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Outline of the tutorials for the first half ot the semester

▶ Problem 1: two–particle interference

▶ Problem 2: coherence and correlations in quantum gases

▶ Problem 3: lattice models, superfluid/Mott insulator transition

All problems describe experiments that have actually been performed

They all contain elements of theory and introduce calculation techniques

They all contain both standard questions and (very?) hard questions
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A bird’s eye view of the problem

Problem #2: Spatial Correlation Functions

in Bose and Fermi gases

▶ One–body and two–body (reduced) density matrices

▶ Ideal Bose and Fermi gases at temperature T = 0

Off–diagonal long–range order in bosonic systems

▶ Ideal quantum gases at non–zero temperature

Description in terms of second quantisation

▶ First steps with interacting systems
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Review: Reduced density matrix:

an example from quantum information

No identical particles in this digression.

[Nielsen & Chuang, Quantum Computation and Quantum Information, CUP (2000), §1.3.6]
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Bipartite system: Alice’s reduced density matrix

▶ The system comprises two parts: A (Alice) and B (Bob)

The Hilbert space for the joint system is a tensor product: H = HA ⊗ HB

▶ The state of the joint system is described by a density matrix ρ acting on H

Pure state |Ψ⟩ (e.g. ground state, not necessarily product state): ρ = |Ψ⟩ ⟨Ψ|

Thermal equilibrium at temperature T : ρ = e−βH/Tr(e−βH)

▶ Alice may measure any observable affecting her part of the system: MA = MA ⊗ 1B

What information on the joint system does she have access to?

Not the full ρ, but the reduced density matrix ρA = TrB(ρ) (partial trace over HB)
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Local measurements on HA access ρA only
▶ The complete density matrix ρ acts on H = HA ⊗ HB

Let {|ai ⟩} be a basis of HA and {|bj ⟩} a basis of HB

ρA = TrB(ρ) =
∑

j

⟨bj |ρ|bj⟩ acts on HA only

Show that ρA does not depend on the choice of the basis {|bj ⟩}

▶ A local observable MA is an observable acting only on HA: MA = MA ⊗ 1B

⟨MA⟩ = Tr[ ρ (MA ⊗ 1B) ] =
∑

i,j

⟨ai ,bj | ρ (MA ⊗ 1B) |ai ,bj⟩

Act with (MA ⊗ 1B) on |ai ,bj ⟩: |bj ⟩ is unaffected

⟨MA⟩ =
∑

i

⟨ai |

∑
j

⟨bj |ρ|bj⟩ MA

 |ai⟩ =
∑

i

⟨ai | ρAMA |ai⟩

⟨MA⟩ = TrA(ρA MA) with ρA = TrB(ρ)

The averages of all local observables are piloted by the reduced density matrix ρA
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Example: Alice’s reduced density matrix for Bell states
▶ Four Bell states: (maximally entangled two–particle states)

|Φ±⟩ =
(
|↑⟩A |↑⟩B ± |↓⟩A |↓⟩B

)
/
√

2 and |Ψ±⟩ =
(
|↑⟩A |↓⟩B ± |↓⟩A |↑⟩B

)
/
√

2

▶ Pure state |Φ+⟩ ⟨Φ+| =
(
|↑⟩A |↑⟩B + |↓⟩A |↓⟩B

) (
⟨↑|A ⟨↑|B + ⟨↓|A ⟨↓|B

)
/2

TrB(|Φ+⟩ ⟨Φ+|) = ⟨↑B |Φ+⟩ ⟨Φ+| ↑B⟩ + ⟨↓B |Φ+⟩ ⟨Φ+| ↓B⟩

= (|↑A⟩ ⟨↑A| + |↓A⟩ ⟨↓A|)/2

▶ Pure state |Ψ−⟩ ⟨Ψ−| =
(
|↑⟩A |↓⟩B − |↓⟩A |↑⟩B

) (
⟨↑|A ⟨↓|B − ⟨↓|A ⟨↑|B

)
/2

TrB(|Ψ−⟩ ⟨Ψ−|) = ⟨↑B |Ψ−⟩ ⟨Ψ−| ↑B⟩ + ⟨↓B |Ψ−⟩ ⟨Ψ−| ↓B⟩

= (|↑A⟩ ⟨↑A| + |↓A⟩ ⟨↓A|)/2

Local measurements by Alice cannot distinguish

any of the four Bell states from a statistical mixture with equal weights
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Rydberg atoms: chaos & semiclassical physics
▶ Non–ergodicity of 3 interacting Rydberg atoms in a circular trap

This conceptually simple system is experimentally accessible
due to recent progress in Rydberg atom trapping in Paris and Palaiseau

[D.J. Papoular & B. Zumer, Phys. Rev. A 107, 022217 (2023)]

[D.J. Papoular & B. Zumer, Phys. Rev. A 110, 012230 (2024)]

𝜃1

𝜃2

𝜃3

d12

d23

d31R

Two mechanisms impeding ergodicity
in the absence of disorder:

1. quantum mechanism: quantum scar [Heller PRL 1984]

2. classical mechanism: KAM tori (Kolmogorov, Arnold, Moser)
[Arnold, Mathematical Methods of Classical Mechanics, Springer (1989)])

Both mechanisms yield quantum eigenstates
localised near classical periodic trajectories

▶ Telling them apart requires a detailed understanding of the classical system
and accurate numerical calculations of the quantum eigenstates (not ground state!)

▶ Semiclassical analysis which goes beyond the WKB approach
Gutzwiller’s trace formula, Einstein–Brillouin–Keller theory
[M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer (1990)]

Spontaneous applications for a PhD position with me are welcome
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Summary: Towards the one–body density matrix ρ(1)

▶ Example from quantum information:

Alice and Bob share a system defined on the Hilbert space H = HA ⊗ HB

The complete density matrix ρ acts on H

Alice only performs measurements on her part of the system: MA = MA ⊗ 1B

She cannot determine ρ, i.e. she cannot detect entanglement

She may only access the reduced density matrix ρA = TrB(ρ) which acts on HA

.

▶ Goal: Define analogue of the reduced density matrix for many identical particles

Identify a family of experiments analogous to Young’s slits
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Part 1:

One–body density matrix

for systems of identical particles

Definition and general properties

[C. Cohen–Tannoudji & D. Guéry–Odelin,
Advances in Atomic Physics: an overview, World Scientific (2011), §23.2]

11 / 74



Hilbert space for a system with given particle number N
▶ Start from the Hilbert space for a single particle: E

spin–1/2 particle frozen in space: dimE = 2; spin–0 particle moving in 1D: E = L2(R)

▶ N Distinguishable particles: E(N) = E ⊗ E ⊗ · · · ⊗ E︸ ︷︷ ︸
tensor product of N copies of E

N frozen spin–1/2 particles: dimE = 2N ; N spin–0 particles in 1D: E = L2(RN)

▶ N identical particles:

Bosons

E
(N)
S : wavefunctions are symmetric

under particle exchange

density matrices operate on E
(N)
S

ρ : E
(N)
S −→ E

(N)
S

Fermions

E
(N)
A : wavefunctions are antisymmetric

under particle exchange

density matrices operate on E
(N)
A

ρ : E
(N)
A −→ E

(N)
A
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Composition of the permutation operators Pσ

▶ Convention used at ICFP: (J. Dalibard and Y. Castin’s notes, F. Chevy’s slides, . . . )

Pσ |u1⟩ ⊗ |u2⟩ ⊗ · · · ⊗ |uN⟩ = |uσ(1)⟩ ⊗ |uσ(2)⟩ ⊗ · · · ⊗ |uσ(N)⟩

Then, PσPσ′ = Pσ′◦σ (note the opposite orderings of σ and σ′ on either side of =)

Proof: Pσ′ |u1⟩ ⊗ |u2⟩ ⊗ · · · ⊗ |uN⟩ = |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vN⟩ with |vj ⟩ = |uσ′(j)⟩

Pσ |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vN⟩ = |w1⟩ ⊗ |w2⟩ ⊗ · · · ⊗ |wN⟩ with |wi ⟩ = |vσ (i)⟩

Hence, PσPσ′ |u1⟩ ⊗ |u2⟩ ⊗ · · · ⊗ |uN⟩ = |w1⟩ ⊗ |w2⟩ ⊗ · · · ⊗ |wN⟩ with |wi ⟩ = |uσ′[σ(i)]⟩

▶ Beware: other authors use different conventions

For example, Cohen–Tannoudji, Diu, and Laloe define PCDL
σ = P−1

σ (Vol. II, Eq. XIV.B.38)

so that PCDL
σ′ PCDL

σ = PCDL
σ′◦σ .
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Density matrix is invariant under particle exchange (qu. 1)

