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Outline of the tutorials for the first half ot the semester

▶ Problem 1: two–particle interference

▶ Problem 2: coherence and correlations in quantum gases

▶ Problem 3: lattice models, superfluid/Mott insulator transition

All problems describe experiments that have actually been performed

They all contain elements of theory and introduce calculation techniques

They all contain both standard questions and (very?) hard questions

2 / 47



Supplementary exercises
▶ Supplementary questions appear in golden throughout my slides.

Additionally, I have handed out a set of ‘review’ exercises

They are not mandatory. I shall not solve them in class.
I encourage you to ask me for hints and to discuss them with me.

▶ Coherent states: Section 3, pp. 3–4 standard but useful
Quasiclassical properties; fluctuations in the particle number

▶ Symmetries of the 2D harmonic oscillator: Section 2.2, pp. 2–3
A less standard discussion of the role of conserved quantities

Link with classical physics; link with the hydrogen atom
�

▶ Identical particles in lower dimensions: Section 4, p. 4
�

Question 2 is difficult: discussions are welcome; not exam material.
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Mailing list for quantum mechanics tutorials

▶ If you are not enrolled in the Quantum Mechanics track
[i.e. condensed–matter track, theory track, . . . ]

and wish to receive my problem texts, slides, . . . :

Send me a mail at your earliest convenience

david.papoular@u-cergy.fr
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A bird’s eye view of the problem

Problem #1:

Two–particle interference

with bosons and fermions

▶ Identical quantum particles: bosons, fermions

▶ Two–particle interference occurs because the particles are identical

The effect depends on whether the particles are bosons or fermions

Both flavours have been observed!

▶ Creation and annihilation operators
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Review: Young’s fringes

an example of single–particle interference

[E. Hecht, Optics, 5th edition, Pearson (2017), chapter 9]
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Review: Single–particle interference (questions 1–3)

▶ The key ingredient is a wave: water, laser light, electrons, cold atoms ...

Famous example: Young’s fringes

D
a

MS1

S2

x

Light [Cagnet Springer 1962]

Electrons [Bach NJP 2013]

▶ Assume distance D between mask and screen ≫ hole separation a:

|S1M| = [(x − a/2)2 + D2]1/2 ≈ D + (x − a/2)2/(2D)

|S2M| = [(x + a/2)2 + D2]1/2 ≈ D + (x + a/2)2/(2D)

▶ Measured signal: intensity or detection probability

I(x) ∝
∣∣∣∣eik|S1M|

|S1M| + eik|S2M|

|S2M|

∣∣∣∣2 ≈ 1
D2

∣∣∣eik|S1M| + eik|S2M|
∣∣∣2 ∝ 1 + cos[k(|S2M| − |S1M|)]

I(x) ∝ 1 + cos
[
2π a

λD x
]

so that fringe spacing is λD/a
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Single–particle interference: discussion

▶ We are used to thinking of electrons as particles

To prove that they are behaving as waves, make them interfere!

The wavelength is set by the de Broglie relation λ = h/p

▶ We are used to thinking of light as a wave

Reaching and characterising the single–photon regime is challenging

Photons have no mass and no charge, they go fast
Lowering the output rate of a laser is not enough

because laser output state obeys Poisson statistics: ∆N = ⟨N⟩1/2 ∼ 1 for ⟨N⟩ = 1

▶ The interference fringes build up one detection event at a time

This is a single–particle effect

Not affected by the particles being bosons, fermions, or distinguishable!
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Young’s fringes in single–atom regime: simulation

▶ Relaxing the hypothesis of very large D,
calculate squared wavefunction |ψ(x ,D)|2 on the screen
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)|2 ▶ Probability distribution |ψ(x ,D)|2 ≈ 0 for |x | ≫ D

λ = 1µm, a = 4µm, D = 4 mm

experiment with neon atoms:
[Shimizu, PRA 46, R17(R) (1992)]
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▶ Draw N random values of x with probability |ψ(x ,D)|2

each value of x represents the impact position of 1 electron

After each new draw, update the histogram

What is the correct normalisation
for the histogram to match the probability distribution?

