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Beamsplitters and unitary matrices
Question 4
We consider either a beamsplitter for the electromagnetic field, or one for matter waves. The
electromagnetic waves are solutions of Maxwell’s equations or their quantised versions. The matter
waves (consisting of atoms or non–relativistic electrons) satisfy Schrödinger’s equation. In all
cases, the equations governing the fields are linear, so that we may represent the action of the
beamsplitter by a matrix U . If a single particle impinges on the beamsplitter with the wavefunction
|ψin⟩ = α |A⟩ + β |B⟩, with |α|2 + |β|2 = 1, then the wavefunction once the particle exits the
beamsplitter is |ψout⟩ = γ |C⟩ + δ |D⟩, where:(

γ
δ

)
= U

(
α
β

)
. (1)

We assume that the beamsplitter introduces no losses. Then, for electromagnetic waves, the
unitarity of U follows from the Stokes relations on the incident, reflected, and refracted field
amplitudes near an interface. For matter waves, U = exp(−iHτ/ℏ) is an evolution operator
corresponding to a Hermitian Hamiltonian H, hence, it is also unitary.

The unitary matrix U satisfies 1 = UU†, so that its determinant is constrained by 1 =
det(U) det(U†) = |det(U)|2. Hence, det(U) = eiϕ is a phase, which is not necessarily 1. However,
we may write U = eiϕ/2 Ũ . Then, the matrix Ũ is unitary with det(Ũ) = 1. The phase eiϕ/2

affects both output states in the same way, so that it has no consequence on any measurement.
Therefore, it may be dropped, and we assume from now on that det(U) = 1. Hence, we may write:

U =
(
t −r∗
r t∗

)
with |t|2 + |r|2 = 1. (2)

In particular, U |A⟩ = t |C⟩ + r |D⟩ and U |B⟩ = −r∗ |C⟩ + t∗ |D⟩. The complex numbers t and r
are the amplitude transmission and reflection coefficients for the (electromagnetic or matter–wave)
field. The corresponding intensity transmission and reflection coefficients are the real numbers
T = |t|2 and R = |r|2, which satisfy T + R = 1. The phases of the complex numbers t and r
contain information about optical lengths and reflections (cf. in particular the minus sign affecting
the top right coefficient) which are not encoded in the real numbers T and R.

The 2 complex numbers t and r (|t|2 + |r|2 = 1) may be parametrised by 3 real numbers1 α, β,
and γ: {

t = cos(β/2)ei(α+γ)/2

r = sin(β/2)ei(α−γ)/2,
where 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π. (3)

1These three real numbers have a simple physical interpretation. The group SU(2) consisting of the 2 × 2 unitary
matrices with determinant 1 represents all possible 3D rotations. Each 3D rotation may be specified by three
Euler’s angles, which correspond to the three real numbers α, β, and γ.
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Output fields for distinguishable particles, fermions, and bosons
Questions 6–7: distinguishable particles
We first consider the case of distinguishable particles. This regime may be reached using both
photons and electrons by sending the two incident particles onto the beamsplitter one after the
other, with a time delay in between them which is chosen longer than the ratio l/v of their
coherence length l to their velocity v. For photons, v = c and the coherence length l is set by the
shape of the wavepacket. For electrons or atoms, v ≪ c and l = ΛT is the de Broglie wavelength
at the temperature T , given by ΛT = [2πℏ2/(mkBT )]1/2.