▶ For a pure state |Ψ⟩, the many–body density matrix is ρ = |Ψ⟩ ⟨Ψ|

Exchange the N particles through the permutation σ:
⟨rσ(1), . . . ,rσ(N)| ρ |r′

σ(1), . . . r
′
σ(N)⟩ = ⟨r1, . . . ,rN | P†

σ|Ψ⟩ ⟨Ψ|Pσ |r′
1, . . . r

′
N⟩

for bosons, Pσ−1 |Ψ⟩ = + |Ψ⟩; for fermions, Pσ−1 |Ψ⟩ = (−)(σ−1) |Ψ⟩ = (−)σ |Ψ⟩

P†
σ |Ψ⟩ = Pσ−1 |Ψ⟩ appears twice (once as a ket, once as a bra): [(−)σ]2 = 1

therefore ⟨r1, . . . ,rN |P†
σ|Ψ⟩ ⟨Ψ|Pσ|r′

1, . . . r
′
N⟩ = + ⟨r1, . . . ,rN ||Ψ⟩ ⟨Ψ||r′

1, . . . r
′
N⟩

▶ Statistical mixture: diagonalise the Hermitian operator ρ =
∑

i

pi |Ψi⟩ ⟨Ψi |

The many–particle wavefunctions |Ψi⟩ are symmetric or antisymmetric

The previous argument holds for each term in the sum.

The density matrix ρ is fully symmetric for bosons and for fermions
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A bird’s eye view of the problem

Problem #2: Spatial Correlation Functions

in Bose and Fermi gases

▶ One–body and two–body density matrices

▶ Ideal Bose and Fermi gases at temperature T = 0

Off–diagonal long–range order in bosonic systems

▶ Ideal quantum gases at non–zero temperature

Description in terms of second quantisation

▶ First steps with interacting systems
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Single–particle operators (qu. 2)
▶ Start from an operator f acting on the single–particle subspace E

e.g. kinetic energy p2/(2m), trapping potential v(r) = mω2
0r2/2, . . . (not 2–particle interaction)

▶ Extend it to the N–particle Hibert space EN : F (i) acts on particle i

F =
N∑

i=1

F (i) =
N∑

i=1

1
(1) ⊗ . . .⊗ 1

(i−1) ⊗ f (i) ⊗ 1
(i+1) ⊗ . . .⊗ 1

(N)

e.g. total kinetic energy K =
p2

1
2m

+ · · · +
p2

N
2m

, total trapping energy V = v(r1) + · · · + v(rN)

▶ Average value of a single–particle operator in the state ρ?

⟨F ⟩ = Tr(ρF ) =
∑

i Tr(ρF (i))
⟨F ⟩ = N Tr(ρF (1)) (ρ is fully symmetric)

⟨F ⟩ = N Tr1[ Tr2,...,N (ρF (1)) ] (take the trace first along 2, . . . ,N, then along 1)

⟨F ⟩ = N Tr1[ Tr2,...,N (ρ) f ] (F (1) acts only on particle 1; f acts on E)

For any single–particle operator F , ⟨F ⟩ = Tr(ρ(1)f ) with ρ(1) = N Tr2,...,N(ρ)

▶ The one–body density operator ρ(1) acts on the single–particle subspace E

It is the analog of Alice’s reduced density operator
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Usefulness of the one–body density operator ρ(1)

For any single–particle operator F , ⟨F ⟩ = Tr(ρ(1) f ) with ρ(1) = N Tr2,...,N (ρ)

▶ ρ acts on the many–particle Hilbert space, which is huge
ρ(1) acts on the single–particle subspace, which is much smaller

▶ In order to describe experiments probing only single–particle observables,
We do not need the full density matrix ρ: we just need ρ(1)

▶ Famous example: Bose–Einstein condensate with short–ranged interactions

⟨r|ρ(1)|r′⟩ = ψ∗
0 (r)ψ0(r′), where ψ0(r) satisfies the Gross–Pitaevskii equation

We have replaced an N–particle problem satisfying the Schrödinger equation

by a single–variable function which obeys a non–linear equation

[More on this topic next week, at the end of the presentation for Problem 2]

[Pitaevskii & Stringari, Bose–Einstein Condensation and Superfluidity, 2nd ed., OUP (2016), ch. 2]
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One–body density operator: normalisation (end of qu. 1)

▶ ρ(1) = N Tr2,...,N (ρ) means ⟨r|ρ(1)|r′⟩ = N
∫

dr2 · · · drN ⟨r, r2, . . . ,rN | ρ |r′, r2, . . . ,rN⟩
no integral on r and r′

▶ Diagonal element:
⟨r| ρ(1) |r⟩ = N

∫
dr2 · · · drN ⟨r, r2, . . . ,rN | ρ |r, r2, . . . ,rN⟩

This is N times the probability of finding a particle at point r, i.e. the density n(r)

▶ Trace of ρ(1): Tr(ρ(1)) = N
∫

drdr2 · · · drN ⟨r, r2, . . . ,rN | ρ |r, r2, . . . ,rN⟩ = N

▶ Notation in terms of a function: g(1)(r′,r) = ⟨r| ρ(1) |r′⟩

Convention: opposite orderings of r and r′ on either side of = (justification: next slide)

[C. Cohen–Tannoudji & D. Guéry–Odelin, Advances in Atomic Physics: an overview, World Scientific (2011), Eq. 23.17]

g(1)(r,r) = n(r) and
∫

dr g(1)(r,r) = N
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ρ(1) probes first–order coherence (qu. 3, 4)

▶ Apply the general formula ⟨F ⟩ = Tr(ρ(1)f ) to the case where f = |r′⟩ ⟨r|
⟨F ⟩ = Tr(ρ(1) |r′⟩ ⟨r|) = ⟨r|ρ(1)|r′⟩ = g(1)(r′,r)

( For any single–particle operator a and single–particle states |u⟩, |v⟩, Tr(a |u⟩ ⟨v |) = ⟨v |a|u⟩ )

▶ Single–particle case: consider the pure state ρ = ρ(1) = |ψ⟩ ⟨ψ|
g(1)(r′,r) = ⟨r|ρ(1)|r′⟩ = ⟨r|ψ⟩ ⟨ψ|r′⟩ = ψ(r)ψ∗(r′)
g(1)(r′,r) is non–zero only if |r − r′| < σ

Wavepacket extent gives coherence length
⟨r|ρ(1)|r′⟩ probes coherence between r and r′

σ

x

▶ Many–particle case: F destroys a particle at point r and creates one at point r′

Equivalently: overlap in between matter waves at points r and r′

⟨r|ρ(1)|r′⟩ probes correlations between r and r′

▶ g(1)(r′,r) = ⟨r|ρ(1)|r′⟩ is called first–order correlation function

First–order because it may be non–zero even for a single–particle experiment
e.g. Young’s interference experiment
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Translational & rotational invariance: impact on ρ(1) (4)

⟨r|ρ(1)|r′⟩ = ⟨F ⟩ with f = |r′⟩ ⟨r|, and g(1)(r,r′) = ⟨r′| ρ(1) |r⟩ is a function of two arguments

▶ Quick answer: correct, but incomplete!

Translational invariance yields g(1)(r, r′) = g(1)(r′ − r)

Rotational invariance yields g(1)(r′ − r) = g(1)(|r′ − r|)

▶ But, in some experiments, crystallisation is observed!

150 vortices in 23Na BEC

[Ketterle 2005] crystal of 8 Rydberg atoms

[Bloch 2015]

[Balibar 1994] 4He
crystal

▶ How to reconcile these two results ? (both are correct!)
HINT: Think about buckling; the other half of the answer is on this slide.
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Kinetic energy and interaction range

r
Δr

O

▶ Quantum collision between a scatterer at 0 and a particle at point r
Particle at r modelled by wavepacket with spatial extent ∆r < r
Its momentum spread ∆p satisfies: ∆p > ℏ/∆r > ℏ/r

▶ Kinetic energy ∼ ∆p2/(2m) > ℏ2/(2m r 2)
The lower bound on the kinetic energy scales with ℏ2/(2m r 2)

[Basdevant & Dalibard, Quantum Mechanics, Springer (2002), §18.2.6]

▶ Any interaction potential which decays faster than 1/r 2 is short–ranged:
for low enough densities, kinetic energy dominates over interaction

This holds for the van der Waals interaction C6/r 6 between neutral atoms

Many atoms with repulsive interactions, at T = 0: crystalline phase for high densities

▶ BEWARE: The Coulomb interaction q2/r is NOT short–ranged!

At temperature T = 0, is the crystal expected for high densities or for low densities ?
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Wigner crystal due to repulsive Coulomb interaction
▶ Coulomb interaction scales like q2/r , kinetic energy scales like ℏ2/(2mr 2)

Coulomb interaction dominates for large r , that is, for low densities
At T = 0, increasing the density causes the crystal to melt!