My code for simulation and animation (< 100 Python lines) is available online 9 / 47



Single–particle quantum interference: 1965 vs 2007
▶ Strange effects discussed by Feynman as ‘thought experiments’, later observed.

[Feynman Lectures on Physics vol. III, Addison–Wesley (1965), ch. 1]

▶ Compare 2 related single–photon exp. setups involving 1 or 2 beamsplitters (BS):

BSinput (solid line) is always present; BSoutput (dashed line) may or may not be present

Are the interference fringes observed with one or two beamsplitters ?

▶ Wheeler’s delayed–choice experiment: (proposed in 1984, realised e.g. 2007)

Decide whether or not to include BSoutput once the photon has already passed BSinput

“When the photon exits BSinput, should it behave like a wave or like a particle?”

This experiment probes the non–local character of wave/particle duality

[V. Jacques, A. Aspect et al, Science 315, 966 (2007)] 10 / 47



Which of these two phenomena are we probing?

1. Superposition? |ψ⟩ = (|ϕ1⟩ + |ϕ2⟩)/
√

2

2. Entanglement? |ψ⟩ = (|ϕ1⟩ |ϕ1⟩ + |ϕ2⟩ |ϕ2⟩)/
√

2
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Review: Bosons and fermions

▶ Spin–statistics relation:

Particles with half–integer spin are fermions
(electrons, protons, neutrons all have spin 1/2)

Particles with integer spin are bosons
(photons have spin 1)

▶ Atoms A
Z X may be either fermions or bosons

Z = atomic number = number of electrons; A = mass number = number of nucleons.

85
37Rb and 87

37Rb are both bosons
7
3Li is a boson, 6

3Li is a fermion
4
2He is a boson, 3

2He is a fermion

▶ Other bosons in this course: phonons, “Cooper pairs”, . . .
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Quantum description of a beamsplitter

[Grynberg, Aspect, Fabre, Introduction to Quantum Optics, CUP (2010), chapter 5]
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Modelling a beamsplitter (question 4)

A

B
C

D
▶ Two input ports A,B, two output ports C,D
▶ input state |ψin⟩ = α |A⟩ + β |B⟩ with |α|2 + |β|2 = 1

output state |ψout⟩ = γ |C⟩ + δ |D⟩
▶ Linear relation between input |ψin⟩and output |ψout⟩

(Maxwell equations or Schrödinger equation)

Write the linear relation in matrix form:

(
γ

δ

)
= U

(
α

β

)
▶ The matrix U is unitary: U U† = 1

For Maxwell’s equations: conservation of energy
For the Schrödinger equation: U is an evolution operator U = exp(−iHt/ℏ)

▶ 1 = det(U U†) = | det U|2, so det U = exp(iϕ)
U = eiϕ/2U1 with det U1 = 1: the phase ϕ affects both output ports in the same way.

U = eiϕ/2

(
t −r∗

r t∗

)
with |t |2 + |r |2 = 1

Complex numbers r and t : amplitude transmission and reflection coefficients
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A single particle impinges on the beamsplitter (qu. 5a)

▶ Input state: |ψin⟩ = α |A⟩ + β |B⟩

Output state: |ψout⟩ = γ |C⟩ + δ |D⟩ with

(
γ

δ

)
= U

(
α

β

)

▶ If particle enters through |A⟩: |ψin⟩ = |A⟩, then |ψout⟩ = t |C⟩ + r |D⟩

It exits through |C⟩ with probability |t |2 and |D⟩ with probability |r |2 = 1−|t |2

▶ Random variable

nC = particle exits from port |C⟩ =
{

1 with probability |t |2

0 with probability 1 − |t |2

▶ Mean value: ⟨nC⟩ = |t |2 × 1 + (1 − |t |2) × 0 = |t |2

⟨n2
C⟩ = |t |2 × 12 + (1 − |t |2) × 02 = |t |2

Variance: ∆n2
C = ⟨n2

C⟩ − ⟨nC⟩2 = |t |2(1 − |t |2)

Mean square deviation: ∆nC = (∆n2
C)1/2 = |t |(1 − |t |2)1/2
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N consecutive measurements (question 5b)

▶ The N measurements are independent; their outcomes follow the same law

“Sum of N idependent and identically distributed random variables”

