus, unlike for bosons (for which zBose < 1), for fermions, z spans all positive values from z = 0
(reached for very large T ) to z = +∞ (reached for T = 0).

All populations πk ≤ 1, reflecting Pauli’s exclusion principle, so that no single–particle state
may become macroscopically occupied. Therefore, we may apply Eq. (63) to replace the discrete
sum over an integral spanning all modes:

N =
∫

d3k

(2π)3/V

1
z−1 eβϵk + 1

. (75)

In Eq. (75), the integrand depends only on k, and the change of variables x = βϵk = βℏ2k2/(2m)
in the integral shows that the phase–space density nΛ3

T = NΛ3
T /V depends only on z:

nΛ3
T = f3/2(z) = 1

Γ(3/2)

∫ +∞

0
dx

x1/2

z−1ex + 1
. (76)

It is tempting to expand the Fermi factor in increasing powers of z as for bosons (see Eq. (65)):

f3/2(z) = −g3/2(−z) = −
∞∑

l=1

(−z)l

l3/2 . (77)

However, the series of Eq. (77) only converges for z ≤ 1, whereas the low–temperature regime
where the quantum effects are strongest is reached for z > 1. There, the Fermi factor may not be
expanded in powers of z, and f3/2(z) must be defined6 through the integral of Eq. (76).

For fermions, no phase transition occurs for low temperatures. However, an order of magnitude
for the temperature below which quantum effects are important is given by the Fermi temperature
TF , defined in terms of the Fermi energy EF by kBTF = EF . Thanks to Eq. (30), we find:

EF = kBTF = ℏ2

mn−2/3
(6π2)2/3

2
. (78)

The Fermi temperature TF has a very similar structure to that of the Bose temperature TB defined
by Eq. (68). It involves the same typical kinetic energy ℏ2/(mn−2/3), but the numerical prefactor
is different: (6π2)2/3/2 ≈ 7.60. It satisfies nΛ3

TF
= 4/(3

√
π) = 0.752, confirming that quantum

effects become important for phase–space densities nΛ3
T ≳ 1 as for bosons.

Reduced density matrix. We start from the general expression of Eq. (71), where the populations
πk now obey Fermi statistics and are given by Eq. (74). We replace the discrete sum over all modes
k by an integral following the procedure of Eq. (63). This leads to:

g(1)(R) =
∫

d3k

(2π)3
1

z−1 exp(βϵk) + 1
exp(ik · R) , (79)

where we have set R = r − r′ in accordance with the translational symmetry. Just like in the
zero–temperature case of Sec. 3.3.3, we integrate over d3k using spherical coordinates of axis R.
Changing the integration variable to u = kR, we obtain:

g
(1)
Fermi(R)
n

= 1
2π2

1
nΛ3

T

(
ΛT

R

)3 ∫ ∞

0
du

u sinu

z−1 exp
(

1
4π

Λ2
T

R2 u2
)

+ 1
, (80)

showing that g(1)
Fermi(R) depends only on R = |R|, as expected from the rotational symmetry. For

z < 1, the integrand may be expanded into a power series in z which we then integrate term by
term. This leads to an expression which is very similar to the bosonic prediction of Eq. (73):

For z < 1,
g

(1)
Fermi(R)
n

= 1
nΛ3

T

(−)
∞∑

l=1

(−z)l

l3/2 exp
(

−π

l

R2

Λ2
T

)
. (81)

6In the quantum regime of large z, an asymptotic expansion of f3/2(z) may be obtained through a Sommerfeld
expansion [5, § 11.1].
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In the high–temperature limit, corresponding to z ≪ 1, only the leading term survives in the sum
of Eq. (81), and g(1)

Fermi(R) coincides with the classical prediction of Eq. (61), just like g(1)
Bose(R). In

the quantum regime, where z > 1, the series of Eq. (81) does not converge, and g(1)
Fermi(R) must be

evaluated numerically starting from the integral of Eq. (80). The one–body density matrix for a
uniform and ideal gas of fermions is represented on the right panel of Fig. 1. For large temperatures
T ≫ TF , the coherence length is ΛT . For T ≪ TF , it is given by the inverse Fermi wavevector
1/kF , and remains finite for T = 0. Hence, unlike their bosonic counterparts, low–temperature
Fermi gases do not exhibit any spectacular first–order coherence effects.

4.3 One–body density matrix in terms of the field operator
4.3.1 Definition and usage of the field operator

The field operator |Ψ̂(r)⟩ is defined as the annihilation operator corresponding to the single–
particle state |r⟩, and its transpose conjugate operator is the corresponding creation operator:

Ψ̂(r) = a|r⟩ and Ψ̂†(r) = a†
|r⟩ . (82)

The new notation as a function rather than as an index reflects the fact that the basis (|r⟩)
is a continuous basis (rather than an enumerable one, such as that of the harmonic oscillator
eigenstates). The (minor) difference in between enumerable and continuous bases is that, in the
latter case, the (anti–)commutation relations between Ψ̂(r) and Ψ̂†(r) involve Dirac Delta peaks
rather than discrete Kronecker Delta symbols:

[Ψ̂(r), Ψ̂(r′)]± = 0, [Ψ̂†(r), Ψ̂†(r′)]± = 0, [Ψ̂(r), Ψ̂†(r′)]± = δ(r − r′). (83)

