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1 One-body density matrix

We consider a system of N identical particles (either bosons or fermions) which all share the
same spin state. Let p be the density operator characterising the system. For instance:

e If the system is in its N—particle ground state |U), p = |¥) (¥|;

e At thermal equilibrium with a fixed number N of particles, p = e PH / Tr(e™#H),
where T' = 1/(kpf) is the temperature and H is the N—particle Hamiltonian.

We introduce the one-body density matrix p(!), which is a one-body operator defined as the
partial trace of p over N — 1 particles:

<r|p(1) |7y = N (r| Tra,. n(p)|7') = N/dg’l‘g...d?)’I”N (r,ro, ..., ol oy rn) (1)

and call g (r,7') = (r'| p(V |r) the first-order spatial correlation function.

1. Justify that all particles 1, ..., N play the same role in Eq. 1.
Calculate Tr(p™M) and g (7, 7).

2. We consider a one—particle operator F' = ZZ]\L 1 f@ where f@ acts on the particle
only. Show that the average value < F' >= Try _n(pF) is given by < F >= Tr(pM f).

3. We now choose F =N |i:#/) (i : #|.  Show that (r|p®) |r') =< F >.
HINT: For any single—particle operator A and single—particle states |u), [v), Tr(A|u) (v]) = (v| A|u).

4. Justify the name given to the function g(!)(r /).
For a uniform system, justify that g®")(|r —#’|) depends on the single parameter |r—1r/|.

*Please send all your questions and feedback to the following address: david.papoular@u-cergy.fr



2 Two—body density matrix

A natural extension of Eq. (1) is the two-body density matrix p(®, which is a two-body
operator defined as the partial trace of p over N — 2 particles:

(r1, o] pP e}, ) = (1,72 N(N — 1) Trs v (p) 7], 7h) (2)
=N(N-1) /d3r3...d37'N (r1,72,73,...,°N| ol T T3, .. TN -
3)

The diagonal matrix element g (r,ry) = (71,72 p? |r1,72) is called the second—order
spatial correlation function.

5. We consider a two—particle operator G = Efi 1225 4 g7 where g(»7) acts on the
particles ¢ and j only. Show that < G >=Try _n(pG) is given by < G >= Tr(p@g).

6. We choose G = SN | > jzilt T, i me) (171, J 1 mof. Show that 9B (r1,m) =< G >.
Justify that g(? (71, 72) measures the tendency of the atoms to cluster or to stay apart.

3 lIdeal gases at zero temperature

For Questions 7, 8, and 9, we assume that the gas is ideal, i.e. the identical particles do not
interact with each other. Let h = p?/(2m) + U(r) be the single-particle Hamiltonian, and
(|¢a)) a basis of eigenvectors of h, so that h|¢a) = €q |Pa)-

7. Which term in the Hamiltonian pilots the (non)—uniform character of the system? What
is its shape for a uniform system? How may one model a non—uniform trapped system?
In each of these two cases, what are the basis functions ¢q(7)?

8. For an ideal Bose gas, what is the ground—-state N—particle wavefunction?

(1)

Bose*

Use Eq. (1) to calculate the corresponding one-body density matrix p
(1)

Bose

For a uniform gas, show that p = N/V, and conclude as to the coherence length.

9. For an ideal Fermi gas which is fully polarised (i.e. all particles are in the same spin
state), write the ground-state N-particle wavefunction as a determinant. Use Eq. (1)

to calculate the corresponding one-body density matrix p%le)rmi in terms of the (¢q(r)):

G (5 7) Z% : (4)

10. For a uniform ideal Fermi gas in 1D at T' = 0, show that, in the thermodynamic limit:
g"(z) = (N/L) sinc(kra) , ()
with kg = m N/L being the Fermi wavevector. What is the coherence length?

11. For a uniform ideal Fermi gas in 3D at T' = 0, show that, in the thermodynamic limit:

1) _ N sin(kpr) — kpr cos(kpr)
gFermi(T) - VvV (kFT)3/3 ) (6)

with kr = (6w2N/V)/? being the Fermi wavevector. What is the coherence length?