Total number of particles exiting through |C⟩: NC =
N∑

k=1

n(k)
C

▶ The mean values add up, and so do the variances

⟨NC⟩ = N ⟨nC⟩ = N |t |2 and ∆N2
C = N ∆n2

C = N |t |2(1 − |t |2)

Beware: Standard deviations do not add up! ∆NC =
√

N |t |(1 − |t |2)1/2 =
√

N δnC
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SUMMARY: a single particle impinges on beamsplitter

A

B
C

D
▶ Two input ports A,B, two output ports C,D

input state |ψin⟩ = α |A⟩ + β |B⟩ with |α|2 + |β|2 = 1
output state |ψout⟩ = γ |C⟩ + δ |D⟩

Linear, unitary relation between |ψin⟩ and |ψout⟩

If |ψin⟩ = |A⟩, then |ψout⟩ = t |C⟩ + r |D⟩

▶ Random variable

nC = particle exits from port |C⟩ =
{

1 with probability |t |2

0 with probability 1 − |t |2

Mean value ⟨nC⟩ = |t |2, variance ∆n2
C = ⟨n2

C⟩ − ⟨nC⟩2 = |t |2(1 − |t |2)

▶ N consecutive measurements:
the mean values add up, and so do the variances

⟨NC⟩ = N ⟨nC⟩ = N |t |2 and ∆N2
C = N ∆n2

C = N |t |2(1 − |t |2)
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Relevant observables (questions 5c, 5d)

▶ Fraction of atoms exiting from port C: ⟨NC⟩ /N = |t |2

Intensive quantity, does not depend on N

▶ Ratio ∆N2
C/⟨NC⟩ = 1 − |t |2

Does not depend on N

Probes how far NC is from a Poisson–distributed variable

(P(n) = e−λ λn/n! : photons coming out of a laser, electronic shot noise in a conductor ...)

How to access them in an experiment ?

▶ The experimentally accessible quantity is often the current I(t)

The current at output port C satisfies NC =
∫ T

0
dt IC(t)

⟨NC⟩ =
∫ T

0
dt ⟨IC(t)⟩ is related to the average current

∆N2
C =

∫∫ T

0
dt1dt2 (⟨I(t1)I(t2)⟩ − ⟨I(t1)⟩ ⟨I(t2)⟩) probes current fluctuations
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Two–particle interference at a beamsplitter

experiments with fermions and bosons

[Liu et al, Nature 391, 263 (1998)]

[Hong, Ou, & Mandel, Physical Review Letters 59, 2044 (1987)]
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Distinguishable particles
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2 distinguishable particles (question 6)

▶ May be reached both with photons and with electrons

Send the particles onto the beamsplitter one after the other,

time delay greater than l/v (coherence length over velocity)

For electromagnetic waves, l is set by the shape of the wavepacket

For quantum particles, l is the thermal de Broglie wavelength ΛT = [2πℏ2/(mkBT )]1/2

▶ Input state |1 : ϕ1, 2 : ϕ2⟩ = |1 : ϕ1⟩ ⊗ |2 : ϕ2⟩

specifies the state of particle 1 and particle 2:

particle 1 in state |ϕ1⟩ = α1 |A⟩ + β1 |B⟩, particle 2 in state |ϕ2⟩ = α2 |A⟩ + β2 |B⟩

▶ The beamsplitter acts in the same way on each incident particle

Output state: |1 : U ϕ1, 2 : U ϕ2⟩ = |1 : U ϕ1⟩ ⊗ |2 : U ϕ2⟩

U =
(

t −r∗

r t∗

)
, U |A⟩ = t |C⟩ + r |D⟩ and U |B⟩ = −r∗ |C⟩ + t∗ |D⟩
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2 distinguishable particles entering ports |A⟩ & |B⟩ (qu. 7)

A

B
C

D ▶ 2–dimensional subspace of input states:

|Ψdist
in ⟩ = u |1 : A, 2 : B⟩ + v |1 : B, 2 : A⟩ with |u|2 + |v |2 = 1

Focus on |Ψdist
in ⟩ = |1 : A, 2 : B⟩

▶ Output state: Try reproducing this calculation!