[Zhou et al,
Nature 595, 48 (2021)]

▶ Predicted by Wigner in 1934, observed recently in MoSe2 bilayers
Observable δ linked to photoluminescence: δ > 0 means insulating (crystalline) phase
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Part 2:

Two–body density matrix

for systems of identical particles

[C. Cohen–Tannoudji & D. Guéry–Odelin,
Advances in Atomic Physics: an overview, World Scientific (2011), §23.2]
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Two–particle operators (qu. 5 & 18)
▶ Start from an operator g which acts on two different particles

Extension to N particles: G =
∑

i

∑
j ̸=i

g(i,j) where g(i,j) acts on particles i and j

Important example: interaction between two particles

▶ For two neutral atoms (in their ground states):

isotropic, short–ranged interaction
Far from nucleus: C6/r6 van der Waals interaction
range l = (mC6/ℏ2)1/4 ≈ 100a0

where a0 = 5.29 × 10−11m is the Bohr radius
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▶ For neutral dipolar particles: anisotropic, longer–ranged interaction
(magnetic atoms, heteronuclear molecules with electric dipole)

VDDI(r) = d1 · d2 − 3(d1 · r̂)(d2 · r̂)
r 3

VDDI(r) = d2(1 − 3 cos2 θ)/r3 if all dipoles point along ez

▶ For trapped ions: long–ranged Coulomb interactions q1q2/r 24 / 74



Two–body density operator ρ(2) (qu. 5)

▶ Calculate the expectation value of a two–body operator G =
∑

i

∑
j ̸=i

G(i,j)

⟨G⟩ = Tr(ρG) =
∑

i

∑
j ̸=i Tr(ρG(i,j))

⟨G⟩ = N(N − 1) Tr(ρG(1,2)) (ρ is fully symmetric)

⟨G⟩ = N(N − 1) Tr1,2[ Tr3,...,N(ρG(1,2)) ] (take trace first along 3, . . . ,N and then along 1,2)

⟨G⟩ = N(N − 1) Tr1,2[ Tr3,...,N(ρ)g(1,2) ] (G1,2 acts on particles 1 and 2 only)

⟨G⟩ = Tr1,2(ρ(2) g(1,2)) with ρ(2) = N(N − 1) Tr3,...,N(ρ)

▶ Notation in terms of a function: g(2)(r1,r2) = ⟨r1,r2| ρ(2) |r1,r2⟩

g(2)(r1,r2) has 2 arguments (rather than 4) because we focus on the diagonal elements of ρ(2)
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ρ(2) probes second–order coherence (qu. 6)

▶ Apply ⟨G⟩ = Tr[ ρ(2) g ] to the case where g = |1 : r1, 2 : r2⟩ ⟨1 : r1, 2 : r2|

⟨G⟩ = ⟨1 : r1, 2 : r2|ρ(2)|1 : r1, 2 : r2⟩

▶ 2–particle case: consider the pure state ρ = |Ψ⟩ ⟨Ψ|, i.e. ρ(2) = 2 |Ψ⟩ ⟨Ψ|

g(2)(r1,r2) = ⟨r1,r2| ρ(2) |r1,r2⟩ = 2 ⟨r1,r2|Ψ⟩ ⟨Ψ|r1,r2⟩ = 2|Ψ(r1,r2)|2

▶ Many–particle case:

g(2)(r1,r2) = probability for finding one particle at r1 and another at r2

If r1 and r2 are close by, this tests for bunching or antibunching

▶ g(2)(r1,r2) = ⟨r1,r2| ρ(2) |r1,r2⟩ is called second–order spatial correlation function

Second–order because at least two particles must be present for it to be non–zero

e.g. Hong–Ou–Mandel interference
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A bird’s eye view of the problem

Problem #2: Spatial Correlation Functions

in Bose and Fermi systems

▶ One–body density matrix, two–body density matrix

▶ Ideal Bose and Fermi gases at temperature T = 0

Off–diagonal long–range order in bosonic systems

▶ Ideal quantum gases at non–zero temperature

Description in terms of second quantisation

▶ First steps with interacting systems
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Part 3:

Ideal gases at zero temperature

[Huang, Statistical Mechanics, Wiley (1987), chaps. 11 & 12]
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Hamiltonian for an ideal gas of identical particles (qu. 7)

▶ Hamiltonian for a single particle: h = p2/2m + u(r)
p2/2m is the kinetic energy; u(r) is the trapping potential. No interaction in 1–particle h

▶ h is Hermitian: diagonalise it to get single–particle wavefunctions and energies

h |ϕα⟩ = εα |ϕα⟩

▶ ‘Ideal gas’ means no interactions

the N–particle Hamiltonian is a one–body operator: H =
N∑

i=1

h(i)

Is this slide using the first–quantised or the second–quantised formalism?
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Three types of trapping potentials u(r) (qu. 7)

▶ Uniform system: box trap

Single–particle wavefunctions are plane waves ψk(r) = eikr/
√

V

(labelled by continuous set of wavevectors)

▶ Trapped system: harmonic trap

Single–particle wavefunctions are
harmonic oscillator eigenstates |nx ,ny ,nz⟩

(labelled by 3 integers)

▶ Periodic trapping potential: optical lattice

Single–particle wavefunctions are Bloch waves ψk,n(r) = eikrun(r)
discrete band index n, continuous set of quasi–momenta k

All three types of traps are routinely realised in experiments on quantum gases.
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1st–order coherence in an ideal Bose gas at T = 0 (qu. 8)

▶ All bosons are in the single–particle ground state |ψ0⟩
|Ψ⟩ = |ψ(1)

0 ⟩ ⊗ · · · ⊗ |ψ(N)
0 ⟩

[also true for distinguishable particles: where is the difference?]

▶ One–body density matrix: ρ(1) = N |ψ0⟩ ⟨ψ0|
⟨r|ρ(1)|r′⟩ = N ⟨r|ψ0⟩ ⟨ψ0|r′⟩ = N ψ0(r) ψ∗

0 (r′) si
n
g

le
-p

a
rt

ic
le

 e
n
e
rg

ie
s

 0

 0.5

 1

 0  1  2  3

Bosebox

harmonic

g
(1

)
B

o
se

(r
,0

) 
  

[c
en

tr
al

 d
en

si
ty

 n
0
]

Distance r/l

▶ Box trap of size l :
ψ0(r) = 1/l3/2 and ⟨r|ρ(1)|r′⟩ = N/l3 = ρ

In a very large box: ⟨r|ρ(1)|r′⟩ ̸= 0 for |r − r′| → ∞:

off–diagonal long–range order

▶ Harmonic trap, oscillator length l = [ℏ/(mω0)]1/2:

ψ0(r) = exp[−r2/(2l2)]/(l3/2π3/4)

⟨0|ρ(1)|r⟩ = N/(l3π3/2) exp[−r2/(2l2)]

In an experiment, the coherence length l is set by the spatial volume: l ≳ 1/n1/3

n0 = 1019 atoms/m3, ω0/(2π) = 100 Hz, m = 87 mAMU: l = 1µm, TB = 0.1µK, kBTB/(ℏω0) = 30
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Review: Ideal polarised Fermi gas: ground state (qu. 9)
si
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▶ 1st quantisation: ground–state wavefunction is a determinant
For N particles, it involves the N lowest single–particle states

Ψ(r1, . . . ,rN) = α

∣∣∣∣∣∣∣∣
ψ1(r1) · · · ψN(r1)

...
...

ψ1(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣
= α

∑
σ∈SN

(−)σ ψσ(1)(r1) · · ·ψσ(N)(rN)

▶ Calculation of the normalisation factor α:

1 =
∫

d3r1 · · · d3rN |α|2
∑

σ,τ∈SN

(−)σ(−)τψ∗
σ(1)(r1) · · ·ψ∗

σ(N)(rN) ψτ(1)(r1) · · ·ψτ(N)(rN)

1 = |α|2
∑

σ,τ∈SN

(−)σ(−)τ
(∫

d3r1 ψ
∗
σ(1)(r1) ψτ(1)(r1)

)
· · ·
(∫

d3rN ψ
∗
σ(N)(rN) ψτ(N)(rN)

)
1 = |α|2

∑
σ,τ∈SN

δσ(1),τ(1) · · · δσ(N),τ(N) (the N Kronecker symbols impose σ = τ )

1 = |α|2
∑
σ∈SN

1 = N! |α|2 and therefore α = 1/
√

N!
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Ideal polarised Fermi gas: ρ(1) for the ground state (qu. 9)

ρ(1) = N Tr2,...,N(|Ψ⟩ ⟨Ψ|) with Ψ(r1, . . . ,rN) =
1

√
N!

