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THE JOSEPHSON EFFECT IN A SUPERFLUID BOSE GAS

The Josephson effect is a macroscopic quantum phenomenon affecting systems of many inter-
acting particles, whereby the amplitude of the current tunnelling through a potential barrier is
enhanced thanks to the interactions. This effect has first been discovered in the context of su-
perconductors, where the supercurrent crossing the barrier consists of interacting electrons which
may be described using the Bardeen—Cooper—Schrieffer theory for superconductivity [1, chap. 21].
In this problem, we analyse its experimental observation with an ultracold bosonic gas trapped in
a double—well potential: here, the superfluid whose constituents tunnel through the barrier is an
interacting Bose—Einstein condensate described by the Gross—Pitaevskii equation.

In the first part of the problem, we establish two ‘hydrodynamic’ equations describing the
macroscopic behaviour of many interacting particles. In the second part, we focus on the case
of a Bose-Einstein condensate at 7' = 0 trapped in a double-well potential, which we describe
using the Gross—Pitaevskii equation. We derive the two Josephson equations and point out their
analogy with the mechanical equations for the classical pendulum. In the third and final part,
we identify two regimes for the Josephson effect, and compare our theoretical predictions to the
experimental results of Ref. [2].

The problem is entirely self-contained. Solving it does not at all require reading the refer-
ences given at the end. All of the results required for proceeding with the solution are explicitly
given. Four questions require background knowledge about superfluids; they are identified with
‘dangerous bend’ symbols @ and their solution has no incidence on the rest of the problem.

INSULATOR
\ Figure 1 In solid—state systems, the Josephson ef-
) N fect is investigated in Josephson junctions, i.e. two
superconductors separated by a thin insulating bar-
rier. The supercurrent crossing the barrier consists of
interacting electrons. Reproduced from [1, chap. 21].
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1 Hydrodynamic description of a superfluid

We consider a three—dimensional system of N identical bosonic particles. These particles each
have the mass m and interact via the two—-body potential V(|r; — r;|), where r; and r; are the
spatial coordinates of the particles ¢ and j. At this point, we make no assumption on the range
of the interaction. We also assume for now that the particles are trapped in a box-like potential,
the size of the box being much larger than all relevant lengthscales. In terms of first quantisation
operators, the many—body Hamiltonian reads:
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1.1 Equation for the time dependence of the phase

1. Express the Hamiltonian of Eq. (1) in terms of the field operators W(r), ¥f(r), and their
spatial derivatives. Briefly recall why, in the Heisenberg representation, the time-dependent
field operator W(r,t) satisfies the following equation:

ihg@(r,t) =

h2v2
ot [

+/d3r’ Ui OV (' — )W, t)| U(r,t) . (2)

For a given velocity v, we seek how \i/(r, t) is affected by the Galilean transformation representing
a change of referentials from (r,t) to (R =7 —vt,T =t). Let (R, T) be a solution of Eq. (2):

ma%xi/(R, T) = —ifj@(]{, T) +/d3R’ VIR t)V(R' — RW(R,T)¥(R,T). (3)

We construct the function W'(, ¢) defined by:
A - ) 1
V' (r,t) = V(R,T)exp {; (mv - 2m02t>} with R=7r—wvtand T =t¢. (4)

2. Show that W’ (r, ) is also a solution of Eq. (2).
HINT: First, express ih% (7, ) in terms of the derivatives %@(R, T) and VR ¥ (R, T). Then, use Eq. (3).

Finally, express ‘i/(R, T) and its spatial derivatives in terms of \i/’(r,t) and its spatial derivatives.

3. We introduce the order parameter ¥, defined as the expectation value ¥(r, t) = (¥(r,t)). We
assume that ¥(r,t) # 0. Recall how this assumption is linked to Bose—Einstein condensation.

4. Using Eq. (4), justify that ¥ obeys the same transformation law as U
! i 1 2
U'(r,t) = ¥(R,T)exp 7 \mveT - omw t)] . (5)

5. We recall that, in the reference frame where the fluid is at rest, the order parameter is
Uy = /ne /" where n is the uniform fluid density and  is its chemical potential. Using
Eq. (5), show that, in the frame where the fluid moves with the velocity v, U(r,t) reads:

) 1
U(r,t) = vVne®™)  with  hS =mov-r — (2mv2 + u) t. (6)

6. Starting from Eq. (6), show that the velocity v is given by the gradient of the phase S:
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7. Show that the phase of the order parameter obeys the law:
oS 1

Finally, we relax the hypothesis of a uniform fluid. The atoms are now trapped in a potential
Virap(r). Therefore, the density n(r) and the velocity v(r) now depend on position.

8. @Justify that, if n and v vary sufficiently slowly in space and time, Eq. (8) becomes:

0 1
ma—j +V §mv2 + p(n(r)) + Vigap(r)| =0 . )

9. @Using Eq. (7), explain why the motion of the fluid is said to be irrotational.
May we conclude that the fluid cannot support angular momentum?