|Ψdist
out ⟩ = −r∗t |1 : C, 2 : C⟩+|t |2 |1 : C, 2 : D⟩−|r |2 |1 : D, 2 : C⟩+rt∗ |1 : D, 2 : D⟩

▶ Four possible outcomes:

outcome probability |t |2 = |r |2 = 1/2

|1 : C, 2 : C⟩ |r |2|t |2 1/4

|1 : C, 2 : D⟩ |t |4 1/4

|1 : D, 2 : C⟩ |r |4 1/4

|1 : D, 2 : D⟩ |r |2|t |2 1/4

▶ equiprobable for symmetric beamsplitter |t |2 = |r |2 = 1/2
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2 distinguishable particles: predicted statistics (qu. 8)

A

B
C

D
outcome probability |t |2 = |r |2 = 1/2

|1 : C, 2 : C⟩ |r |2|t |2 1/4

|1 : C, 2 : D⟩ |t |4 1/4

|1 : D, 2 : C⟩ |r |4 1/4

|1 : D, 2 : D⟩ |r |2|t |2 1/4

▶ Random variable counting the particles exiting from port C:

nC = #particles exiting from |C⟩ =


2 with probability 1/4
1 with probability 1/4 + 1/4 = 1/2
0 with probability 1/4

Average ⟨nC⟩ = 2 × 1/4 + 1 × 1/2 + 0 × 1/4 = 1

⟨n2
C⟩ = 22 × 1/4 + 1 × 1/2 + 0 × 1/2 = 3/2

Variance ∆n2
C = ⟨n2

C⟩ − ⟨nC⟩2 = 1/2

▶ Random variable nCD testing for coincidence counts at ports C and D:

nCD = #coincidence counts =
{

1 with probability 1/4 + 1/4 = 1/2
0 with probability 1/4 + 1/4 = 1/2

Average ⟨nCD⟩ = 1 × 1/2 + 0 × 1/2 = 1/2 24 / 47



Relevant observables for two incident particles (qu. 8)
▶ N independent runs, each with 1 particle entering through |A⟩ and 1 through |B⟩

Number of particles exiting through |C⟩: NC =
N∑

k=1

n(k)
C

Number of runs yielding coincidence counts at |C⟩ and |D⟩: NCD =
N∑

k=1

n(k)
CD

1. Observable related to average particle number ⟨NC⟩ = N ⟨nC⟩: ⟨NC⟩ /(NA + NB)
For 1 incident particle: NA + NB = N, we recover the previously introduced observable

For 2 incident particles: NA + NB = 2N

2. Observable related to particle number fluctuations ∆N2
C = N∆n2

C : ∆N2
C/ ⟨NC⟩

Probes how far NC is from a Poisson distribution

3. Observable related to average coincidence counts NCD = N nCD : ⟨NCD⟩ /N

Average fraction of runs leading to coincidence counts

All three selected observables are intensive
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No interference with distinguishable particles (qu. 8 & 15)

1 in A, 0 in B 1 in A, 1 in B 1 in A, 1 in B 1 in A, 1 in B

disting. fermions bosons

⟨NC⟩/(NA + NB) 1/2 1/2

∆N2
C/⟨NC⟩ 1/2 1/2

⟨NCD⟩/N 0 1/2

▶ NCD = 0 in experiments involving one incident particle (because it is indivisible)

This is the only difference between 1 particle and 2 distinguishable particles

With two distinguishable particles, no interference is observed!
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Identical particles: FERMIONS
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2 fermions entering through A and B: input state (qu. 9)

▶ Distinguishable: input–state space has dimension 2, spanned by |1 : A, 2 : B⟩, |1 : B, 2 : A⟩

▶ Fermions: the input state must be antisymmetric under particle exchange

the input–state subspace has dimension 1:

|ΨFermi
in ⟩ = eiθin

√
2

(|1 : A, 2 : B⟩− |1 : B, 2 : A⟩) (the phase θin plays no role)

▶ Imposing that the particles are fermions

reduces the dimension of the relevant Hilbert space from 2 to 1.