∑
σ

(−)σψσ(1)(r1) · · ·ψσ(N)(rN)

⟨r|ρ(1)|r′⟩ = N
∫

d3r2 · · · d3rN ⟨r,r2, . . . ,rN |Ψ⟩ ⟨Ψ|r′,r2, . . . ,rN⟩ (no integral on r or r′)

= N
∫

d3r2 · · · d3rN

∑
σ,τ∈SN

(−)σ√
N!

(−)τ√
N!

ψσ(1)(r) · · · ψσ(N)(rN)ψ∗
τ(1)(r′) · · · ψ∗

τ(N)(rN)

= N
N!

∑
σ,τ∈SN

(−)σ(−)τ ψσ(1)(r) ψ∗
τ(1)(r′)

(∫
d3r2 ψσ(2)(r2) ψ∗

τ(2)(r2)
)

· · ·

= 1
(N − 1)!

∑
σ,τ∈SN

(−)σ(−)τ ψσ(1)(r) ψ∗
τ(1)(r′) δσ(2),τ(2) · · · δσ(N),τ(N)

The two permutations σ and τ coincide on 2, . . . ,N, therefore σ = τ

= 1
(N − 1)!

∑
σ∈SN

[(−)σ]2 ψσ(1)(r) ψ∗
σ(1)(r′)

To define σ, first choose σ(1) = α, then there are (N − 1)! remaining possibilities

⟨r|ρ(1)|r′⟩ =
N∑
α=1

ψα(r) ψ∗
α(r′)
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Summary: 1–body density matrix, 1st–order coherence
▶ One–body density operator: ρ(1) = N Tr2,...,N(ρ)

Partial trace over any N − 1 particles: ρ(1) acts on the single–particle subspace E(1)

▶ Average value of the single–particle operator F =
∑

f (i) in the state ρ:

⟨F ⟩ = Tr(ρF ) = Tr(ρ(1) f )

▶ Interpretation in terms of first–order coherence between the points r and r′:

g(1)(r′,r) = ⟨r|ρ(1)|r′⟩ = Tr(ρ(1) |r′⟩ ⟨r|)

Average value of the single–particle operator F defined by f = |r′⟩ ⟨r|

The operator f annihilates a particle at the position r and creates one at the position r′

▶ Explicit expressions for ideal quantum gases at T = 0

ideal Bose gas: off–diagonal long–range order

ideal Fermi gas: ⟨r|ρ(1)|r′⟩ =
N∑
α=1

ψα(r) ψ∗
α(r′) TODAY: calculated in simple cases
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Review: 1D uniform Fermi gas, Fermi wavevector (qu. 10)

▶ Large 1D box of size L, exploit translational invariance
choose 1–particle eigenstates that are plane waves: ψk (x) = eikx/

√
L

These are labelled by the wavevector k , corresponding to the energy ℏ2k2/(2m)

▶ In a large system, “all boundary conditions give the same thermodynamical results”
periodic boundary conditions: ψk (0) = ψk (L) means eikL = 1
the allowed wavevectors are kn = n 2π/L (n is an integer of either sign)

▶ Fermi energy εF = energy of highest–occupied 1–particle state in the ground state
For a uniform system, define Fermi wavevector kF through εF = ℏ2k2

F/(2m)

0 kF-kF k

▶ Polarised Fermi gas: each single–particle state hosts at most one particle

N =
∑

|kn|<kF

1 =
∫ kF

−kF

dk
2π/L

= L
2π

2kF = kF L/π

kF = π N/L = π ρ, where ρ = N/L is the linear density: kF is an intensive quantity
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1D uniform Fermi gas: ρ(1) for the ground state (qu. 10)

⟨x |ρ(1)|x ′⟩ =
∑

|kn|<kF

ψkn (x)ψ∗
kn

(x ′) with ψk (x) = eikx/
√

L, kn = n 2π/L, kF = π ρ

▶ ⟨x |ρ(1)|x ′⟩ =
∑

|kn|<kF

eikn(x−x′)

L
=

∫ kF

−kF

dk
2π/L

eik(x−x′)

L
= sin[kF (x − x ′)]

π(x − x ′)
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) / Uniform polarised Fermi gas

1D 3D

⟨x |ρ(1)|x ′⟩ = ρ sinc[kF (x − x ′)]
(sinc(x) = sin(x)/x)

▶ Translational symmetry and spatial parity:
⟨x |ρ(1)|x ′⟩ depends only on |x − x ′|

▶ Fermi gas: the coherence length is set by kF

(The first zero of sinc(x) is for x = π)

In stark contrast to the Bose gas, the coherence length is finite, even at T = 0
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Review: 3D uniform Fermi gas, Fermi wavevector (qu. 11)

▶ Plane waves in 3D: ψk(r) = ei k r/L3/2, energy εk = ℏ2k2/(2m)

In real space: cubic box of size L with periodic boundary conditions

eik · Lex = eik · Ley = eik · Lez = 1, so that kn = (2π/L) (nx ex + ny ey + nzez)

L
LL

xy z

kx/kF

1
0

1

k y/k
F

1

0

1

k z
/k

F

1

0

1

▶ In momentum space: the Fermi surface is a sphere

Fermi energy εF and wavevector kF such that εF = ℏ2k2
F/(2m)

Polarised Fermi gas: each 1–particle state hosts at most 1 particle

N =
∑

kn<kF

1 =
∫

|k|<kF

d3k
(2π/L)3 =

(
L

2π

)3 4
3
π k3

F = (kF L)3

6π2

kF = (6π2ρ)1/3, where ρ = N/L3 is the density (kF is intensive)

Easy question 1: Recover the 1D/3D dependence on ρ through dimensional analysis

Easy question 2: If two spin states are present, show that kF = (3π2ρ)1/3
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3D uniform Fermi gas: ρ(1) for the ground state (qu. 11)

⟨r|ρ(1)|r′⟩ =
∑

|kn|<kF

ψkn (r)ψ∗
kn

(r′), ψk(r) =
eikr
√

L3
, kn =

2π
L

(nx ex +ny ey +nzez), kF = (6π2ρ)1/3

⟨r|ρ(1)|r′⟩ =
∑

|kn|<kF

eikn(r−r′)

L3 =
∫

|k|<kF

d3k
(2π/L)3

eik·R

L3 (with R = r − r′)

Spherical coordinates of axis R: k·R = k R cos θ

⟨r|ρ(1)|r′⟩ = 1
(2π)3

∫ kF

0
dk k2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ eikR cos θ

= 1
(2π)2

∫ kF

0
dk k2

∫ π

0
dθ sin θ eikR cos θ

θ

φ

k

R

= 1
2π2R

∫ kF

0
dk k sin(kR) = k3

F

2π2(kF R)3

∫ kF R

0
du u sin u

An integration by parts yields:
∫ kF R

0
du u sin u = −kF R cos(kF R) + sin(kF R)

⟨r|ρ(1)|r′⟩ = ρ
sin(kF R) − kF R cos(kF R)

(kF R)3/3

Show analytically that ⟨r|ρ(1)|r⟩ = lim
kF R→0

⟨r|ρ(1)|r′⟩ = ρ
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3D uniform Fermi gas: ρ(1) for the ground state (qu. 11)
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) / Uniform polarised Fermi gas

1D 3D

⟨r|ρ(1)|r′⟩ = ρ
sin(kF R) − kF R cos(kF R)

(kF R)3/3

▶ Translational symmetry, rotational symmetry:
⟨r|ρ(1)|r′⟩ depends only on R = |r − r′|

▶ Like in 1D, the coherence length is set by kF

(The first x > 0 such that tan x = x is x ≈ 4.5)

▶ Both for the 1D Fermi gas and the 3D Fermi gas,

In stark contrast to the Bose gas, the coherence length is finite, even at T = 0
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Part 4:

Calculations at non–zero temperature

Second quantisation, field operators

[Feynman, Statistical Mechanics: a set of lectures, W.A. Benjamin (1972), chap. 6]
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Single–particle operators: second quantisation form
▶ F =

N∑
i=1

f (i) where f (i) acts only on particle i (F acts on each particle in the same way)

In the single–particle subspace E1, insert two closure relations (using a basis {|α⟩} of E1)

f =

∑
β

|β⟩ ⟨β|

 f

(∑
α

|α⟩ ⟨α|

)
=

∑
α,β

⟨β|f |α⟩ |β⟩⟨α|

Kets transform like creation operators: F =
∑
α,β

⟨β|f |α⟩ a†
β aα

▶ Example 1: f = 1, F = 1
(1) + · · · + 1

(N) = N total particle number operator

Choose any basis {|α⟩}: 1
(1) |α⟩ = |α⟩, meaning that ⟨β|1(1) |α⟩ = δαβ

N =
∑
α

a†
αaα =

∑
α

nα total particle number = sum of particle numbers in all modes

▶ Example 2: f = h, H = h(1) + · · · + h(N) = H ideal gas Hamiltonian

Choose a basis {|α⟩} which diagonalises h: h |α⟩ = εα |α⟩, meaning that ⟨β|h|α⟩ = εαδαβ