The single–particle basis (|p⟩) is also a continuous basis, for which we may likewise define the
field operator Ψ̂(p):

Ψ̂(p) = a|p⟩ and Ψ̂†(p) = a†
|p⟩ . (84)

It satisfies the corresponding commutation relations:

[Ψ̂(p), Ψ̂(p′)]± = 0, [Ψ̂†(p), Ψ̂†(p′)]± = 0, [Ψ̂(p), Ψ̂†(p′)]± = δ(p − p′). (85)

Just like any other creation operator, Ψ̂†(r) transforms like a ket. Therefore, in order to expand
Ψ̂†(r) onto the creation operators for any other (enumerable or continuous) single–particle basis
(|ψα⟩), we first derive the transformation law for single–particle kets using the closure relation:

|r⟩ =
∑

α

|ψα⟩ ⟨ψα|r⟩ =
∑

α

ψ∗
α(r) |ψα⟩ . (86)

Replacing |r⟩ by Ψ̂†(r) and |ψα⟩ by a†
α in Eq. (86), we obtain the transformation law for Ψ̂†(r):

Ψ̂†(r) =
∑

α

ψ∗
α(r) a†

α . (87)

Then, taking the transpose conjugate of Eq. (87) yields the transformation law for Ψ̂(r):

Ψ̂(r) =
∑

α

ψα(r) aα . (88)

The relevance of the field operator Ψ̂(r) stems from the fact that it may be used to express
the many–particle Hamiltonian in second–quantised form. The complete many–body Hamiltonian
H = K + U + V is usually the sum of three operators: the trapping potential U =

∑
i u

(i) and
the kinetic energy K =

∑
i k

(i) (which are both single–particle operators), and the two–body
interaction term V (which is a two–body operator). We examine these three terms in turn.
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Trapping potential. The general rule for expressing single–particle operators (first equality of
Eq. (42)) combined with the transformation law of Eq. (88) leads to the following expression for
the trapping potential term:

Û =
∫
d3r u(r) Ψ̂†(r) Ψ̂(r) . (89)

Kinetic energy. We focus here on the single–particle kinetic energy operator, k = p2/(2m), and
the corresponding many–body operator, K =

∑
i k

(i). Our main goal is to cast k in the form:

k =
∫
d3r |r⟩

(
− ℏ2

2m
∇2

r

)
⟨r| . (90)

The corresponding many–body operator is then obtained from Eq. (90) through the usual rules:

K =
∫
d3r Ψ̂†(r)

(
− ℏ2

2m
∇2

r

)
Ψ̂(r) . (91)

Using the hermitian character7 of p = −iℏ∇r, Eq. (91) may be rewritten in the following form:

K = + ℏ2

2m

∫
d3r (∇rΨ̂†(r)) · (∇rΨ̂(r)) . (92)

In order to obtain Eq. (90), we first expand the single–particle operator k in the position basis:

k =
∫
d3r1d

3r2 |r1⟩ ⟨r1|k|r2⟩ ⟨r2| =
∫
d3r1d

3r2 ⟨r1|k|r2⟩ |r1⟩ ⟨r2| . (93)

Equation (93) involves a double sum on r1 and r2, whereas the sought Eq. (90) is diagonal in
r. The next step is the calculation of the matrix element ⟨r1|k|r2⟩. It is not straightforward
to express the operator k = p2/(2m) in the position basis (|r⟩); however, k is diagonal in the
momentum basis (|p⟩). The relation between these two bases may be summarised by two closure
relations and an overlap8:∫

d3r |r⟩ ⟨r| = 1,
∫
d3p |p⟩ ⟨p| = 1, ⟨r|p⟩ = 1

(2πℏ)3/2 exp(ip · r/ℏ) . (94)

We introduce the closure relation on the momentum basis within the matrix element ⟨r1|k|r2⟩:

⟨r1|k|r2⟩ = ⟨r1| p2

2m
|r2⟩ = ⟨r1| p2

2m

(∫
d3p |p⟩ ⟨p|

)
|r2⟩ =

∫
d3p ⟨r1| p2

2m
|p⟩ ⟨p|r2⟩ . (95)

We now exploit the fact that |p⟩ is the eigenstate of the operator p with the eigenvalue p:

⟨r1|k|r2⟩ =
∫
d3p

p2

2m
⟨r1|p⟩ ⟨p|r2⟩ =

∫
d3p

p2

2m
exp(ip · R/ℏ)

(2πℏ)3 . (96)

In establishing the last equality of Eq. (96), we have used the last of Eqs. (94) and introduced
R = r1 − r2. The Fourier transform appearing on the right–hand side of Eq. (96) is readily
calculated by recognising a second–order derivative with respect to R:

⟨r1|k|r2⟩ =
∫
d3p

(
− ℏ2

2m

)
∇2

R

[
exp(ip · R/ℏ)

(2πℏ)3

]
= − ℏ2

2m
∇2

R

[∫
d3p

exp(ip · R/ℏ)
(2πℏ)3

]
.

(97)

7The hermitian character of p is not always straightforward to establish. In the most usual scenario, it follows
from the assumption that wavefunctions vanish sufficiently quickly for large distances.

