ICFP M2 Advanced Quantum Mechanics Problem #2: First and second-order spatial correlation functions

David Papoular and Frédéric Chevy September 25st, 2024

1 One-body density matrix

We consider a system of N identical particles (either bosons or fermions) which all share the same spin state. Let ρ be the density operator characterising the system. For instance:

- If the system is in its N-particle ground state $|\Psi\rangle$, $\rho = |\Psi\rangle\langle\Psi|$;
- At thermal equilibrium with a fixed number N of particles, $\rho = e^{-\beta H}/\operatorname{Tr}(e^{-\beta H})$, where $T = 1/(k_B\beta)$ is the temperature and H is the N-particle Hamiltonian.

We introduce the one-body density matrix $\rho^{(1)}$, which is a one-body operator defined as the partial trace of ρ over N-1 particles:

$$\langle \boldsymbol{r} | \rho^{(1)} | \boldsymbol{r}' \rangle = N \langle \boldsymbol{r} | \operatorname{Tr}_{2,...,N}(\rho) | \boldsymbol{r}' \rangle = N \int d^3 r_2 \dots d^3 r_N \langle \boldsymbol{r}, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N | \rho | \boldsymbol{r}', \boldsymbol{r}_2, \dots, \boldsymbol{r}_N \rangle , (1)$$

and call $g^{(1)}({m r},{m r}') = \langle {m r}'|\,
ho^{(1)}\, |{m r} \rangle$ the first–order spatial correlation function.

- 1. Justify that all particles $1, \ldots, N$ play the same role in Eq. 1. Calculate $\text{Tr}(\rho^{(1)})$ and $g^{(1)}(\boldsymbol{r}, \boldsymbol{r})$.
- 2. We consider a one–particle operator $F = \sum_{i=1}^{N} f^{(i)}$, where $f^{(i)}$ acts on the particle i only. Show that the average value $\langle F \rangle = \text{Tr}_{1,\dots,N}(\rho F)$ is given by $\langle F \rangle = \text{Tr}(\rho^{(1)}f)$.
- 3. We now choose $F = \sum_{i=1}^{N} |i: \mathbf{r}'\rangle \langle i: \mathbf{r}|$. Show that $\langle \mathbf{r}| \rho^{(1)} |\mathbf{r}'\rangle = \langle F \rangle$. Hint: For any single-particle operator A and single-particle states $|u\rangle, |v\rangle$, $\operatorname{Tr}(A|u\rangle \langle v|) = \langle v|A|u\rangle$.
- 4. Justify the name given to the function $g^{(1)}(\mathbf{r}, \mathbf{r}')$. For a uniform system, justify that $g^{(1)}(|\mathbf{r} - \mathbf{r}'|)$ depends on the single parameter $|\mathbf{r} - \mathbf{r}'|$.

^{*}Please send all your questions and feedback to the following address: david.papoular@u-cergy.fr

2 Two-body density matrix

A natural extension of Eq. (1) is the two-body density matrix $\rho^{(2)}$, which is a two-body operator defined as the partial trace of ρ over N-2 particles:

$$\langle \boldsymbol{r}_{1}, \boldsymbol{r}_{2} | \rho^{(2)} | \boldsymbol{r}_{1}', \boldsymbol{r}_{2}' \rangle = \langle \boldsymbol{r}_{1}, \boldsymbol{r}_{2} | N(N-1) \operatorname{Tr}_{3,\dots,N}(\rho) | \boldsymbol{r}_{1}', \boldsymbol{r}_{2}' \rangle$$

$$= N(N-1) \int d^{3}\boldsymbol{r}_{3} \dots d^{3}\boldsymbol{r}_{N} \langle \boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \dots, \boldsymbol{r}_{N} | \rho | \boldsymbol{r}_{1}', \boldsymbol{r}_{2}', \boldsymbol{r}_{3}, \dots, \boldsymbol{r}_{N} \rangle .$$

$$(2)$$

The diagonal matrix element $g^{(2)}(\mathbf{r}_1, \mathbf{r}_2) = \langle \mathbf{r}_1, \mathbf{r}_2 | \rho^{(2)} | \mathbf{r}_1, \mathbf{r}_2 \rangle$ is called the second-order spatial correlation function.

- 5. We consider a two—particle operator $G = \sum_{i=1}^{N} \sum_{j \neq i} g^{(i,j)}$, where $g^{(i,j)}$ acts on the particles i and j only. Show that $\langle G \rangle = \text{Tr}_{1,\dots,N}(\rho G)$ is given by $\langle G \rangle = \text{Tr}(\rho^{(2)}g)$.
- 6. We choose $G = \sum_{i=1}^{N} \sum_{j \neq i} |i: \mathbf{r}_1, j: \mathbf{r}_2\rangle \langle i: \mathbf{r}_1, j: \mathbf{r}_2|$. Show that $g^{(2)}(\mathbf{r}_1, \mathbf{r}_2) = \langle G \rangle$. Justify that $g^{(2)}(\mathbf{r}_1, \mathbf{r}_2)$ measures the tendency of the atoms to cluster or to stay apart.