H =
∑
α

εα a†
αaα =

∑
α

εα nα total energy = sum of energies in all modes
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First quantisation versus second quantisation
▶ First quantisation:

E(N) = (S or A) [E(1) ⊗ E
(1) ⊗ · · · ⊗ E

(1)︸ ︷︷ ︸
tensor product of N copies of E(1)

]

Fixed particle number N, tensor products between states for individual particles

Wavefunctions must be (anti–)symmetrised (e.g. Slater determinant for fermions)

Single–particle operators: F =
N∑

i=1

f (i)

▶ Second quantisation: H = E(0) ⊕ E(1) ⊕ · · · ⊕ E(N) ⊕ · · ·

Arbitrary particle number, direct sum between spaces with fixed particle numbers

The direct sum ⊕ means that Ψ = (|vac⟩ + |α⟩ + |α,β⟩)/
√

3 is allowed

Wavefunctions expressed using a and a† are automatically (anti–)symmetric

For fermions, the Slater determinant becomes |α1, . . . ,αN⟩ = a†
α1 · · · a†

αN |vac⟩

Single–particle operators: F =
∑
α,β

⟨β|f |α⟩ a†
β aα
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1–body density matrix, second–quantisation form (qu. 12)

⟨r|ρ(1)|r′⟩ = ⟨F ⟩ with F =
∑N

i=1 f (i) and f = |r′⟩⟨r|; F =
∑
α,β ⟨ψβ |f |ψα⟩ a†

β aα

▶ GOAL: Extend expression for ρ(1) to any quantum state
defined by density matrix ρ, no constraint on total particle number,

no constraint on temperature.

▶ Introduce a basis {|ψα⟩} of the single–particle subspace E(1) (any basis!)

F =
∑
α,β

⟨ψβ |r′⟩ ⟨r|ψα⟩ a†
β aα =

∑
α,β

ψα(r) ψ∗
β(r′) a†

β aα

⟨r|ρ(1)|r′⟩ = ⟨F ⟩ =
∑
α,β

ψα(r) ψ∗
β(r′) ⟨a†

β aα⟩

▶ We had taken the left–hand side as the first–quantised expression for ρ(1)

The right–hand side extends the expression to arbitrary quantum states.

▶ The averages ⟨a†
βaα⟩ are taken in the considered quantum state ρ

44 / 74



1–body density matrix, second–quantisation form (qu. 12)

⟨r|ρ(1)|r′⟩ =
∑
α,β

ψα(r) ψ∗
β(r′) ⟨a†

β aα⟩

▶ Bose gas in its ground state: |Nψ0 ⟩ = a†N
|ψ0⟩ |vac⟩ /

√
N! (all particles in |ψ0⟩)

⟨Nψ0 |a†
βaα|Nψ0 ⟩ is the overlap of the two states aα |Nψ0 ⟩ and aβ |Nψ0 ⟩

They are non–zero only if α = β = 0, and then ⟨Nψ0 |a†
βaα|Nψ0 ⟩ = ⟨Nψ0 |n0|Nψ0 ⟩ = N

⟨r|ρ(1)|r′⟩ = N ψ0(r)ψ∗
0 (r′)

▶ Fermi gas in its ground state: |FS⟩ = a†
1 · · · a†

N |vac⟩ (Fermi Sea FS)

⟨FS|a†
βaα|FS⟩ is the overlap of aα |FS⟩ and aβ |FS⟩ (both proportional to number states)

Overlap is non–zero only if α = β, and then ⟨FS|a†
α aα|FS⟩ = ⟨FS|nα|FS⟩ = 0 or 1

⟨r|ρ(1)|r′⟩ =
N∑
α=1

ψα(r)ψ∗
α(r′)
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Please wait . . .

Question 13 (field operator Ψ(r))

Question 14 (2–body density matrix ρ(2))

. . . just a few more minutes!
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Nonzero–temperature ρ(1) for an ideal gas (qu. 15)

⟨r|ρ(1)|r′⟩ =
∑
α1,α2

ψα1 (r)ψ∗
α2

(r′) ⟨a†
α2

aα1 ⟩, thermal state ρ = e−β(H−µN)/ZGC with 1/β = kBT

▶ Grand–canonical Hamiltonian: H − µN =
∑

i

εi n̂i − µ
∑

i

n̂i =
∑

i

(εi − µ) n̂i

(H − µN) is diagonal in the Fock–state basis {|(ni )⟩} = {|n1,n2, . . .⟩}

Therefore, so is ρ = e−β(H−µN)/ZGC =
∑
(ni )

p(ni ) |(ni )⟩⟨(ni )|

▶ Calculate averages ⟨a†
α2 aα1 ⟩ in the thermal state ρ

⟨a†
α2

aα1 ⟩ = Tr(ρ a†
α2

aα1 ) =
∑
(ni )

p(ni ) Tr(|(ni )⟩⟨(ni )| a†
α2

aα1 ) =
∑
(ni )

p(ni ) ⟨(ni )|a†
α2

aα1 |(ni )⟩

⟨(ni )|a†
α2 aα1 |(ni )⟩ = overlap between aα1 |(ni )⟩ and aα2 |(ni )⟩, both proportional to number states

Non–zero only if α1 = α2, and then ⟨a†
αaα⟩ = ⟨n̂α⟩

⟨r|ρ(1)|r′⟩ =
∑
α

ψα(r) ψ∗
α(r′) ⟨n̂α⟩ both for bosons and for fermions

Check that the conclusion is still valid in the canonical ensemble.
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The role of quantum statistics (qu. 15)

⟨r|ρ(1)|r′⟩ =
∑
α

ψα(r) ψ∗
α(r′) ⟨n̂α⟩

In the grand–canonical ensemble, the averages ⟨n̂α⟩ reflect quantum statistics:

▶ Bose–Einstein statistics: ⟨n̂α⟩ = 1
e β(εα−µ) − 1

▶ Fermi–Dirac statistics: ⟨n̂α⟩ = 1
e β(εα−µ) + 1

▶ Boltzmann statistics: ⟨n̂α⟩ = e −β(εα−µ)

valid for small fugacities z = exp(βµ) ≪ 1

Recover the quantum statistics in the grand–canonical ensemble
HINTS: The partition function ZGC factorises into a product of partition functions for individual modes

Point out the link with a 1D harmonic oscillator (for bosons) and a spin–1/2 (for fermions)
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ρ(1) for a uniform ideal Boltzmann gas (qu. 16)

⟨r|ρ(1)|r′⟩ =
∑
α

ψα(r) ψ∗
α(r′) ⟨n̂α⟩

▶ Plane wave ψk has energy ℏ2k2/(2m): Boltzmann weight ⟨nk⟩ = α e−βℏ2k2/(2m)

Calculate α using the normalisation condition N =
∑

k

⟨nk⟩ =
∫

d3k
(2π/L)3

⟨nk⟩

N = α

(
L

2π

)3 ∫
dk 4πk2e−βℏ2k2/(2m) = α

(
L

ΛT

)3 2
√
π

∫
du u1/2e−u = α

(
L

ΛT

)3

⟨nk⟩ = ρΛ3
T e−βℏ2k2/(2m) with ρ = N

L3 and ΛT =
(

2πℏ2

mkBT

)1/2
(thermal de Broglie wavelength)

▶ ⟨r|ρ(1)|r′⟩ =
∑

k

⟨nk⟩ eikr

L3/2

e−ikr′

L3/2 =
∑

k

⟨nk⟩ eikR

L3 (with R = r − r′)

⟨r|ρ(1)|r′⟩ =
∫

d3k
(2π/L)3

ρ Λ3
T e−βℏ2k2/(2m) eikR

V

Fourier transform of a Gaussian of variance
m
βℏ2

= Gaussian of variance
βℏ2

m

⟨r|ρ(1)|r′⟩ = ρ e−m R2/(2βℏ2) = ρ e−πR2/Λ2
T with ρ = N

L3

The coherence length is set by the thermal de Broglie wavelength ΛT
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1st–order correlation functions for Bose & Fermi gases
▶ Bosons