8Many different conventions are used in the literature for Eqs. (94), and it is important to be consistent in the
choice of the normalisation factors. We follow the convention of Ref. [6, §II.E.1, Eqs. E-5 and E-9].
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We now recall two well–known properties of the Dirac peak δ:

δ(x) =
∫

dk

2π
eikx and δ(αx) = 1

α
δ(x) for any constant α > 0. (98)

These allow for the calculation of the integral within the brackets on the second line of Eq. (97):

⟨r1|k|r2⟩ = − ℏ2

2m
∇2

R [δ(R)] . (99)

Recalling that R = r1 −r2, and using the chain rule for the gradient twice, the gradient in Eq. (99)
may be taken with respect to either r1 or r2, with no change in the sign:

⟨r1|k|r2⟩ = − ℏ2

2m
∇2

r1
[δ(r1 − r2)] = − ℏ2

2m
∇2

r2
[δ(r1 − r2)] . (100)

We choose to use ∇r2 , and inject Eq. (100) into Eq. (93) to obtain:

k =
∫
d3r1d

3r2 |r1⟩ ⟨r2|
(

− ℏ2

2m

)
∇2

r2
[δ(r1 − r2)] . (101)

We now perform two consecutive integrations by parts to transfer the gradients acting on the
Dirac peak onto the operator |r1⟩ ⟨r2|. Each integration by parts adds a minus sign; therefore,
the two consecutive integrations by parts have no net effect on the sign:

k =
∫
d3r1d

3r2 |r1⟩
(

− ℏ2

2m

)
∇2

r2
[ ⟨r2| ] δ(r1 − r2) . (102)

Finally, the Dirac peak δ(r1 − r2) eliminates the integral on r1, and we conclude:

k =
∫
d3r2 |r2⟩

(
− ℏ2

2m

)
∇2

r2
⟨r2| , (103)

which coincides with Eq. (90).

Pairwise interaction. We now turn to the interaction term V̂ , which describes the pairwise
interaction between the particles. This is a two–body operator which reads, in first–quantised
notation:

V̂ =
∑
i ̸=j

v(i,j) , (104)

where the operator v(i,j) acts on the particles i and j only. In terms of the creation and annihilation
operators related to the single–particle basis |ψα⟩, the two–particle operator V reads:

V̂ =
∑

αβγδ

⟨αβ|v|γδ⟩ a†
αa

†
βaδaγ . (105)

The ordering of the creation and annihilation operators appearing on the right–hand side of
Eq. (105) is important in the fermionic case. The mnemonic rule of the ‘stack of plates’, which
is equivalent to the pop/push terminology of a stack in computer science, helpfully links it to
the ordering of the single–particle states in the matrix element ⟨αβ|v|γδ⟩. Any (fermionic) ket
|α1, α2, . . . , αj , . . .⟩ may be understood as a stack where the single–particle states |αj⟩ play the role
of the plates: the plate at the top of the stack appears on the left and the one at the bottom of the
stack appears on the right. Annihilation operations behave like “pop” operations on the stack: the
top plate should be broken first and the bottom plate last, like in a Greek restaurant. Recall that
in the composition of two linear operators U and V acting on a vector |Ψ⟩, V U |Ψ⟩ = V ◦ U |Ψ⟩,
U first acts on |Ψ⟩ and then V acts on U |Ψ⟩. Hence, the annihilation of the two–state ket |γδ⟩
corresponds to aδaγ . Conversely, creation operators behave like “push” operations on the stack: if
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a plate is added to the stack, it is added at the top and pushes all other plates towards the bottom.
Hence, if a single–particle state is added to the stack, it appears on the left and pushes all the
other states towards the right. Thus, the creation of the two-state ket |αβ⟩ corresponds to a†

αa
†
β .

The matrix element ⟨αβ|v|γδ⟩ should be read from right to left: it describes the annihilation of the
two–state ket |γδ⟩ followed by the creation of the two–state ket |αβ⟩. Therefore, it corresponds to
the sequence of operators a†

αa
†
βaδaγ , in accordance with Eq. (105).

We finally specialise Eq. (105) to case where (|ψα⟩) is the position basis (|r⟩), and obtain the
expression of V in terms of the field operator Ψ̂(r):

V̂ =
∫
d3r1d

3r2 v(r1 − r2) Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1) . (106)

4.3.2 Question 13: One–body density matrix in terms of the field operator

We now show that the one–body density matrix elements may be expressed as an average of a
product of two field operators in the considered quantum state:

⟨r|ρ(1)|r′⟩ = ⟨Ψ̂†(r′)Ψ(r)⟩ , (107)

an expression which is frequently taken as the definition for the one–body density matrix or first–
order correlation functions in advanced textbooks. We give two different proofs for Eq. (107).

First proof. We start from Eq. (43), valid for any single–particle basis |(ψα)⟩, in braket notation:

⟨r|ρ(1)|r′⟩ =
∑
α,β

⟨ψα|r′⟩ ⟨r|ψβ⟩ ⟨a†
αaβ⟩ . (108)

We now specialise to the single–particle basis (|ψα⟩) = (|r⟩). We replace the running indices α
and β by r1 and r2, respectively, and use the definition of the field operator (Eq. (82)) to obtain:

⟨r|ρ(1)|r′⟩ =
∫
d3r1d

3r2 ⟨r1|r′⟩ ⟨r|r2⟩ ⟨Ψ̂†(r1)Ψ̂(r2)⟩ . (109)

The matrix elements ⟨r′|r1⟩ = δ(r1 − r′) and ⟨r2|r⟩ = δ(r2 − r) select the specific positions of
r1 = r′ and r2 = r in the integral, so that Eq. (109) reduces to the sought Eq. (107).