For distinguishable particles, there is a two–dimensional subspace of input states |Ψin⟩ repre-
senting particles entering the beamsplitter through different ports. This subspace is spanned by
the orthogonal two–particle input states |1 : A, 2 : B⟩ (particle 1 enters through port A and parti-
cle 2 through port B) and |1 : B, 2 : A⟩ (particle 1 enters through port B and particle 2 through
port A). Both of these basis states are tensor products involving the states of particles 1 and 2:

|1 : A, 2 : B⟩ = |1 : A⟩ ⊗ |2 : B⟩ and |1 : B, 2 : A⟩ = |1 : B⟩ ⊗ |2 : A⟩ . (4)

Any normalised linear combination of the two states of Eq. (4) is a suitable input state |Ψdist
in ⟩:

|Ψdist
in ⟩ = u |1 : A, 2 : B⟩ + v |1 : B, 2 : A⟩ , with |u|2 + |v|2 = 1. (5)

We first consider an input state which is an arbitrary two–particle product state: |1 : ϕ1, 2 : ϕ2⟩ =
|1 : ϕ1⟩ ⊗ |2 : ϕ2⟩. Here, |ϕ1⟩ and |ϕ2⟩ are single–particle input states, i.e. arbitrary linear combi-
nations of |A⟩ and |B⟩. The beamsplitter acts in the same way on each incident particle, hence,
the corresponding output state is |1 : Uϕ1⟩ ⊗ |2 : Uϕ2⟩.

Then, assuming for instance u = 1 and v = 0 in Eq. (5), the obtained output state is:

|Ψdist
out ⟩ = −r∗t |1 : C, 2 : C⟩ + |t|2 |1 : C, 2 : D⟩ − |r|2 |1 : D, 2 : C⟩ + rt∗ |1 : D, 2 : D⟩ . (6)

If the intensity transmission and reflection coefficients are equal, |t|2 = |r|2 = 1/2, the beamsplitter
is said to be symmetric. Under this assumption, r and t depend only on two of the three Euler
angles of Eq. (3): t = ei(α+γ)/2/

√
2 and r = ei(α−γ)/2/

√
2. Then, Eq. (6) reduces to:

|Ψdist
out ⟩ = 1

2
(
−eiγ |1 : C, 1 : C⟩ + |1 : C, 1 : D⟩ − |1 : D, 1 : C⟩ + e−iγ |1 : D, 1 : D⟩

)
, (7)

where γ is one of the Euler angles of Eq. (3). Under this assumption of a symmetric beamsplitter,
the four possible detection events (both particles detected at port C; particle 1 detected at port
C and particle 2 at port D; particle 1 at port D and particle 2 at port C; both particles detected
at port D) will occur with equal probabilities, namely 1/4 for each possible outcome.

Identical particles
We now turn to identical particles. We only consider pure input states. We further assume that
the two incident identical particles (2 photons, or 2 electrons, or 2 atoms) enter the beamsplitter
through different ports. Both for two fermions (e.g. electrons) and for two bosons (e.g. photons
or 87Rb atoms), the subspace of permissible input states |Ψin⟩ is smaller than for distinguishable
particles: it now has dimension 1. For fermions, the wavefunction must be antisymmetric with
respect to the exchange of the two particles; for bosons, it must be symmetric. In both cases, the
permissible input states are proportional to the two–particle wavefunction |Ψin⟩ defined as:

|Ψin⟩ = 1√
2

(|1 : A, 2 : B⟩ + ϵ |1 : B, 2 : A⟩) , (8)

where ϵ = −1 for fermions and ϵ = +1 for bosons.
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Exploiting the linearity of the action of the beamsplitter, as well as its action on product states,
we find the following output state:

|Ψout⟩ = 1√
2

[ (1 + ϵ)(−r∗t |1 : C, 2 : C⟩ + rt∗ |1 : D, 2 : D⟩)

+(|t|2 − ϵ|r|2)(|1 : C, 2 : D⟩ + ϵ |1 : D, 2 : C⟩) ] .
(9)

We now discuss the Fermi and Bose cases separately.

Questions 9–10: fermions
The case of Fermi statistics corresponds to ϵ = −1 in Eqs. (8) and (9). The first line on the
right–hand side of Eq. (9) cancels out. The transmission and reflection coefficients drop out as
well thanks to the relation |t|2 + |r|2 = 1. Hence, the fermionic output state reads:

|ΨFermi
out ⟩ = 1√

2
(|1 : C, 2 : D⟩ − |1 : D, 2 : C⟩) . (10)

It is antisymmetric as expected. All antisymmetric output states are proportional to this one
(meaning that the subspace of antisymmetric output states has dimension 1), hence, the Pauli
exclusion principle fully determines the output state |ΨFermi

out ⟩ (up to a phase which does not affect
the measurement results). This explains why Eq. (10) holds regardless of the values of t and r.