 0
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Bose condensation temperature:

kBTB = ℏ2

mρ−2/3

2π
(ζ(3/2))2/3

For T < TB , ⟨r|ρ(1)|r′⟩ ̸= 0 for |r − r′| → ∞

Off–diagonal long–range order

▶ Fermions

 0
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Fermi temperature:

kBTF = εF = ℏ2

mρ−2/3

(6π)2/3

2

For T < TF , ⟨r|ρ(1)|r′⟩ = 0 for |r − r′| ≳ 1/kF

No long–range order

▶ For T ≫ TB or TF : Boltzmann statistics, coherence length ΛT

Spatial density of atoms in 3D: ρ = N/L3
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Rydberg atoms: chaos & semiclassical physics
▶ Non–ergodicity of 3 interacting Rydberg atoms in a circular trap

This conceptually simple system is experimentally accessible
due to recent progress in Rydberg atom trapping in Paris and Palaiseau

[D.J. Papoular & B. Zumer, Phys. Rev. A 107, 022217 (2023)]

[D.J. Papoular & B. Zumer, Phys. Rev. A 110, 012230 (2024)]

𝜃1

𝜃2

𝜃3

d12

d23

d31R

Two mechanisms impeding ergodicity
in the absence of disorder:

1. quantum mechanism: quantum scar [Heller PRL 1984]

2. classical mechanism: KAM tori (Kolmogorov, Arnold, Moser)
[Arnold, Mathematical Methods of Classical Mechanics, Springer (1989)])

Both mechanisms yield quantum eigenstates
localised near classical periodic trajectories

▶ Telling them apart requires a detailed understanding of the classical system
and accurate numerical calculations of the quantum eigenstates (not ground state!)

▶ Semiclassical analysis which goes beyond the WKB approach
Gutzwiller’s trace formula, Einstein–Brillouin–Keller theory
[M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer (1990)]

Spontaneous applications for a PhD position with me are welcome
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Summary: 1st–order coherence in ideal gases

▶ One–body density operator: ρ(1) = N Tr2,...,N(ρ)

Interpretation in terms of first–order coherence between the points r and r′:

g(1)(r′,r) = ⟨r|ρ(1)|r′⟩ = Tr(ρ(1) |r′⟩ ⟨r|)

The operator f = |r′⟩ ⟨r| annihilates a particle at the position r and creates one at the position r′

▶ Second–quantised expression of one–body operators: F =
∑
α,β

⟨β|f |α⟩ a†
β aα

⟨r|ρ(1)|r′⟩ = ψα(r) ψ∗
β(r′) ⟨a†

β aα⟩

▶ Bose gases:
off-diagonal long–range order for T < TB (TB = Bose condensation temperature)

⟨r|ρ(1)|r′⟩ ̸= 0 for |r − r′| → ∞
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Bose–Einstein Condensation (BEC)
▶ For an ideal Bose gas at temperature T = 0: all particles in the same state

|Ψ⟩ = |ψ(1)
0 ⟩ ⊗ · · · ⊗ |ψ(N)

0 ⟩

si
n
g

le
-p

a
rt

ic
le

 e
n
e
rg

ie
s

[Cornell & Wieman,
Science 1995]

Rubidium 87
T>TB

T<TB

[M.H. Anderson et al, Science 269, 198 (1995)]

▶ For 0<T <TB , or in the presence of interactions: Off–Diagonal Long Range Order

⟨r|ρ(1)|r′⟩ ̸= 0 for |r − r′| → ∞
Experimental investigation: [Bloch, Hänsch, & Esslinger, Nature 403, 166 (2000)] (next 3 slides)
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Experiment probing 1st–order coherence of a BEC (1/3)

f is
▶ The alkali 87Rb has electron spin s = 1/2 and nuclear spin i = 3/2

Hyperfine structure: f = s + i (f = 1 or 2) focus on f = 1

Potential energy in a magnetic field: −m · B(r) = gFµB mf B(r)

gF = −1/2 < 0: atoms with mf = −1 are trapped; atoms with mf = 0 are untrapped.

▶ Tune radio wave frequency ℏωRF to Zeeman splitting gFµB B(r)

to flip spin projection from mf = −1 (trapped) to mf = 0 (untrapped) mf=0

mf=-1

gFμBB(r)

▶ B(z) depends on z and traps many atoms in a ‘cigar’

2 RF frequencies: ℏω1 = gFµB B(z1), ℏω2 = gFµB B(z2)

yield 2 matter waves with energies E1 = mgz1, E2 = mgz2

very small outcoupling rates to probe single–particle physics

Do these matter waves interfere? i.e. are they coherent?
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Experiment probing 1st–order coherence of a BEC (2/3)
▶ 2 matter waves extracted from 2 different points of a Bose gas overlap

▶ Cold, but not ultracold, Bose gas (T > Tc):
no interference fringes, ⟨r1|ρ1|r2⟩ = 0

▶ Bose–Einstein Condensate (T < Tc):
interference fringes, ⟨r1|ρ1|r2⟩ ̸= 0

▶ For T < Tc , what sets the fringe distribution?
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Experiment probing 1st–order coherence of a BEC (3/3)
▶ A single radio wave, frequency ω1 resonant with B(z1)

yields a stationary matter wave ψ1(z) with energy E1 = mgz1

▶ Two different radio waves, frequencies resonant with B(z1) and B(z2)

yield 2 matter waves ψ1(z), ψ2(z) with different energies E1 = mgz1, E2 = mgz2

The superposition state is not stationary: ψ(z,t) = ψ1(z)e−iE1t/ℏ + ψ2(z)e−iE2t/ℏ

▶ At zero temperature T = 0, the density profile may be shown to satisfy:

n(z,t) ∝
1 + cos

[
q
(

|z|1/2 − (gt2/2)1/2
)]

|z|1/2 with q = m (z1 − z2) (2g)1/2 /ℏ

Schrödinger equation for a particle in a linear potential (e.g. gravity) leads to Airy function

[NIST Dynamic Library of Mathematical Functions, §9.2 & §9.7, https://dlmf.nist.gov]

[Bloch, Hänsch, & Esslinger, Nature 403, 166 (2000)]
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The field operator Ψ̂(r) (qu. 13)

▶ Annihilation operator in a continuous basis, e.g. at point r: Ψ̂(r) = a⟨r|

Ψ̂(r) is an operator mapping E(N) onto E(N−1) (r is not an operator)

|r⟩ =
∑
α

|ψα⟩ ⟨ψα|r⟩ =
∑
α

ψ∗
α(r) |ψα⟩, therefore Ψ̂†(r) =

∑
α

ψ∗
α(r) a†

α

[Ψ̂(r),Ψ̂(r′)]± = 0, [Ψ̂†(r),Ψ̂†(r′)]± = 0, [Ψ̂(r),Ψ̂†(r′)]± = δ(r − r′)

Express the many–body Hamiltonian in terms of the operators Ψ̂(r) and Ψ̂†(r)

▶ 1–body trapping term: u =
∫

d3r |r⟩ u(r) ⟨r|, hence U =
∫

d3r u(r) Ψ̂†(r) Ψ̂(r)

▶ Kinetic energy: k =
∫

d3r |r⟩
(

p2

2m

)
⟨r|, hence K =

∫
d3r Ψ̂†(r)

(
p2

2m

)
Ψ̂(r)

p Ψ̂(r) = −iℏ ∇Ψ̂(r) and Ψ̂†(r) p =
(

p Ψ̂(r)
)†

= +iℏ ∇Ψ̂†(r)

Therefore K = 1
2m

∫
d3r

(
Ψ̂†(r) p

)(
p Ψ̂(r)

)
= ℏ2

2m

∫
d3r

(
∇Ψ̂

)† (
∇Ψ̂

)

▶ Total ideal–gas Hamiltonian: H =
∫

d3r
[
ℏ2

2m

(
∇Ψ̂

)† (
∇Ψ̂

)
+ u(r) Ψ̂†Ψ̂

]
Same form as single–particle Hamiltonian, but replace wavefunction by the field operator
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1–body density ρ(1): 2nd–quantised expression (qu. 13)

▶ As usual for ρ(1), consider the 1–body operator f = |r′⟩ ⟨r| and F =
N∑

i=1

f (i)

▶ Average the one–body operator F in some quantum state:
⟨F ⟩ = Tr[ ρ(1)f ] = Tr[ ρ(1) |r′⟩ ⟨r| ] = ⟨r|ρ(1)|r′⟩

▶ Express F in terms of second–quantised operators:
f = |r′⟩ ⟨r| means that F = Ψ̂†(r′) Ψ̂(r)

⟨r|ρ(1)|r′⟩ = ⟨ Ψ̂†(r′) Ψ̂(r) ⟩

Answers the question: Does the system remain coherent if
one particle is destroyed at point r and another one is created at point r′ ?
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Two–body operators

▶ Second–quantised form

▶ Application 1: Pair correlation function (qu. 14)

▶ Application 2: Pair–wise interaction (qu. 18)
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Two–body operators: second–quantised form (qu. 14)

▶ Beware! for fermions, the ordering of the labels in the bras and kets matters
|α,β⟩ = a†

αa†
β |vac⟩ but |β,α⟩ = a†

βa†
α |vac⟩ so that |α,β⟩ = − |β,α⟩

The fermionic ket is a stack: “Last In, First Out”, just like a stack of plates

|α,β⟩† = ⟨α,β| always holds true. No problem for bosons (a†
α and a†

β commute).