Second proof. The quantities ϕ∗
α(r′) and ψβ(r) are numbers, so that we may write Eq. (43) in

the following form:

⟨r|ρ(1)|r′⟩ =

〈(∑
α

ψ∗
α(r′) a†

α

)∑
β

ψβ(r) aβ

〉 . (110)

We recognise the expression for Ψ̂†(r′) (given by Eq. (87)) inside the first set of parentheses and
that for Ψ̂(r) (given by Eq. (88)) inside the second set, so that Eq. (107) follows immediately.

5 Interacting systems
5.1 Question 18: Various types of interaction
5.1.1 Between two neutral atoms

Two neutral atoms interact via an isotropic and short–ranged interaction. For two alkali atoms
in their ground state, the long–range interaction is an attractive van der Waals interaction [2,
Complement CXI], i.e the interaction potential V (r) = −C6/r

6, with r being the interatomic
distance and C6 > 0. This long–range attractive part is due to the fluctuations of the dipoles
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Figure 2 The two potentials VS(r) and VT (r) char-
acterising the interaction between two ground–state
23Na atoms. The interatomic distance r is expressed
in terms of the Bohr radius a0 = 52.9 fm; the energies
VS,T (r) are expressed in units of h · 1 THz.

of each atom inducing a non–vanishing dipole moment on the other atom: this is a second–order
effect, which explains the dependence with 1/r6 (rather than 1/r3 for two permanent dipoles).
For small interatomic distances, the interaction is repulsive owing to the Pauli exclusion principle
affecting the overlapping electron clouds. Hence, a rough approximation to the interaction between
two ground–state alkali atoms may be obtained through a Lennard–Jones potential VLJ(r):

VLJ(r) = Emin

[(rm

r

)12
− 2

(rm

r

)6
]
. (111)

The potential of Eq. (111) reaches the minimum −Emin for the interatomic distance r = rm.
A more accurate analysis of the interaction between two alkali atoms should include the role of

the electronic spins, which lead to the presence of an exchange interaction [7, chap. 32]. Each atom
carries a single outer electron. The two outer electrons may combine to form either a singlet state
(S) with the total two–electron spin S = 0, or a triplet state (T ) with S = 1. Hence, there are
actually two different interatomic potentials VS(r) and VT (r), which share the same long–range
behaviour −C6/r

6 but differ for intermediate distances. These are illustrated on Fig. 2 in the case
of two ground–state 23Na atoms. Both the singlet and the triplet potential wells support bound
states. The highest–energy bound states play a key role in the low–energy scattering properties
of the two atoms. For large r, the total electronic spin S is not a good quantum number, because
the atomic electronic spins s1,2 couple to the corresponding nuclear spins i1,2, giving rise to the
atomic hyperfine structure. The hyperfine coupling term (s1 · i1 + s2 · i2) does not commute
with the total electronic spin S. This yields a coupling between the singlet and triplet two–atom
wavefunctions, which gives rise to low–energy scattering resonances called Feshbach resonances.

We call R the range of the interaction potentials VS,T . For atoms of mass m interacting via
the van der Waals interaction −C6/r

6, this range may be estimated by comparing C6/R
6 to the

typical kinetic energy ℏ2/(mR2):

C6

R6 = ℏ2

mR2 , which leads to R =
(
mC6

ℏ2

)1/4

. (112)

If the mean interatomic distance n−1/3 is much larger than R, i.e. if nR3 ≪ 1, the system is said
to be dilute. Then, the short–range details of the interaction potential do not matter, and the
interaction may be modelled in terms of an effective contact potential:

Veff(r) = 4πℏ2

m
aδ(r) , (113)

where the scattering length a is chosen to reproduce the low–energy scattering properties of the
real potential V (r). For two atoms in their ground states, the real interaction is always attractive
at large distances (see Fig. 2), but the effective interaction may be either attractive or repulsive.
The case a > 0 corresponds to a repulsive effective interaction, whereas a < 0 signals that the
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effective interaction is attractive. The sign of a, and hence the attractive or repulsive nature of
the effective interaction, depend on the position of the highest–energy bound state in the real
potential well V (r). In all cases, the scattering cross–section σ is proportional to a2.

A Feshbach resonance may be exploited to tune the value of a to arbitrarily large or small,
positive or negative values of a. If |a| is much larger than the mean interatomic spacing, i.e. if
n|a|3 ≫ 1, the system is said to be strongly interacting. Note that the system may be simultane-
ously dilute (nR3 ≪ 1) and strongly interacting (n|a|3 ≫ 1). This requires the following double
condition on the mean interparticle spacing n−1/3:

R ≪ n−1/3 ≪ |a| . (114)

This regime, called the ‘unitary’ limit, is particularly relevant for recent experiments on cold
atomic gases, be they Bose or Fermi. For example, the unitary Fermi gas [8, § 26.5.4] is readily
brought into the superfluid regime, where it exhibits properties which are closely related to those
of the superfluid phase of liquid 4He (which is the bosonic isotope of helium, whereas 3He is a
fermion) [9, 10]. The unitary Bose gas presents challenging instabilities due to increased three–
body and four–body loss processes (which are less problematic in the fermionic case thanks to Pauli
exclusion), and it is currently the object of intense theoretical and experimental investigation.