▶ Experimental consequence explained on the next few slides
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2 fermions entering through A,B: output state (qu. 10)

▶ Fermions: the output state must be antisymmetric under particle exchange

the output–state subspace has dimension 1:

|ΨFermi
out ⟩ = eiθout

√
2

(|1 : C, 2 : D⟩− |1 : D, 2 : C⟩)

▶ Only the relative phase θout − θin remains to be found

Check that θout = θin by expanding

|ΨFermi
out ⟩ = U |ΨFermi

in ⟩ = eiθin

√
2

(|1 : UA, 2 : UB⟩ − |1 : UB, 2 : UA⟩)

(U generalises U to 2–particle states: see question 17)

▶ Pauli’s exclusion principle fully determines input and output states!

The two fermions always exit from different ports

The values of the coefficients t and r play no role
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2 fermions: predicted statistics (question 11)

|ΨFermi
out ⟩ = 1√

2
(|1 : C, 2 : D⟩ − |1 : D, 2 : C⟩)

outcome probability |t |2 = |r |2 = 1/2

|1 : C, 2 : C⟩ 0 0

|1 : C, 2 : D⟩ 1/2 1/2

|1 : D, 2 : C⟩ 1/2 1/2

|1 : D, 2 : D⟩ 0 0

▶ Random variable nC counting the particles exiting from port C: nC = 1
⟨nC⟩ = 2 × 0 + 1 × 1/2 + 1 × 1/2 + 0 × 0 = 1
⟨n2

C⟩ = 4 × 0 + 1 × 1/2 + 1 × 1/2 + 0 × 0 = 1

∆n2
C = ⟨n2

C⟩ − ⟨nC⟩2 = 0

▶ Random variable nCD testing for coincidence counts at C,D: nCD = 1
⟨nCD⟩ = 0 × 0 + 1 × 1/2 + 1 × 1/2 + 0 × 0 = 1
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Second–order interference with fermions (qu. 11 & 15)
1 in A, 0 in B 1 in A, 1 in B 1 in A, 1 in B 1 in A, 1 in B

disting. fermions bosons

⟨NC⟩/(NA + NB) 1/2 1/2 1/2

∆N2
C/⟨NC⟩ 1/2 1/2 0

⟨NCD⟩/N 0 1/2 1

▶ The first–order observable ⟨NC⟩ does not exhibit interference.

The second–order observables ∆N2
c / ⟨NC⟩ and ⟨NCD⟩ /N exhibit interference!

<N>

F/
F 1

p
a
rt measured FFermi/F1part

[Liu Nature 1998]

▶ Measured observable: current noise F = ∆N2
c / ⟨NC⟩

normalised to expected single–particle value F1part = 1/2

▶ F/F1part ≈ 1 for a single incident particle,
F/F1part suppressed for fermions entering through A, B

▶ The suppression is not complete, probably because
the electrons are scattered by many impurities

[M. Büttiker Phys. World (1998)]
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Identical particles: BOSONS
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2 bosons entering through A and B: input state (qu. 12)

▶ Distinguishable: input–state space has dimension 2, spanned by |1 : A, 2 : B⟩, |1 : B, 2 : A⟩

▶ Bosons: the input state must be symmetric under particle exchange
the input–state subspace has dimension 1:

|ΨBose
in ⟩ = eiθin

√
2

(|1 : A, 2 : B⟩+ |1 : B, 2 : A⟩) (the phase θin plays no role)

Unlike for fermions, there are two other allowed states: |1 : A, 2 : A⟩ and |1 : B, 2 : B⟩
They represent both particles entering the beamsplitter through the same port.

▶ Imposing that the particles are bosons

reduces the dimension of the relevant Hilbert space from 2 to 1.
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2 bosons entering through A,B: output state (qu. 13)

▶ For bosons, the output state subspace has dimension 3, spanned by:
|1 : C, 2 : C⟩, |1 : D, 2 : D⟩, 1√

2
(|1 : C, 2 : D⟩+ |1 : D, 2 : C⟩)

▶ Calculate the output state corresponding to |ΨBose
in ⟩ : |ΨBose

out ⟩ = U |ΨBose
in ⟩

|ΨBose
out ⟩ = 1√

2
[ 2(−r∗t |1 : C, 2 : C⟩ + rt∗ |1 : D, 2 : D⟩)