▶ 2–body operator: g acts on E(2) (two different particles), G =
∑

i

∑
j ̸=i

g(i,j)

Choose basis {|α⟩} for E(1), expand g in 2–particle basis {|1 : α⟩ ⊗ |2 : β⟩}

g =

∑
αβ

|α,β⟩ ⟨α,β|

 g

∑
γδ

|γ,δ⟩ ⟨γ,δ|

 =
∑

α,β,γ,δ

⟨α, β| g |γ, δ⟩ |α,β⟩⟨γ,δ|

G =
∑

α,β,γ,δ

⟨α, β| g |γ, δ⟩ a†
α a†

β aδ aγ

The ordering of the operators matches that of the labels of the matrix element:

First destroy a particle in |γ⟩, then destroy a particle in |δ⟩,
then create a particle in |β⟩, then create a particle in |α⟩.
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Pair correlation function: 2nd–quantised form (qu. 14)

▶ Start from the 2–body operator g = |r, r′⟩⟨r, r′| and G =
∑
i ̸=j

g(i,j)

▶ Average the two–body operator G in some quantum state:

⟨G⟩ = Tr[ ρ(2)g ] = Tr[ ρ(2) |r, r′⟩⟨r, r′| ] = ⟨r, r′|ρ(2)|r, r′⟩
Diagonal elements of the two–body density ρ(2)

▶ Express G in terms of second–quantised operators:

g = |r, r′⟩⟨r, r′| means that G = Ψ̂† (r)Ψ̂†(r′) Ψ̂(r′) Ψ̂(r)

⟨r, r′| ρ(2) |r, r′⟩ = ⟨ Ψ̂†(r) Ψ̂†(r′) Ψ̂(r′) Ψ̂(r) ⟩

▶ Hanbury–Brown and Twiss effect with ideal Bose and Fermi gases:

• Ideal Bose gas at T = 0: ⟨r, r′|ρ(2)|r, r′⟩ = ⟨r| ρ(1) |r⟩ ⟨r′| ρ(1) |r′⟩

• Ideal Bose gas above TB , or ideal Fermi gas always, grand–canonical ensemble:

⟨r, r′|ρ(2)|r, r′⟩ = ⟨r| ρ(1) |r⟩ ⟨r′| ρ(1) |r′⟩ ± | ⟨r| ρ(1) |r′⟩ |2 (+ bosons, - fermions)

[see e.g. Naraschewski & Glauber, Phys. Rev. A 59, 4595 (1999), part III] 62 / 74



Experiment: atomic Hanbury–Brown & Twiss effect
▶ A cloud of gaseous 4He (above TB) or 3He falls onto a detector plate:

Position– and time–resolved detection yields
⟨r, r′|ρ(2)|r, r′⟩

⟨r| ρ(1) |r⟩ ⟨r′| ρ(1) |r′⟩

[Westbrook Nature 2007]

▶ Which curve corresponds to the bosonic isotope? to the fermionic isotope?

[Jeltes et al, Nature 445, 402 (2007)] 63 / 74



Part 5:

Interacting systems

pair–wise interaction, dispersion relation

[Pitaevskii & Stringari, Bose–Einstein Condensation and Superfluidity, OUP (2016), chs. 2 & 4]

[Wilks, An Introduction to Liquid Helium, Clarendon Press (Oxford, 1970), ch. 7] 64 / 74



Pair–wise interactions: second–quantised form (qu. 18)
(See slide 23 for various types of pair–wise interactions)

▶ 2–particle operator V =
∑

i

∑
j ̸=i

v (i,j)

2
v (i,j) = v (j,i) and 2 additional properties:

1. Diagonal in terms of 2–particle states: v =
∫

d3r1d3r2 |r1, r2⟩ v(r1, r2) ⟨r1, r2|

2. Translational invariance: v(r1, r2) = v(r1 − r2)

▶ Using these properties, expand v in the 2–particle basis involving plane waves |k⟩:

v =
∫

d3k1

(2π/L)3

d3k2

(2π/L)3

d3q
(2π/L)3

|k1 + q, k2 − q⟩ v(q) ⟨k1, k2| with v(q) =
∫

d3r
L3

e−iqr v(r)

and interpret this expression in terms of momentum conservation.

▶ Express V using the field operator Ψ(k) destroying a particle in the plane wave |k⟩:

V = 1
2

∫
d3k1

(2π/L)3

d3k2

(2π/L)3

d3q
(2π/L)3 v(q) Ψ̂†(k1 + q) Ψ̂†(k2 − q) Ψ̂(k2) Ψ̂(k1)

▶ For the contact interaction v(r1 − r2) = g δ(r1 − r2):

V = 1
2

g
L3

∫
d3k1

(2π/L)3

d3k2

(2π/L)3

d3q
(2π/L)3 Ψ̂†(k1 + q) Ψ̂†(k2 − q) Ψ̂(k2) Ψ̂(k1)
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Diagonal form of ρ(1) for an interacting system (qu. 19)

▶ For an ideal (Bose or Fermi) gas, ⟨r|ρ(1)|r′⟩ =
∑
α

⟨n̂α⟩ ψα(r) ψ∗
α(r′)

Diagonal means sum over a single index α; h =
∑
α

εα |ψα⟩⟨ψα|

The diagonal form holds in the presence of interactions, for suitable functions {|ϕα⟩}

▶ We are used to expectation values for Hermitian operators M: then, ⟨M⟩ is real

⟨r|ρ(1)|r′⟩ = average of non–hermitian operator M = Ψ̂†(r′) Ψ̂(r), may be complex

▶ ⟨M†⟩ = Tr[ ρM† ] = Tr[ (M ρ†)† ] = Tr[ (M ρ)† ]

= Tr[ M ρ ]∗ = Tr[ ρM ]∗ = ⟨M⟩∗

▶ ⟨r′|ρ(1)|r⟩ = ⟨Ψ̂†(r) Ψ̂(r′)⟩ = ⟨
(

Ψ̂†(r′) Ψ̂(r)
)†

⟩ = ⟨r|ρ(1)|r′⟩
∗

The operator ρ(1) is Hermitian, so it may be diagonalised: ρ(1) =
∑
α

να |ϕα⟩⟨ϕα|

⟨r|ρ(1)|r′⟩ =
∑
α

να ϕα(r) ϕ∗
α(r′)

▶ Bose–Einstein condensate if (at least) one of the populations να is of order N
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Dilute Bose gas versus liquid Helium 4 (qu. 20)

Dilute Bose gas
▶ Dilute: nR3 ≪ 1

[R = (mC6/ℏ2)1/4 = interaction range]

▶ Weak interactions: na3 ≪ 1
[scattering length a sets interaction strength]

▶ At T ∼ 0, all atoms in condensate

[depletion 1 − n0/N = 1.5(na3)1/3 ≈ 0.01]

▶ Excitation spectrum

Dilute Bose gas

[Steinhauer PRL 2002]

phonons

Bogoliubov

free particle

▶ Superfluid (phonons at low T : ε = c k )

Liquid Helium 4
▶ Liquid with nR3 ∼ 1
[The motion of a given atom is not ballistic]

▶ Strong, nonzero–ranged interactions

[roton minimum in excitation spectrum]

▶ At T ∼ 0, few atoms in condensate

[depletion 1 − n0/N ≈ 0.9]

▶ Excitation spectrum

P
h
o
n
o
n
s

Rotons

Helium

[Wilks 1970]

▶ Superfluid (phonons at low T : ε = c k )
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Bose condensate present: Bogoliubov prescription
▶ Diagonalise ρ(1) to get the single–particle basis {|ϕi⟩}: ρ(1) =

∑
i

ni |ϕi⟩ ⟨ϕi |

▶ Expand the field operator onto the basis {|ϕi⟩}: Ψ̂(r) =
∑

i

ai ϕi(r)

⟨r|ρ(1)|r′⟩ = ⟨ Ψ̂†(r′)Ψ̂(r) ⟩ =
∑

i,j

⟨a†
i aj⟩ ϕ∗

i (r′) ϕj(r)

Compare the two expressions for ρ(1): ⟨a†
i aj⟩ = ni δi,j

▶ If a condensate is present: n0 is of the order of N
⟨a†

0a0⟩ = n0 and ⟨a0a†
0⟩ = ⟨a†

0a0 + 1⟩ = n0 + 1

Bogoliubov prescription: Neglect commutator, replace a0 by a number

a0 =
√

n0 and Ψ̂(r) =
√

n0 ϕ0(r) +
∑
i ̸=0

ai ϕi(r)

▶ In the presence of a condensate, the average ⟨Ψ̂(r)⟩ is non–zero!