5.1.2 Between two dipoles

Some more recent applications of atomic Physics require interatomic interactions which are longer–
ranged than the van der Waals interaction of Eq. (111) or its idealised contact version (Eq. (113)).
An important example is the construction of two–qubit quantum gates [1, chap. 1.3.2], which are
fundamental components required for quantum information processing and some modern formula-
tions of quantum simulation. A way to achieve such longer–ranged interactions is to resort to cold
gases exhibiting dipole–dipole interactions [4, chap. 25]. We consider two dipolar particles which
carry the (electric or magnetic) dipole moments d1 and d2, respectively. If the two particles are
separated by the vector r = r1 − r2, then the Dipole–Dipole Interaction (DDI) reads:

VDDI(r) = d1 · d2 − 3(d1 · r̂)(d2 · r̂)
r3 , (115)

with r̂ = r/r being the unit vector giving the direction of r. Equation (115) reveals two important
differences of the DDI with respect to the van der Waals interaction. First, the DDI interaction
is longer–ranged, because it decays for large distances like 1/r3 rather than like 1/r6. Second, it
is anisotropic. In order to make the anisotropy more apparent, let us specialise Eq. (115) to the
case where both dipoles are polarised in the same direction, d1 = d2 = dez. The polarisation ez

is set by an external electric field for particles carrying an electric dipole moment, and magnetic
for particles carrying a magnetic dipole moment. We call θ the angle between the polarisation
direction ez and the interatomic vector r. Then, Eq. (115) reduces to:

VDDI(r) = d2

r3 (1 − 3 cos2 θ) , (116)

where the anisotropy is reflected by the explicit dependence on θ. The interaction potential of
Eq. (116) is partly repulsive and partly attractive. Indeed, let us call θDDI

c = arccos(1/
√

3).
Then, if θ > θc, then VDDI behaves like +1/r3, which is repulsive, leading to stable dipolar
systems. By contrast, if θ < θc, then VDDI behaves like −1/r3, which is attractive, leading to
unstable dipolar systems where all particles tend to collapse towards the same point. In order
to avoid such instabilities, dipolar systems are usually confined to 2D or 1D geometries thanks
to strongly confining potentials in one spatial direction (2D ‘pancake’–like geometry) or in two
spatial directions (1D ‘cigar’–like geometry).

In the absence of an external electric field, the electronic distribution of an atom in its ground
state is spherically symmetric. The presence of a permanent electric dipole moment would select
a specific direction, thus violating the spherical symmetry. Hence, atoms in their ground state
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do not carry a permanent electric dipole moment. However, they may carry a non–negligible
permanent magnetic dipole moment. This hold for e.g. bosonic 52Cr and fermionic 161Dy (neither
of those atoms belongs to the alkali group). Quantum–degenerate dipolar gases have recently been
brought to quantum degeneracy (that is, below TB for bosons and below TF for fermions), and
their properties are undergoing intense theoretical and experimental scrutiny.

Another way to access the DDI is to replace atoms by heteronuclear diatomic molecules [11].
The ground state of these composite objects is not constrained by spherical symmetry, so that
they may be polar. The first experimental realisation of a quantum degenerate gas of such polar
molecules has very recently been reported with fermionic K − Rb molecules.

A third way to exploit dipolar interactions is to turn to Rydberg atomic states [12]. These states
are characterised by one electron being in a highly–excited state. For alkali atoms such as 87Rb, the
excited electron is the one on the outer shell. Such a Rydberg state has a well–defined value of the
electronic angular momentum l and, hence, a definite spatial parity, which forbids the presence of
a diagonal electric dipole moment. However, off–diagonal dipole moments are not forbidden: quite
on the contrary, they are huge for large values of l ≳ 50. For large interatomic distances, these
off–diagonal dipole moments yield strong van der Waals interactions, whose van der Waals length
R defined by Eq. (112) may exceed the interparticle spacing. For smaller interatomic distances,
Rydberg atoms interact through the anisotropic DDI of Eq. (115) (see e.g. Ref. [13, §II.B]).

5.1.3 Between two charged particles

Two charged particles interact via the Coulomb interaction:

VCoulomb(r) = 1
4πϵ0

q1q2

r
, (117)

where q1 and q2 are the charges of the two interacting particles. The Coulomb interaction is
isotropic and long–ranged. It is attractive if q1q2 < 0 and repulsive if q1q2 > 0. In both cases, the
scattering states and bound states of the two–particle system are well known — the bound states
exist only in the attractive case and correspond to the discrete energy levels of the hydrogen atom
[14, §11.3].

Ions may be trapped and manipulated in a similar way as for neutral atoms. Their long–range
interaction is an added complication for experiments, but it may be put to good use in the field of
quantum simulation and quantum information processing, where two–qubit gates with excellent
fidelity and efficiency have been realised.