+(|t |2 − |r |2)(|1 : C, 2 : D⟩ + |1 : D, 2 : C⟩) ]

▶ For a symmetric beamsplitter, that is, if |t |2 = |r |2 = 1/2
We may write t = exp[i(α+ γ)/2]/

√
2, r = exp[i(α− γ)/2]/

√
2

|ΨBose
out ⟩ = 1√

2

(
−eiγ |1 : C, 2 : C⟩ + e−iγ |1 : D, 2 : D⟩

)
Both bosons always exit from the same output port!
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2 bosons: predicted statistics (question 14)

|ΨBose
out ⟩ = 1√

2

(
−eiγ |1 : C, 2 : C⟩ + e−iγ |1 : D, 2 : D⟩

)
outcome probability |t |2 = |r |2 = 1/2

|1 : C, 2 : C⟩ 2|r |2|t |2 1/2

|1 : C, 2 : D⟩ (|t |2 − |r |2)2/2 0

|1 : D, 2 : C⟩ (|t |2 − |r |2)2/2 0

|1 : D, 2 : D⟩ 2|r |2|t |2 1/2

▶ Random variable nC counting the particles exiting from port C:
⟨nC⟩ = 2 × 1/2 + 1 × 0 + 1 × 0 + 0 × 1/2 = 1
⟨n2

C⟩ = 4 × 1/2 + 1 × 0 + 1 × 0 + 0 × 1/2 = 2

∆n2
C = ⟨n2

C⟩ − ⟨nC⟩2 = 1

▶ Random variable nCD testing for coincidence counts at C,D: nCD = 0
⟨nCD⟩ = 0 × 1/2 + 1 × 0 + 1 × 0 + 0 × 1/2 = 0
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Second–order interference with bosons (qu. 14 & 15)

1 in A, 0 in B 1 in A, 1 in B 1 in A, 1 in B 1 in A, 1 in B

disting. fermions bosons

⟨NC⟩/(NA + NB) 1/2 1/2 1/2 1/2

∆N2
C/⟨NC⟩ 1/2 1/2 0 1

⟨NCD⟩/N 0 1/2 1 0

▶ The first–order observable ⟨NC⟩ does not exhibit interference.

The second–order observables ∆N2
c / ⟨NC⟩ and ⟨NCD⟩ /N exhibit interference!

▶ Measured observable: coincidence counts ⟨NCD⟩ /N

▶ Scan beamsplitter position to tune the
difference in optical lengths between |A⟩ and |B⟩
If they are equal, the coincidence counts vanish

▶ The dip width reflects the coherence length:
wavepacket bandwidth δω −→ ∆ = c/δω
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Two–particle interference: fermions versus bosons

▶ Two–particle interference is visible in second–order observables
current fluctuations, coincidence counts

▶ Fermions: interference leads to antibunching, i.e. systematic coincidence counts
It follows from Pauli’s exclusion principle, occurs regardless of the values of t and r

▶ Bosons: interference leads to bunching, i.e. no coincidence counts
Maximal if double–transmission & double–reflection processes are indistinguishable

tt rr
+ =0
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Beamsplitters and second quantisation

An excellent survey of second quantisation:

[R.P. Feynman, Statistical Mechanics: a set of lectures, W.A. Benjamin (1972), chap. 6]

Beware: these are NOT part of the usual Feynman Lectures on Physics!
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Beamsplitter acting on many–particle states (qu. 17)

▶ For single–particle states, the beamsplitter is represented a by unitary operator U

A

B
C

D
U =

(
t −r∗

r t∗

)
U |A⟩ = t |C⟩ + r |D⟩
U |B⟩ = −r∗ |C⟩ + t∗ |D⟩

▶ The operator U generalises U to input states with arbitrary particle numbers:

U |0A0B⟩ = |0C0D⟩ (vacuum stays vacuum),

U |ϕ⟩ = U |ϕ⟩ for any single–particle state |ϕ⟩,

U |ϕ1⟩ . . . |ϕN⟩ = (U |ϕ1⟩) . . . (U |ϕN⟩) for N particles in a product state.
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From first quantisation to second quantisation
▶ First quantisation: we label each particle and specify its state

bosons: |1 : A, 2 : A⟩, |1 : B, 2 : B⟩, (|1 : A, 2 : B⟩ + |1 : B, 2 : A⟩)/
√

2
fermions: (|1 : A, 2 : B⟩ − |1 : B, 2 : A⟩)/

√
2

Tensor product in between particles: |1 : A, 2 : A⟩ = |1,A⟩ ⊗ |2,A⟩

▶ For systems of many identical particles, first quantisation is cumbersome

1. There are many non–physical states: (anti–)symmetrisation required
|1 : A, 2 : B⟩ not physical for bosons or fermions
|1 : A, 2 : A⟩ not physical for fermions, (|1 : A,2 : B⟩ − |1 : B,2 : A⟩)/

√
2 not physical for bosons

Many unphysical states for N = 6 × 1023 particles

2. Labelling each particle is redundant
|1 : A, 2 : B⟩ and |1 : B, 2 : A⟩ lead to the same (anti–)symmetrised states

▶ Second quantisation: specify particle number in each mode (= single–particle state)

bosons: |2A⟩, |2B⟩, |1A,1B⟩, fermions: |1A,1B⟩
Superposition states involving different particle numbers: (|vac⟩ + |1A⟩ + |1A,1B⟩)/

√
3
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Annihilation/creation operators for a beamsplitter (qu. 17)

A

B
C

D
U |0A,0B⟩ = |0C ,0D⟩, U |ϕ⟩ = U |ϕ⟩, U |ϕ1⟩ · · · |ϕN⟩ = (U |ϕ1⟩) · · · (U |ϕN⟩)
▶ Annihilation and creation operators for each of the 4 ports:

a, b, c, d and a†, b†, c†, d†

▶ c̃ = U†c U and d̃ = U†d U are more convenient (see next slide)

c, d operate on output states but c̃, d̃ operate on input states

c̃, d̃ and c̃†, d̃† are annihilation/creation operators as well

1. (Anti–)commutation relation: (use c̃c̃† = U†c U U†c†U = U†cc†U )

[c̃,c̃†]± = c̃c̃† ± c̃†c̃ = U† [c,c†]± U = U†U = 1

2. Action of c̃ on vacuum:
c̃ |0A,0B⟩ = U†c U |0A,0B⟩ = U†c |0C ,0D⟩ = 0

3. Action of c̃† on vacuum:
c̃† |0A,0B⟩ = U†c†U |0A,0B⟩ = U†c† |0C ,0D⟩ = U† |1C ,0D⟩
c̃† |0A,0B⟩ = U−1 |C⟩ = |Cin⟩

c̃† creates a particle in the single–particle input state |Cin⟩ = α |A⟩ + β |B⟩
such that, after the beamsplitter, there is a single particle in |C⟩ 41 / 47



Input states |Cin⟩ and |Din⟩ created by c̃† and d̃ † (qu. 17)

A

B
C

D
U =

(
t −r∗

r t∗

)
U−1 = U† =

(
t∗ r∗

−r t

)

▶ c̃† creates a particle in |Cin⟩ = U−1 |C⟩, d̃† creates a particle in |Din⟩ = U−1 |D⟩

|Cin⟩ is the input state such that, after the beamsplitter, there is a single particle in the output port |C⟩

▶ |Cin⟩ = U−1 |C⟩ = U† |C⟩ = t∗ |A⟩ − r |B⟩

|Din⟩ = U−1 |D⟩ = U† |D⟩ = r∗ |A⟩ + t |B⟩
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“Creation operators transform like kets”

▶ Assume we know the creation operators c†
|ϕ1⟩

and c†
|ϕ2⟩

for the states |ϕ1⟩ and |ϕ2⟩

What is the creation operator c†
|ψ⟩ for the state |ψ⟩ = λ1 |ϕ1⟩ + λ2 |ϕ2⟩ ?