⟨Ψ̂(r)⟩ =
√

n0 ϕ0(r) = Ψ0(r)

Applicable both in the absence and in the presence of interactions
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The order parameter Ψ0(r) = ⟨Ψ̂(r)⟩
Ψ̂(r) =

√
n0 ϕ0(r) +

∑
i ̸=0

ai ϕi (r) = Ψ0(r) +
∑
i ̸=0

ai ϕi (r)

▶ Order parameter: Ψ0(r) ̸= 0 only in presence of a condensate (and
∫

d3r |Ψ2
0| = N0)

just like magnetisation in the para–to–ferromagnetic phase transition

Give a simple argument why ⟨Ψ̂(r)⟩ vanishes in the absence of a condensate!

▶ Symmetry breaking:
Ψ0(r) may be multiplied by arbitrary eiθ

The condensate phase θ varies from realisation to realisation

measurable by interference, pilots Josephson oscillations
[Andrews Science 1997]

▶ Time dependence: Start from a pure state |ΨN⟩ with N ≫ 1 particles
Destroy a particle from the condensate:
a0 |ΨN⟩ =

√
n0 |ΨN⟩ has (N − 1) particles and non–zero overlap with |ΨN⟩

⟨ΨN | Ψ̂(r) |ΨN⟩ = ⟨ΨN | a†
0 Ψ̂(r) |ΨN⟩ /

√
n0 ̸= 0

The time dependence of |ΨN⟩ is exp[−iEN t/ℏ]; that of a0 |ΨN⟩ is exp[−iEN−1t/ℏ]
The complete time dependence is exp[−i(EN − EN−1)t/ℏ] = exp[−i µ t/ℏ]

Time dependence of Ψ0(r) is determined by chemical potential µ = EN − EN−1
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Weakly–interacting bosons, T = 0: Gross–Pitaevskii
▶ Many–body Hamiltonian for the contact interaction v(r − r′) = g δ(r − r′)

H =
∫

d3r1

[
Ψ̂†(r1)

(
p2

2m
+ u

)
Ψ̂(r1) + g

2
Ψ̂†(r1)Ψ̂†(r1)Ψ̂(r1)Ψ̂(r1)

]
▶ Time dependence of the field operator: iℏ ∂Ψ̂(r)/∂t = [ Ψ̂(r),H ]

iℏ∂Ψ̂
∂t

=
(

−ℏ2∆
2m

+ u(r)
)

Ψ̂(r) + g Ψ̂†(r)Ψ̂(r)Ψ̂(r)

▶ Approximation: replace Ψ̂(r) by Ψ0(r) “fully condensed system”

The field operator becomes a classical field satisfying the non–linear Gross–Pitaevskii equation

iℏ ∂Ψ0

∂t
=

(
−ℏ2∆

2m
+ u(r)

)
Ψ0(r) + g |Ψ0(r)|2 Ψ0(r)

▶ Stationary state (i.e. ground state) Ψ0(r,t) = Ψ0(r) e−iµt/ℏ

µΨ0 =
(

−ℏ2∆
2m

+ u(r)
)

Ψ0(r) + g |Ψ0(r)|2 Ψ0(r)

▶ Uniform gas: Ψ0 =
√

n, chemical potential µ = gn, energy E = gn2 V/2
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Bosonic Bogoliubov theory: excitations in Bose gas
1. Using the Bogoliubov prescription,
replace the full Hamiltonian by an approximate quadratic one

in terms of a†
k and ak creating and annihilating plane waves with p = ℏ k

2. “Diagonalise the quadratic Hamiltonian”,
i.e. introduce new operators bk annihilating the ground state

such that H = E0 +
∑

k ε(k) b†
k bk and ε(k) > 0:

E0 is the ground state energy and ε(k) is the dispersion relation for the excitations

weakly–interacting Bose gas

Dilute Bose gas

[Steinhauer PRL 2002]

phonons

Bogoliubov

free particle

ε(k) =

(ℏ2k2

2m

)2

+ 2
ℏ2k2

2m
gn

(1/2)

ideal Fermi gas

0 1 2
Momentum k/kF [kF]

1

0

1

2

3

En
er

gy
   

 in
 u

ni
ts

 o
f 

F

Particles

Excitations

holes particles

uniform
ideal Fermi gas

ε(k) =

∣∣∣∣∣ℏ2k2

2m
− EF

∣∣∣∣∣
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Step 1: Bogoliubov prescription
▶ Many–body Hamiltonian involving the contact interaction v(r1 − r2) = gδ(r1 − r2)

H =
∑

p

p2

2m
a†

p ap + g
2L3

∑
p1+p2+p3+p4=0

a†
−p3

a†
−p4

ap2 ap1

▶ Approximation for the interaction term exploiting Bogoliubov criterion:
Replace a0 =

√
N0 by a number, keep non–condensed modes up to 2nd order

If none of the momenta pi are 0: order 4; if only 1 momentum pi = 0: order 3

2 non–zero momenta: a†
0a†

0a−pap, a†
0a†

pa0ap, a†
pa†

0a0ap, a†
0a†

papa0, a†
pa†

0apa0, a†
pa†

−pa0a0

1 non–zero momentum: does not conserve momentum

All momenta are 0: a†
0a0 = N −

∑
p ̸=0 a†

pap a†
0a†

0a0a0 ≈ (a†
0a0)2 = N2 − 2N

∑
p ̸=0 a†

pap

For a†
0a†

0a0a0, we have implemented particle number conservation: N = N0 + Nthermal

▶ The resulting quadratic Hamiltonian conserves momentum: (n = N/V )

HBogo = gN2

2L3 +
∑

p

[(
p2

2m
+ gn

)
a†

p ap + gn
2

(
a−p ap + a†

p a†
−p

)]

The particle number is not conserved: the condensate acts as a reservoir
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Step 2: Diagonalise the quadratic Hamiltonian

HBogo = gN2

2L3 +
∑

p

Hp where Hp =
(

p2

2m
+ gn

)
a†

p ap + gn
2

(
ap a−p + a†

p a†
−p

)

▶ Introduce new bosonic operators bp and b†
p: [ bp, b†

p′ ] = δp,p′ , [ bp, bp′ ] = 0

Look for them in the form: ap = upbp + vpb†
−p, hence a†

p = upb†
p + vpb−p

where up, vp are real and depend only on p = |p|

[ ap, a†
p ] = 1 yields u2

p − v2
p = 1: take up = cosh θp and vp = sinh θp

▶ a†
pap = u2

p b†
pbp + upvp b†

pb†
−p + upvp b−pbp + v2

p b−pb†
−p

apa−p = u2
p bpb−p + upvp bpb†

p + upvp b†
−pb−p + v2

p b†
−pb†

p

a†
pa†

−p = u2
p b†

pb†
−p + upvp b−pb†

−p + upvp b†
pbp + v2

p b−pbp

▶ Set coefficient of b†
p b†

−p (which is the same as for b−p bp) to zero:

sinh(2θp)
2

(
p2

2m
+ gn

)
+ gn

2
cosh(2θp) = 0, hence tanh(2θp) = − gn

p2/(2m) + gn
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Bosonic Bogoliubov: Result
cosh θ =

[
cosh(2θ) + 1

2

]1/2
, sinh θ = −

[
cosh(2θ) − 1

2

]1/2
, cosh(2θ) = 1/

√
1 − tanh2(2θ)

▶ up =
[

p2/(2m) + gn
2 ε(p) + 1

2

]1/2

and vp = −
[

p2/(2m) + gn
2 ε(p) − 1

2

]1/2

▶ Diagonal form of the many–body Hamiltonian: H = E0 +
∑

p

ε(p) b†
p bp

Ground–state energy: E0 = gN2

2L3 + 1
2

∑
p

(
ε(p) − p2

2m
− gn

)
(More accurate than the Gross–Pitaevskii result, but not the whole story)

Bogoliubov dispersion relation ε(p) =
[(

p2

2m

)2

+ 2
p2

2m
gn

]1/2

▶ Justify that the non–condensed modes are populated even at T = 0

Show that, at T = 0, the condensate density is: n0 = N
V

[
1 − 8

3
√
π

(na3)1/2
]

(g = 4πℏ2a/m > 0, where a > 0 is the scattering length encoding repulsive interactions)
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