Electrons, which carry the charge −|e|, are ubiquitous in condensed–matter systems. In many
cases, rough but relevant descriptions of condensed–matter phenomena may be obtained by ne-
glecting the interaction between them. This is the ‘independent electron approximation’, whose
relevance stems from the fact that interactions in many–electron systems tend to be screened. The
electrons themselves interact via the Coulomb interaction, but the system may be described in
terms of fictitious ‘quasi–particles’, or ‘dressed electrons’, which interact only very weakly.

5.2 Question 4: Symmetries of ρ(1) for uniform gases
In this section, the trapping potential vanishes (U(r) = 0), and no external magnetic field is
present (so that the single–particle kinetic energy is p2/(2m)). However, we do allow arbitrary
two–particle interactions which only depend on the relative distance between the two particles
(and not on their spin states), VI(|r − r′|), and whose strength and range are arbitrary. We
further assume that the system is fully polarised, i.e. all particles are in the same spin state, so
that it drops out of the analysis. Our goal is to show that, under these assumptions, the first–order
correlation function g1(r, r′) depends only on |r − r′|. This means in particular that, for such a
uniform system, g1(r, r′) is real for all r and r′.
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5.2.1 Invariance under translations

Our first step is to exploit the translational symmetry. The N–particle Hamiltonian H does not
commute with the single–particle linear momenta p1, . . ., pN , because the interactions between
the particles mix these momenta. However, because of the translational invariance, H does com-
mute with the total linear momentum P = p1 + . . .+ pN . Therefore, so does the N–body density
matrix ρ, both in the canonical ensemble (ρC = exp(−βH)/Z) and in the grand–canonical en-
semble (ρGC = exp[−β(H − µN)]/Z). Hence, the matrix elements of ρ in the momentum basis,
⟨p1, . . . ,pN |ρ|p′

1, . . . ,p
′
N ⟩, are non–zero only if the total momenta corresponding to the ket and

the bra are equal: p1 + . . . + pN = p′
1 + . . . + p′

N . We are particularly interested in the matrix
elements appearing in the partial trace Tr2...N (ρ) evaluated in the momentum–state basis:

⟨p1|ρ(1)|p′
1⟩ = N ⟨p1| Tr2...N (ρ)|p′

1⟩ =
∫
dp2 . . . dpN ⟨p1,p2, . . . ,pN | ρ |p′

1,p2, . . . ,pN ⟩ . (118)

The matrix elements appearing in Eq. (118) are those for which p2 = p′
2, . . . , pN = p′

N . Therefore,
in order for ⟨p1|ρ(1)|p′

1⟩ to be non–zero, the conservation of total momentum requires that p1 = p′
1.

Thus, ρ(1) is diagonal in the single–particle momentum basis (p). In other words, ρ(1) commutes
with the operator p, namely [ρ(1),p] = 0. The commutator appearing here is a true commutator,
regardless of the bosonic or fermionic nature of the particles.

We now introduce the translation operator Tr0 = exp(−ir0 ·p/ℏ). The action of Tr0 on a spatial
ket |r⟩ is to shift it by r0: Tr0 |r⟩ = |r + r0⟩. The operator Tr0 is unitary, so that T †

r0
= T−r0 .

The reduced density matrix ρ(1) commutes with the operator p, hence, it commutes with Tr0 for
any vector r0, and we may write:

⟨r′|ρ(1)|r⟩ = ⟨r′|T †
r0
ρ(1) Tr0 |r⟩ = ⟨r′ + r0|ρ(1)|r + r0⟩ . (119)

We choose r0 = −r′ in Eq. (119) to obtain:

⟨r′|ρ(1)|r⟩ = ⟨0|ρ(1)|r − r′⟩ , which means g(1)(r, r′) = g(1)(r − r′) . (120)

5.2.2 Invariance under rotations

We now turn to the rotational invariance. The N–particle Hamiltonian H commutes with the
projection of the total angular momentum along the quantisation axis ez, Lz = lz1 + . . . +
lzN . We repeat the reasoning above, replacing the momentum basis with the following one:
(|r1, l1, lz1; . . . ; rN , lN , lzN ⟩). Here, the quantum number lj defines the modulus of the single–
particle angular momentum lj through the relation l2

j = lj(lj + 1). We consider a matrix element
of ρ(1) in the corresponding single–particle basis, (|r1, l1, l1z⟩):

⟨r1l1l1z|ρ(1)|r′
1l

′
1l

′
1z⟩ = N ⟨r1l1l1z| Tr2...N (ρ)|r′

1l
′
1l

′
1z⟩ =

∑
l2,...,lN

∑
lz2,...,lzN

∫
dr2 . . . drN

⟨r1l1l1z; r2l2l2z; . . . rN lN lNz| ρ |r′
1l

′
1l

′
1z; r2l2l2z; . . . rN lN lNz⟩ .

(121)

In order for ⟨r1l1l1z|ρ(1)|r′
1l

′
1l

′
1z⟩ to be non–zero, the conservation of the total angular momentum

projection requires l1z + l2z + . . . + lNz = l′1z + l2z + . . . + lNz, that is, l1z = l′1z. Hence, ρ(1)

commutes with the single–particle operator lz. The direction ez plays no role in this argument,
so that ρ(1) also commutes with the operators lx and ly.