3 Ideal gases at zero temperature

For Questions 7, 8, and 9, we assume that the gas is ideal, i.e. the identical particles do not interact with each other. Let $h = \mathbf{p}^2/(2m) + U(\mathbf{r})$ be the single-particle Hamiltonian, and $(|\phi_{\alpha}\rangle)$ a basis of eigenvectors of h, so that $h|\phi_{\alpha}\rangle = \epsilon_{\alpha}|\phi_{\alpha}\rangle$.

- 7. Which term in the Hamiltonian pilots the (non)–uniform character of the system? What is its shape for a uniform system? How may one model a non–uniform trapped system? In each of these two cases, what are the basis functions $\phi_{\alpha}(\mathbf{r})$?
- 8. For an ideal Bose gas, what is the ground–state N–particle wavefunction? Use Eq. (1) to calculate the corresponding one–body density matrix $\rho_{\text{Bose}}^{(1)}$. For a uniform gas, show that $\rho_{\text{Bose}}^{(1)} = N/V$, and conclude as to the coherence length.
- 9. For an ideal Fermi gas which is fully polarised (i.e. all particles are in the same spin state), write the ground–state N–particle wavefunction as a determinant. Use Eq. (1) to calculate the corresponding one–body density matrix $\rho_{\text{Fermi}}^{(1)}$ in terms of the $(\phi_{\alpha}(\mathbf{r}))$:

$$g_{\text{Fermi}}^{(1)}(\boldsymbol{r}, \boldsymbol{r}') = \sum_{\alpha=1}^{N} \phi_{\alpha}^{\star}(\boldsymbol{r}) \phi_{\alpha}(\boldsymbol{r}')$$
 (4)

10. For a uniform ideal Fermi gas in 1D at T=0, show that, in the thermodynamic limit:

$$g^{(1)}(x) = (N/L)\operatorname{sinc}(k_F x)$$
, (5)

with $k_F = \pi N/L$ being the Fermi wavevector. What is the coherence length?

11. For a uniform ideal Fermi gas in 3D at T=0, show that, in the thermodynamic limit:

$$g_{\text{Fermi}}^{(1)}(r) = \frac{N}{V} \frac{\sin(k_F r) - k_F r \cos(k_F r)}{(k_F r)^3 / 3} ,$$
 (6)

with $k_F = (6\pi^2 N/V)^{1/3}$ being the Fermi wavevector. What is the coherence length?

4 Second quantisation and calculations at non-zero temperature

The calculation of the operator $\rho^{(1)}$ (or of the function $g^{(1)}(\boldsymbol{r},\boldsymbol{r}')$) in more general situations is easier if one uses the second quantisation formalism. Hence, we introduce a basis $(|\psi_{\alpha}\rangle)$ of single–particle states, and the corresponding creation and annihilation operators a_{α}^{\dagger} and a_{α} .

12. Using Question 3, show that the first-order correlation function reads:

$$g^{(1)}(\boldsymbol{r}, \boldsymbol{r}') = \langle \boldsymbol{r}' | \rho | \boldsymbol{r} \rangle = \sum_{\alpha, \beta} \langle a_{\beta}^{\dagger} a_{\alpha} \rangle \psi_{\alpha}(\boldsymbol{r}) \psi_{\beta}^{*}(\boldsymbol{r}'). \tag{7}$$

- 13. We introduce the field operator $\Psi(\mathbf{r}) = \sum_{\alpha} \psi_{\alpha}(\mathbf{r}) a_{\alpha}$. Check that Eq. 7 reduces to: $g^{(1)}(\mathbf{r}, \mathbf{r}') = \langle \Psi^{\dagger}(\mathbf{r}')\Psi(\mathbf{r}) \rangle$.
- 14. Using Question 6, show that the second-order correlation function reads:

$$g^{(2)}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) = \langle \boldsymbol{r}_{1},\boldsymbol{r}_{2} | \rho^{(2)} | \boldsymbol{r}_{1},\boldsymbol{r}_{2} \rangle \sum_{\alpha,\beta,\gamma,\delta} \langle a_{\delta}^{\dagger} a_{\beta} a_{\alpha} \rangle \psi_{\alpha}(\boldsymbol{r}_{1}) \psi_{\beta}(\boldsymbol{r}_{2}) \psi_{\gamma}^{*}(\boldsymbol{r}_{2}) \psi_{\delta}^{*}(\boldsymbol{r}_{1}) . \tag{8}$$

Check that Eq. (8) reduces to: $g^{(2)}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \langle \Psi^{\dagger}(\boldsymbol{r}_1) \Psi^{\dagger}(\boldsymbol{r}_2) \Psi(\boldsymbol{r}_2) \Psi(\boldsymbol{r}_1) \rangle$.