HiINT: What are the excitations associated with rotating superfluids?

10. @Which lengthscale should the variations of n and v be compared to when applying Eq. (9)?
Is the hydrodynamic approach more robust for interaction energies which are larger or smaller
compared to the kinetic energy?

HINT: For example, in a weakly—interacting Bose gas, the chemical potential is u = gn.

1.2 Continuity equation

11. We focus on the zero-temperature case T = 0.
Invoke a general argument which justifies the following equation satisfied by the density:

on
E+V~(m}):0. (10)

12. @Explain why Eq. (10) is valid only at zero temperature.

A short comment: For a Bose condensate at T' = 0, the relation between the velocity and
the gradient of the phase of Eq. (7), as well as the hydrodynamic Egs. (9) and (10), all follow
from the Gross—Pitaevskii equation [3, §22.7.2], and may be derived by writing the condensate
wavefunction U in terms of its modulus and phase: W(r,t) = /n(r,t)e’3("t). However, these
equations are actually more general than the Gross—Pitaevskii theory. They hold both at T = 0
and at T > 0 (in which case the continuity Eq. (10) should be suitably generalised to account for
the non—condensed atoms). They describe not only bosonic gases, but also helium and fermionic
superfluids (where the dependence of the chemical potential on the density is very different).



Figure 2 The considered geometry: a 3D Bose—
Hp Finstein condensate described by the Gross—
Vea| 1 Pitaevskii equation is trapped inside a double-well
potential. The left and right wells respectively con-
tain No(t) and Ny(t) atoms, corresponding to the
chemical potentials pq(t) and pp(t), both of which

L L ! ! always remain smaller than the barrier height.
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2 The two Josephson equations

2.1 Derivation of the equations starting from the Gross—Pitaevskii equation

We focus on the case of a Bose—Einstein condensate at 7' = 0. We consider the 3D double—well
geometry represented on Fig. 2, where the trapping potential Vo (r) is symmetric with respect
to the centre of the barrier: Vix(x,y,2) = Vext(x,y, —2). We describe the condensate using
the macroscopic wavefunction ¥(r,t), which is normalised to the total number N of particles:
J d@®r|¥(r,t)[* = N. The function ¥(r,t) satisfies the Gross-Pitaevskii equation:

ov h?

ih— = —— V20 U U 2y . 11
ihr = =5 =V U Vet (1) U+ g U (r, 1) (1)

We first consider stationary solutions. We call ¥, (7, N,) the (real) ground state solution for NV,
atoms localised in the left well (a), and Uy(7, Np) the (real) ground state solution for N, atoms
localised in the right well (b):

h2
() = = 5 Ty Vo 1)+ g1 (1) with [ P =Ny (= orb). (12)
We assume that the chemical potentials pq(N/2) = pp(IN/2), calculated for N/2 atoms localised

in a given well a or b, are smaller than the height of the barrier separating the two wells.

13. We neglect the overlap between the functions ¥, (r, N/2) and ¥y (r, N/2). Justify that any
linear combination of the form ¥, g(r,t) = [a¥,(r,N/2) + ,B\I'b(r,N/2)]e_”‘t/h, where «
and 3 are (constant) complex numbers satisfying |a|? + |3| = 2, is a stationary solution of
Eq. (11) corresponding to the total atom number N.

14. We focus on the case where « = 8 = 1, and consider the wavefunction ¥(r,t) defined as:

U(r,t) = [\IJ <r];7) + 0, (r];[)] e Ht/h (13)

Justify that U(r,t) is the ground-state solution of Eq. (11).
HINT: Thinking in terms of Eq. (7), what extra energy would a phase gradient near z = 0 yield?

15. For a stationary solution ¥(r)e~"#*/" of Eq. (11) representing N atoms, show that:

R ,
Ny = 72—/d‘3r \I/*A\I/+/d3r V(r)|u)? +g/d5r [Tt (14)
m

Conclude that, in Eq. (13), 1t = pa(N/2) = pup(N/2).

We now seek time—dependent solutions of Eq. (11) in the form:
U(r) = Wo(r, No) € + Wy (r, Ny) €0 (15)

where the real functions ¥, and ¥, have been introduced in Eq. (12). The atom numbers N,(t)
and Ny(t) depend on time; the phases S, (t) and Sp(t) depend on time but not on r.



Figure 3 A classical, mechanical pendulum oscillat-
ing in the (zz) plane.

16. In Eq. (15), what is the sum N, + N, constantly equal to?
Conclude that the atomic current I satisfies I = ON, /0t = —ON, /Ot = O[(Ny, — N,)/2]/0t .

17. We write W(r,t) = n(r,t)e*S(") . According to Eq. (7), the velocity v(r,t) = AVS(r,t)/m.
Justify that the current density j(r,t) = nv is along the z axis, and show that I(¢) is related
to the relative phase ®(t) = Sp — S, through:

ovy v,

h
I =—I;sin(® ith [;=— [ daedy |V,— — O
Jsin(®), wi 7 m/xy{ o b5,

(16)
z=0

HINT: First, establish j(r,t) = h(¥*V¥ — UVI*)/(2im).