Questions 12–13: bosons
For bosons, ϵ = +1 in Eqs. (8) and (9). The bosonic output state reads:

|ΨBose
out ⟩ = 1√

2
[ 2(−r∗t |1 : C, 2 : C⟩ + rt∗ |1 : D, 2 : D⟩)

+(|t|2 − |r|2)(|1 : C, 2 : D⟩ + |1 : D, 2 : C⟩) ] .
(11)

Unlike for fermions, |ΨBose
out ⟩ does depend on t and r. This is because the subspace of symmetric

output states has dimension 3 (rather than 1 for antisymmetric output states): it is spanned by
the three states |1 : C, 2 : C⟩, |1 : D, 2 : D⟩, and (|1 : C, 2 : D⟩ + |1 : D, 2 : C⟩)/

√
2.

If the beamsplitter is assumed to be symmetric (|r|2 = |t|2), the second line of Eq. (11) vanishes,
and |ΨBose

out ⟩ reduces to:

|ΨBose
out ⟩ = 1√

2
(
−eiγ |1 : C, 2 : C⟩ + e−iγ |1 : D, 2 : D⟩

)
. (12)

For a symmetric beamsplitter, the effect is maximal: No coincidence counts are ever recorded on
the output side of the beamsplitter, and both bosons always exit from the same output port (2
bosons exit from C, or 2 bosons exit from D) with equal probabilities, namely 1/2.

This effect may be understood as second–order bosonic interference. A coincidence event may
occur in two ways: either both particles are reflected (A→ C and B → D, probability amplitude
tt∗ = |t|2), or both particles are transmitted (A→ D and B → C, probability amplitude r(−r∗) =
−|r|2). These two processes cannot be distinguished by the detectors on the output side of
the beamsplitter, therefore they interfere. The key point is that the two probability amplitudes
have opposite signs, so that the interference is destructive, leading to a total suppression of the
coincidence events for a symmetric beamsplitter.

Observing second–order interference with fermions and bosons
First–order and second–order observables: Questions 5, 8, 11, 14
The observables appearing in Table 1 are chosen as follows.
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1 in A, 0 in B 1 in A, 1 in B 1 in A, 1 in B 1 in A, 1 in B
disting. fermions bosons

⟨NC⟩/(NA +NB) 1/2 1/2 1/2 1/2
∆N2

C/⟨NC⟩ 1/2 1/2 0 1
⟨NCD⟩/N 0 1/2 1 0

Table 1 First– and second–order observables characterising the output states after the beamsplitter for
(i) a single incident particle, (ii) two distinguishable particles, (iii) two fermions, (iv) two bosons. In the
three cases where two particles collide on the beamsplitter, they enter through different ports. In all cases
except the fermionic one, the beamsplitter is symmetric (|t|2 = |r|2).

For each of the four considered cases (one particle; two distinguishable particles entering through
different ports; two fermionic particles entering through different ports; two bosonic particles en-
tering through different ports), we perform N successive runs of the experiment. These realisations
are independent and identically distributed, hence, their contributions to the average particle count
⟨NC⟩ in the output port C, the variance ∆N2

C on the particle number in the same port, and the
average coincidence count ⟨NCD⟩ add up. Therefore, these three quantities are proportional to N .
In order to eliminate their dependence on N , we wish to divide them by other quantities which
also scale with N .

• We choose to divide the average value ⟨NC⟩ by (NA + NB) so as to obtain the fraction of
incident particles which exit the beamsplitter through port C. The denominator (NA +NB)
is equal to N for single–particle input states (second column of Table 1), and to 2N in all
cases where two particles collide at the beamsplitter (columns 3–5 of Table 1).