▶ Mnemonic: act on the vacuum state

c†
|ψ⟩ |vac⟩ = λ1 |ϕ1⟩ + λ2 |ϕ2⟩ = λ1 c†

|ϕ1⟩
|vac⟩ + λ2 c†

|ϕ2⟩
|vac⟩

c†
|ψ⟩ = λ1 c†

|ϕ1⟩
+ λ2 c†

|ϕ2⟩

▶ Beware: transformation law for annihilation operators involves complex conjugates

c⟨ψ| = λ∗
1 c⟨ϕ1| + λ∗

2 c⟨ϕ2|
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Annihilation operators at beamsplitter and matrix U (17)

“Creation operators transform like kets”

▶ |Cin⟩ = t∗ |A⟩ − r |B⟩

c̃† = t∗ a† − r b†

c̃ = t a − r∗b

▶ |Din⟩ = r∗ |A⟩ + t |B⟩

d̃† = r∗ a† + t b†

d̃ = r a + t∗b

A

B
C

D ▶ The annihilation operators a, b, c̃, d̃ satisfy:(
c̃

d̃

)
=
(

t −r∗

r t∗

)(
a

b

)
= U

(
a

b

)

same transformation law as wavefunctions, same unitary matrix U
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Particle number conservation at the beamsplitter (qu. 18)

▶ The unitarity of U follows from the conservation of energy
We now formulate it in terms of particle number conservation

▶

(
c̃

d̃

)
= U

(
a

b

)
is equivalent to

(
a

b

)
= U†

(
c̃

d̃

)

Conjugate–transpose the previous relation:
(

a† b†
)

=
(

c̃† d̃†
)

U

▶ a†a + b†b =
(

a† b†
)(a

b

)
=

(
c̃† d̃†

)
UU†

(
c̃

d̃

)

a†a + b†b =
(

c̃† d̃†
)(c̃

d̃

)
= c̃†c̃ + d̃†d̃ = U†

(
c†c + d†d

)
U

▶ U and U† ensure left– and right–hand sides act on the same Hilbert space (input)
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Two–particle states, 2nd quantisation formalism (qu. 19)

▶ We are interested in the (fermionic or bosonic) input state |1A,1B⟩
Output state: U |1A,1B⟩ = Ua†b† |OAB⟩ = Ua†b†U† |OCD⟩

▶ Introduce ã† = Ua†U† and b̃† = Ub†U† which act on the output Hilbert space

Starting from
(

a† b†
)

=
(

c̃† d̃†
)

U, show that

(
ã†

b̃†

)
= tU

(
c†

d†

)

▶ U |1A,1B⟩ = ã†b̃† |0CD⟩ = (tc† + rd†)(−r∗c† + t∗d†) |0CD⟩

▶ Fermions: c†2 = d†2 = 0 and [c†,d†]+ = 0
U |1A,1B⟩ = (|t |2c†d† − |r |2d†c†) |0CD⟩ = c†d† |0CD⟩ = |1C ,1D⟩

▶ Bosons: All terms contribute, [c†,d†]− = 0
U |1A,1B⟩ = −tr∗ |2C ,0D⟩ + rt∗ |0C ,2D⟩ + (|t |2 − |r |2) |1C ,1D⟩

Both for fermions and bosons, we recover the first–quantisation results
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N particles enter through |A⟩ and N through |B⟩ (qu. 20)
▶ We are interested in the input state |NA,NB⟩: only possible with bosons

Beware: when creating N particles in the same state, do not forget prefactor: |NC⟩ = c†N |0C⟩ /
√

N!

|NA,NB⟩ = a†N

√
N!

b†N

√
N!

|0AB⟩ = 1
N!a†Nb†N |0AB⟩

▶ Output state: U |NA,NB⟩ = 1
N! U a†Nb†N |0AB⟩ = 1

N! U a†N b†N U† |0CD⟩

U |NA,NB⟩ = 1
N! ã†N b̃†N |0CD⟩ = 1

N! (tc† + rd†)N(−r∗c† + t∗d†)N |0CD⟩

▶ The probability amplitude for all 2N atoms to exit from port C is:

⟨2NC ,0D| U |NA,NB⟩ = 1
N! tN (−r∗)N

√
(2N)! = tN (−r∗)N

√
(2N)!
N! N!

The probability for all atoms to exit from port C (= square of probability amplitude)

is enhanced with respect to distinguishable particles by a factor

(
2N
N

)
= (2N)!

N! N!
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