18. Using the expression for I; in Eq. (16), justify that it is a positive quantity.

HINT: Do ¥,(N/2,z) and ¥,(N/2, z) increase or decrease when z increases?

19. We assume that the kinetic energy mv? /2 is small compared to the chemical potentials i, (¢)
and pp(t). Starting from Eq. (8), show that the relative phase ®(t) satisfies:

0o

ha = —(up — ,U/a) : (17)

20. We assume that N,(t) and N,(t) always remain close to their equilibrium values NO =
NY = N/2 (but ®(t) may become large). We introduce dN(t) = (N, — N,)/2 < N,
Ec = 2dpa/dNy|N,=n/2, and Ey = hl;. Show that Egs. (16) and (17) reduce to:

0 0P

ha§N =—FE;sin® and ha =FEcO0N . (18)

HINT: For the second relation, write up — pia = [y — 6 (N/2)] — [a — pa(N/2)].

2.2 Analogy with the classical pendulum

We consider a classical, mechanical pendulum of length L oscillating in the (zz) plane. No as-
sumption is made on the amplitude of the oscillations of the angle ¢. We call o, the (classical)
angular momentum of the mass M with respect to the axis (Oy).

21. Show that the equations of motion may be written in terms of ¢ and o, as:

1
= —MgLsin¢ and 94 . (19)

Y at? = a2’

22. Comparing Egs. (18) and (19), show that the oscillations of the Bose-Einstein condensate
described by (6N, ®) are analogous to the dynamics of the pendulum described by (o, ).

23. We introduce the energy H;(®,dN) defined as follows:
1
Hy =3 Ec (6N)?> —Ej cos® . (20)

Show that H is a conserved quantity for the time evolution described by Eq. (18).
What is the corresponding quantity for the classical mechanical oscillator of Fig. 37



3 Two regimes for the Josephson effect

3.1

Plasma oscillations

In this regime, the phase ® appearing Eq. (18) always remains small compared to 27.

24.

25.

3.2

What does this regime correspond to in the case of the mechanical oscillator of Fig. 37

Show that, in this regime, both the atom number 6 N(¢) and the phase ®(t) undergo sinu-
soidal oscillations at the same frequency wy given by:

hewy = /EcEy - (21)

Self-trapping

In this second regime, the phase ®(¢) undergoes at least one full rotation, i.e. it explores at least
all possible values from 0 to 2.

26.
27.

28.

29.

30.

3.3

31.

32.

What does this regime correspond to in the case of the mechanical oscillator of Fig. 37

We assume that the initial phase difference is &y = ®(¢t = 0) = 0. Using the conserved
energy Hj of Eq. (20), show that for the phase ® to undergo at least one full rotation, the
initial atom number difference 0Ny = N (¢t = 0) must satisfy:

0No| > (2E;/Ec)*/? . (22)

We wish the atom number to remain almost constant: dN(t) ~ dNy. Under this condition,
show from Eq. (18) that the phase ®(¢) and the atom number difference N (¢) are given by:

Ec 1 E; Ec
b ~ 7 5N0 t and ON ~ 5No 1+ WE COS <h5N0 t>:| . (23)

Justify that the validity of Eq. (23) requires a more stringent condition than Eq. (22), namely:

Ly

SNy)? >
(6No) o

(24)

Finally, exploit the condition for small atom number oscillations [ N| < N to show that the
self-trapping regime is possible only if the total atom number is large enough: N2 > E;/Ec.
Comparison with the experiment

Explain why the left column of Fig. 4 right illustrates plasma oscillations, and give an
estimate for the observed plasma oscillation period Tp; = 27 /wp.

Explain why the right column of Fig. 4 right illustrates self-trapping.
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Figure 4 Above: interpretation of the two regimes
(plasma oscillations, self-trapping) in terms of the I i l 20ms
analogy with the classical pendulum (adapted from
Ref. [4]). Right: experimental absorption images : __"'I 25ms
showing the tunnelling dynamics of a Bose-Einstein
condensate in a double-well potential. The left col- et 30ms
umn shows plasma oscillations and the right column
shows self-trapping. The phases in the two wells are m 35ms
initially equal; the dynamics are caused by an ini-
tial atom number imbalance d Ny in between the two m 40ms
wells which is small for plasma oscillations and large
for self-trapping. (Reproduced from Ref. [2]). m 45ms
! = I S50ms
e

References

[1] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. III, Addison-Wesley (1965).
[2] M. Albiez, et al., Phys. Rev. Lett. 95, 010402 (2005).

[3] C. Cohen-Tannoudji, D. Guéry-Odelin, Advances in atomic physics: an overview, World Scientific (2011).

[4] S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, Nature 449 (2007).