• We now turn to the variance ∆N2
C . We wish to consider a local observable, which depends

on measurements at port C but not at port D: this leaves a choice between dividing it by
N or by the average value ⟨NC⟩. We choose to divide it by ⟨NC⟩ so as to probe how far the
random variable NC is from following a Poisson distribution (for which ∆N2

C = NC).

• The ratio ⟨NCD⟩ /N represents the fraction of the runs leading to coincidence detections.

We now assume the beamsplitter to be symmetric (|t|2 = |r|2), except for the fermionic case
where the values of t and r play no role (see Eq. (10)). The first–order observable ⟨NC⟩ /(NA+NB)
does not discriminate between any of the four columns of Table 1 (neither would its counterpart
⟨ND⟩ /(NA+NB)). The second–order local observable ∆N2

C/ ⟨NC⟩, which characterises the fluctu-
ations (or “noise”) on the particle number, does discriminate between two distinguishable particles,
two fermions, and two bosons. For two distinguishable particles, it takes the same value 1/2 as
when a single particle arrives on the beamsplitter. For two identical fermions, it vanishes (see the
experimental Fig. 3 in the problem set). Finally, for two identical bosons, it is equal to 1.

Coincidence counts: Questions 15 and 16
One way to distinguish between experiments involving one and two distinguishable particles is to
examine the coincidence counts ⟨NCD⟩ /N . This is also a second–order observable, but it is non–
local, in the sense that it requires simultaneous measurements at the two output ports C and D.
The quantity ⟨NCD⟩ /N = 0 for any experiment involving a single particle: it is “indivisible” and
must therefore exit either through port C or through port D. By contrast, non–zero coincidence
counts are obtained with two distinguishable particles (⟨NCD⟩ /N = 1/2) and with two fermions
(⟨NCD⟩ /N = 1, meaning that two fermions always exit through different output ports). However,
for two bosons, the coincidence counts vanish as a consequence of destructive interference: this
is the Hong–Ou–Mandel effect, illustrated by Fig. 4 in the problem set which results from an
experiment with photons.

The experimental signal shown on that figure is the photon coincidence number ⟨NCD⟩ /N
plotted as a function of the position of the beamsplitter. This position determines the difference
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in optical paths between the photons entering the beamsplitter through ports A and B. If this
difference is chosen to be zero, the two incident photons are indistinguishable and the bosonic
interference effect occurs, leading to ⟨NCD⟩ /N = 0. On the contrary, if the difference in optical
paths is greater than the coherence length of the photons, they behave as distinguishable particles,
so that ⟨NCD⟩ /N = 1/2. Hence, the width of the Hong–Ou–Mandel dip is a measurement of the
coherence length of the incident photons, which is directly related to the spread in momenta, or
in frequencies, of the photon wavepackets.

Beamsplitters and second quantisation
Question 17
We start by introducing the operator U , which generalises the role of U to input (and output)
states containing an arbitrary number of particles:

U |0A0B⟩ = |0C0D⟩ (vacuum stays vacuum), (13)
U |ϕ⟩ = U |ϕ⟩ for any single–particle state |ϕ⟩, (14)

U |ϕ1⟩ . . . |ϕN ⟩ = (U |ϕ1⟩) . . . (U |ϕN ⟩) for N particles in a product state. (15)

The operator U represents the effect of the beamsplitter. It transforms an input state (single–
particle states are linear combinations of the input ports |A⟩ and |B⟩) into an output state (single–
particle states are linear combinations of the output ports |C⟩ and |D⟩).

We use U to define the operators c̃ = U†cU and d̃ = U†dU . Note that the operators c and d act
on the output states whereas the operators c̃ and d̃ act on the input states.