15. For an ideal gas, show that, if one chooses the single–particle states to be the eigenstates ($|\phi_{\alpha}\rangle$) of h, the double sum over α, β in Eq. 7 reduces to a single sum:

$$g^{(1)}(\boldsymbol{r}, \boldsymbol{r'}) = \sum_{\alpha} \phi_{\alpha}^{*}(\boldsymbol{r'}) \phi_{\alpha}(\boldsymbol{r}) n_{\alpha} . \qquad (9)$$

Express the numbers n_{α} appearing in the expression for $g^{(1)}$ in terms of averages of creation and annihilation operators. Where does the quantum statistics play a role?

16. For a uniform ideal gas obeying Boltzmann statistics, show that, in the thermodynamic limit:

$$\rho_{\text{classical}}^{(1)}(r) = \frac{N}{V} \exp(-\pi r^2 / \Lambda_T^2) , \qquad (10)$$

where $\Lambda_T = [h^2/(2\pi m k_B T)]^{1/2}$ is the thermal de Broglie wavelength. Conclude as to the coherence length. How does it compare to the mean particle spacing? Hint: First, show that the occupation numbers are $n_{\alpha} = N\Lambda_T^3/V \exp(-\beta E)$, with $E = \hbar^2 k^2/(2m)$.

17. Using your answers to Questions 8 and 16, explain why Bose–Einstein condensation is also called 'off–diagonal long–range order'.

5 Interacting systems

Finally, we relax the ideal–gas hypothesis. The N-particle Hamiltonian now reads:

$$H = \sum_{n=1}^{N} \left[\frac{\mathbf{p}_n^2}{2m} + U(\mathbf{r}_n) \right] + \sum_{n=1}^{N} \sum_{m=1}^{n-1} V(\mathbf{r}_n - \mathbf{r}_m) .$$
 (11)

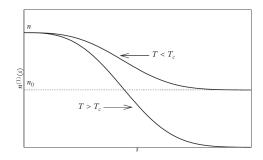


Figure 1 One–body density matrix $g^{(1)}(s)$ for a uniform Bose gas, as a function of the distance $s = |\mathbf{r}_2 - \mathbf{r}_1|$. Reproduced from Ref. [1, chap. 2].

- 18. What does the term $V(\mathbf{r}_n \mathbf{r}_m)$ appearing in Eq. 11 represent? Explain the bounds on the double sum over n and m. How does V depend on \mathbf{r} (i) for neutral particles carrying no dipole moment? (ii) for neutral dipolar particles? (iii) for charged ions?
- 19. Construct a basis (ϕ_{α}) of single-particle wavefunctions onto which the function $g^{(1)}(\boldsymbol{r}_1, \boldsymbol{r}_2)$ expands as in Eq. (9), that is, with a *single sum* over the index α . Hint: First, justify that $\rho^{(1)}$ is a hermitian linear operator.
- 20. The ideal gas model of questions 8 and 16 describes weakly–interacting Bose gases. Which other quantum system also exhibits off–diagonal long–range order? What is its key difference with respect to the model studied in this section?

Further reading

Introductory

- The density matrix is defined and reviewed in Ref. [2, Appendix D].
- An accessible introduction to identical particles in Quantum Mechanics may be found in Ref. [3, chap. 4].
- The properties of quantum gases are reviewed in Ref. [4], chapters 8, 11 (fermions), and 12 (bosons).
- The correlation functions $g^{(1)}$ and $g^{(2)}$ are defined in an elementary way in Ref. [5, §23.2].
- Section 20.4 of Ref. [6] provides an introduction to the Poisson distribution applied to classical gases.

More advanced

- The one-body and two-body density matrices are defined in Ref. [1, chap. 2]. This chapter also contains an introduction to off-diagonal long-range order in the context of Bose-Einstein condensation.
- The correlation functions $g^{(1)}$ and $g^{(2)}$ for Fermi gases are analysed in Ref. [7, §1.2 & §1.3].

References

- [1] L. P. Pitaevskii, S. Stringari, *Bose-Einstein condensation and superfluidity*, Oxford University Press, 2nd ed. (2016).
- $[2]\;\; {\rm J.\; Basdevant,\; J.\; Dalibard,}\; \textit{Quantum Mechanics},\; {\rm Springer}\; (2002).$
- R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. III, Addison-Wesley (1965).
- [4] K. Huang, Statistical Mechanics, Wiley, 2nd ed. (1987).
- [5] C. Cohen-Tannoudji, D. Guéry-Odelin, Advances in atomic physics: an overview, World Scientific (2011).
- [6] W. Appel, Mathematics for Physics and Physicists, Princeton University Press (2007).
- [7] Y. Castin, in Proceedings of the Enrico Fermi Varenna School on Fermi gases, IOS Press (2007).