4 Second quantisation and calculations at non—zero temperature

The calculation of the operator p™) (or of the function g(!) (7, #')) in more general situations
is easier if one uses the second quantisation formalism. Hence, we introduce a basis (|ta)) of

single—particle states, and the corresponding creation and annihilation operators a, and ag.

12.

13.

14.

15.

16.

17.

Using Question 3, show that the first—order correlation function reads:

gV ) =@plr) =" <alaa > valr)Phr). (7)
o,

We introduce the field operator ¥(r) = > ¥a(r) aq.
Check that Eq. 7 reduces to: gV (r,7") =< UH(r)U(r) >.

Using Question 6, show that the second—order correlation function reads:

9@ (r1,m) = (r1, | pP) [r1,m0) Y < afalagan > valr)vs(r2)wl(ra) 3 (ry) . (8)
a’B7’y76

Check that Eq. (8) reduces to: g (ry,72) =< Ul (r)) Ul (1) U (20) U (1) >.

For an ideal gas, show that, if one chooses the single—particle states to be the eigen-
states (|¢q)) of h, the double sum over «, 8 in Eq. 7 reduces to a single sum:

gV(r,r") = 3 ¢4 )palr) na . (9)

Express the numbers nq appearing in the expression for ¢(!) in terms of averages of
creation and annihilation operators. Where does the quantum statistics play a role?

For a uniform ideal gas obeying Boltzmann statistics,
show that, in the thermodynamic limit:

N
p((:lla)ssical(r) = V 6Xp(—71'7"2/A%) ’ (10)

where Ap = [h?/(2emkpT)]*/? is the thermal de Broglie wavelength. Conclude as to
the coherence length. How does it compare to the mean particle spacing?
HINT: First, show that the occupation numbers are n, = NAS/V exp(—BE), with E = h*k?/(2m).

Using your answers to Questions 8 and 16, explain why Bose-Einstein condensation is
also called ‘off-diagonal long—range order’.

5 Interacting systems

Finally, we relax the ideal-gas hypothesis. The N—particle Hamiltonian now reads:

N 2 N n—1
H= [;;fb + U(rn)] +Y N Virn—rm) . (11)
n=1 n=1m=1



D (s)

gas, as a function of the distance s = |ry — 1]
T>T — = Reproduced from Ref. [1, chap. 2].

18. What does the term V (7, — ry,) appearing in Eq. 11 represent? Explain the bounds
on the double sum over n and m. How does V depend on = (i) for neutral particles
carrying no dipole moment? (%) for neutral dipolar particles? (%ii) for charged ions?

19. @ Construct a basis (¢q) of single-particle wavefunctions onto which the function
gV (r1,72) expands as in Eq. (9), that is, with a single sum over the index a.
HiNT: First, justify that p(1> is a hermitian linear operator.

20. @ The ideal gas model of questions 8 and 16 describes weakly—interacting Bose gases.
Which other quantum system also exhibits off-diagonal long-range order? What is its
key difference with respect to the model studied in this section?

Further reading

INTRODUCTORY
e The density matrix is defined and reviewed in Ref. [2, Appendix D].

e An accessible introduction to identical particles in Quantum Mechanics may be found in Ref. [3, chap. 4].
e The properties of quantum gases are reviewed in Ref. [4], chapters 8, 11 (fermions), and 12 (bosons).
e The correlation functions g™ and ¢® are defined in an elementary way in Ref. [5, §23.2].
e Section 20.4 of Ref. [6] provides an introduction to the Poisson distribution applied to classical gases.
MORE ADVANCED
e The one-body and two—body density matrices are defined in Ref. [1, chap. 2]. This chapter also contains
an introduction to off-diagonal long—range order in the context of Bose—Einstein condensation.

e The correlation functions g and ¢® for Fermi gases are analysed in Ref. [7, §1.2 & §1.3].
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Figure 1 One body density matrix g(")(s) for a uniform Bose