We now wish to express the annihilation operators c̃ in terms of the input–state operators
a and b. For this purpose, we first construct the single–particle input state |Cin⟩ such that,
after the beamsplitter, the output state is |C⟩. This definition is summarised by the following
relation: U |Cin⟩ = |C⟩. Just like any input state, |Cin⟩ is a linear combination of |A⟩ and |B⟩:
|Cin⟩ = α |A⟩ + β |B⟩. According to Eq. (1), α and β satisfy:

U

(
α
β

)
=

(
1
0

)
, so that

(
α
β

)
= U†

(
1
0

)
=

(
t∗

−r

)
. (16)

Therefore, |Cin⟩ = t∗ |A⟩ − r |B⟩.
We now use the key property that creation operators depend linearly on single–particle states

(“creation operators transform like kets”): a†λ1|u1⟩+λ2|u2⟩ = λ1a
†
|u1⟩ + λ2a

†
|u2⟩. When it is applied

to the state |Cin⟩, this linearity property yields:

c̃† = t∗a† − rb† . (17)

Similarly, we introduce the input state |Din⟩ = γ |A⟩ + δ |B⟩ such that, after the beamsplitter,
the output state is U |Din⟩ = |D⟩. Thanks to Eq. (1), the coefficients γ and δ satisfy:

U

(
α
β

)
=

(
0
1

)
, so that

(
γ
δ

)
= U†

(
0
1

)
=

(
r∗

t

)
. (18)

Therefore, |Din⟩ = r∗ |A⟩ + t |B⟩, and the creation operator d̃† reads:

d̃† = r∗a† + tb† . (19)

Finally, we transpose Eqs. (17) and (19), and collect the results in matrix form:(
c̃

d̃

)
=

(
t −r∗
r t∗

)(
a
b

)
= U

(
a
b

)
. (20)
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As a sanity check, we note that in the quasi–classical limit (all states are coherent states, and
the annihilation operators a, b, c, d, may be replaced by the field amplitudes EA, EB , EC , ED),
Eq. (20) reduces to the expected classical law:(

EC
ED

)
=

(
t −r∗
r t∗

)(
EA
EB

)
= U

(
EA
EB

)
. (21)

Question 20
The input state |Ψin⟩ satisfies:

|Ψin⟩ = a†N√
N !

b†N√
N !

|0A0B⟩ . (22)

The output state |Ψout,C⟩ is given by:

|Ψout,C⟩ = c†2N√
(2N)!

|0C0D⟩ = c†2N√
(2N)!

U |0A0B⟩ , (23)

where the last step follows from Eq. (13).

Therefore, the probability amplitude for going from |Ψin⟩ to |Ψout,C⟩ is:

⟨Ψout,C | U |Ψin⟩ = ⟨0A0B | U† c2N√
(2N)!

U a†N√
N !

b†N√
N !

|0A0B⟩ . (24)

Now, we use UU† = 1 to replace the operator c in Eq. (24) by c̃ = U†cU :

⟨Ψout,C | U |Ψin⟩ = ⟨0A0B |
c̃2N√
(2N)!

a†N√
N !

b†N√
N !

|0A0B⟩ . (25)

Finally, we use Eq. (20) to replace c̃ = ta− r∗b:

⟨Ψout,C | U |Ψin⟩ = ⟨0A0B |
(ta− r∗b)2N√

(2N)!
a†N√
N !

b†N√
N !

|0A0B⟩ . (26)

In order to finish the calculation, we expand the binomial factor (ta − r∗b)2N and only retain
the terms which contain aNbN : there are

(2N
N

)
such terms, each having the same contribution

which is proportional to tNr∗N . The vacuum averages ⟨0A| aNa†N |0A⟩ = ⟨0B | bNb†N |0B⟩ = N !.
Therefore, the probability amplitude reduces to:

⟨Ψout,C | U |Ψin⟩ = tNr∗N
√

(2N)!
N !N !

, (27)

leading to the probability | ⟨Ψout,C | U |Ψin⟩ |2 = |rt|2N (2N)!
N !N ! for all particles exiting through port

C. Note the enhancement by a factor
(2N
N

)
compared to the case of distinguishable particles.
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