We now introduce the rotation operator Rθn̂ = exp(−iθ n̂ · l/ℏ). The action of Rθn̂ on a spatial
ket |r⟩ is to rotate it about the direction defined by n̂ by the angle θ: Rθn̂ |r⟩ = |Rθn̂ r⟩ (here,
Rθn̂ acts on the single–particle Hilbert space, whereas Rθn̂ is the geometrical rotation in real
3D space). The operator Rθn̂ is unitary, so that R†

θn̂ = R−θn̂. The reduced density matrix ρ(1)

commutes with the operators lx, ly, and lz, hence, it commutes with Rθn̂ for any direction n̂ and
angle θ. Starting from Eq. (120) with R = r − r′, we may write:

⟨r′|ρ(1)|r⟩ = ⟨0|R†
θn̂ ρ

(1) Rθn̂|R⟩ = ⟨0| ρ(1) |Rθn̂R⟩ . (122)
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For a given R = r − r′, we choose n and θ in Eq. (122) such that Rθn̂R = |R|ez. Hence,

⟨r′|ρ(1)|r⟩ = ⟨0| ρ(1) |Rθn̂|R|ez⟩ , which means g(1)(r, r′) = g(1)(|r − r′|) . (123)

Finally, the fact that g(1)(r, r′) is real for all r and r′ follows from:

g(1)(r, r′) = g(1)(|r − r′|) = g(1)(r′, r) = [g(1)(r, r′)]∗ . (124)

5.3 Diagonalisation of the one–body density operator
5.3.1 Hermiticity of the one–body density operator

We first prove that the one–body density operator ρ(1) is hermitian: ρ(1)† = ρ(1). We provide
two independent proofs of this result: one in terms of first quantisation and another one in the
language of second quantisation.

Proof in terms of first quantisation. We prove the equality of the matrix elements ⟨r|ρ(1)†r′⟩
and ⟨r|ρ(1)r′⟩ in the single–particle position basis |r⟩. For that purpose, we write:

⟨r|ρ(1)†|r′⟩ =
[
⟨r′|ρ(1)|r⟩

]∗

=
[
N

∫
d3r2 . . . d

3rN ⟨r′, r2, . . . , rN | ρ |r, r2, . . . , rN ⟩
]∗

= N

∫
d3r2 . . . d

3rN [⟨r′, r2, . . . , rN | ρ |r, r2, . . . , rN ⟩]∗

= N

∫
d3r2 . . . d

3rN ⟨r, r2, . . . , rN | ρ† |r′, r2, . . . , rN ⟩

= N

∫
d3r2 . . . d

3rN ⟨r, r2, . . . , rN | ρ |r′, r2, . . . , rN ⟩

= ⟨r|ρ(1)|r′⟩ .

(125)

The first step is the definition of the transpose conjugate operator ρ(1)† in terms of its matrix
elements. The second step follows from the definition of ρ(1), the partial trace Tr2...N being per-
formed in the N–particle position basis. The third step simply uses the linearity of the conjugation
of a complex number. The fourth step is the definition of the transpose conjugate operator ρ†.
The fifth step expresses that the full density matrix ρ is hermitian. The sixth and final step follows
from the definition of the matrix element ⟨r|ρ(1)|r′⟩ of the reduced density operator ρ(1).

Proof in terms of second quantisation. This proof is independent of the preceding one. It
requires a preliminary mathematical step. We are used to calculating expectation values ⟨M⟩
for Hermitian operators M , in which case ⟨M⟩ is real. By contrast, the expectation value of a
non–hermitian operator may be non–real, and it satisfies ⟨M†⟩ = ⟨M⟩∗. Indeed:

⟨M†⟩ = Tr[ρM†]
= Tr[(M ρ†)†]
= Tr[(M ρ)†]
= Tr[M ρ]⋆

= Tr[ρM ]⋆

= ⟨M⟩⋆

(126)

In Eq. (126), the first step is the definition of the expectation value in terms of the (full) density
operator ρ. The second step exploits the general property (AB)† = B†A† of the Hermitian
conjugate of a product of two operators A and B. The third step follows from the fact that the
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density operator ρ is always Hermitian. The fourth step follows from the definition A† = tA∗ of
the Hermitian conjugate A† of A in terms of transposition (t) and complex conjugation (∗). The
fifth step reflects Tr(AB) = Tr(BA), which holds for any two operators A and B. The sixth and
final step is analogous to the first one.

Next, we consider the non–Hermitian operator Ψ̂†(r)Ψ̂(r′) and obtain:

⟨r|ρ(1)|r′⟩ = ⟨Ψ̂†(r′)Ψ̂(r)⟩

= ⟨
(

Ψ̂†(r)Ψ̂(r′)
)†

⟩

= ⟨
(

Ψ̂†(r)Ψ̂(r′)
)

⟩
∗

= ⟨r′|ρ(1)|r⟩
∗

= ⟨r|ρ(1)†|r′⟩ ,

(127)

where the first and fourth step follow from Eq. (107), whereas the third step follows from Eq. (126).

5.3.2 Question 19: Diagonalisation of the one–body density operator

The operator ρ(1) is hermitian, hence, it may be diagonalised in an orthonormal basis. Thus,
there is a basis (|ϕα⟩) of the single–particle Hilbert space E (1) which consists of (orthogonal and
normalised) eigenstates of ρ(1):

ρ(1) |ϕα⟩ = πα |ϕα⟩ , meaning that ρ(1) =
∑

α

πα |ϕα⟩ ⟨ϕα| , (128)

where the real number πα is the eigenvalue corresponding to the eigenstate |ϕα⟩ . Therefore, the
matrix elements ⟨r|ρ(1)|r′⟩ satisfy the same expression as for an ideal gas (see Eq. (55) above):

⟨r|ρ(1)|r′⟩ =
∑

α

πα ϕ
∗
α(r′)ϕα(r) , (129)

that is, the expansion of ρ(1) in terms of the wavefunctions ϕα(r) involves only a single sum on
the index α.

5.3.3 Positivity of the one–body density operator and Penrose criterion for condensation

We know from Eq. (23) that Tr[ρ(1)] = N . Hence, the πα appearing in Eq. (128) satisfy:∑
α

πα = N . (130)

We now show that the real numbers πα are all positive, i.e. that the hermitian operator ρ(1) is
positive. We follow the standard procedure, i.e. we consider an arbitrary ket |ψ⟩ in the space E (1)

and calculate ⟨ψ|ρ(1)|ψ⟩. For that purpose, we start from Eq. (22) and expand the partial trace
Tr2...N in the position basis (but any N–particle basis would do just as well):

⟨ψ|ρ(1)|ψ⟩ = N

∫
d3r2 . . . drN ⟨ψ, r2, . . . , rN |ρ|ψ, r2, . . . , rN ⟩ . (131)

The many–body density matrix is a positive operator, hence, all of its diagonal matrix elements
appearing in Eq. (131) are positive. Therefore, ⟨ψ|ρ(1)|ψ⟩ ≥ 0. Then, choosing |ψ⟩ to be one of
the eigenstates |ϕα⟩, we find 0 ≤ ⟨ϕα|ρ(1)|ϕα⟩ = πα, so that all eigenvalues πα are positive. Hence,
we may call the eigenstates |ϕα⟩ ‘single–particle wavefunctions’ and interpret the corresponding
eigenvalues πα as their populations.

This interpretation of Eq. (129) yields a criterion, due to Penrose, for whether or not a Bose–
Einstein condensate is present in the system. The system is said to be Bose–condensed if one at
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least of the populations πα is macroscopic, i.e. of the order of N . This definition is applicable at
zero and non–zero temperatures, both in the absence and in the presence of interactions. In the
uniform case, where the wavefunctions ϕα(r) are not constrained to vanish for large r because
no trapping potential is imposed onto the system, this criterion coincides with the definition for
off–diagonal long–range order given in Sec. 4.2.4.

For an ideal Bose gas at T = 0, π0 = N and the system is Bose–condensed. For temperatures
0 < T < TB , the condensate fraction π0/N < 1, but it still remains sizeable (π0/N = 1−(T/TB)3/2

for the uniform Bose gas of Sec. 4.2.4: see Eq. Eq. (70)). However, for T > TB , the ground state
is no longer macroscopically populated, and all πα ≪ N in the thermodynamic limit.

5.3.4 Question 20: Quantum depletion

We now briefly discuss the role of repulsive interactions on the condensate fraction π0/N . These
interactions cause the population π0 to decrease with respect to N , a phenomenon known as
‘quantum depletion’. Atomic gases in the presence of weak repulsive interactions are characterised
by a small value of the adimensional parameter na3 (with a > 0). In the uniform case at T = 0,
the condensate fraction at T = 0 is π0/N = 1 − γ(na3)1/3 with γ = 8/(3

√
π) ≈ 1.5, a result which

may be obtained using well–understood analytical techniques based on the Bogoliubov approach
[4, Section 4.3]. There, the quantum depletion is very small. It has recently been measured
unambiguously for the first time in an experiment specially designed to bring the depleted fraction
up to a few percent. The situation is very different for liquid 4He. There, the system is not dilute,
in the sense that nR3, where R is the range of the interaction, is not small compared to 1 — this is
why the system behaves as a liquid rather than as a gas. Therefore, the previous estimate for π0/N
no longer holds. In liquid helium, π0/N is not accurately given by known analytical techniques,
it should be either measured or calculated numerically. In both cases, we find π0/N ∼ 0.1, i.e.
the role of interactions is so strong that the condensate is almost fully depleted [4, Section 8.4].
Nevertheless, liquid Helium does behave as a superfluid. This means that the condensate fraction
and the superfluid fraction do not coincide, an intriguing point which has spawned many interesting
recent developments, in particular towards lower–dimensional systems (where the transition to a
condensed phase is replaced by a crossover to the superfluid regime) and stronger–interacting
quantum gases (where the Bogoliubov approach is not applicable).

References
[1] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press

(2000).
[2] C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, volume II, Wiley (1973).
[3] J. R. Johnston, Am. J. Phys. 38, 516 (1970).
[4] L. P. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Oxford University Press, 2nd ed.

(2016).
[5] K. Huang, Statistical Mechanics, Wiley, 2nd ed. (1987).
[6] C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, volume I, Wiley (1973).
[7] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Harcourt (1976).
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