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1 Question 2: The role of the centrifugal barrier

The system we consider is a gas of fermionic alkali atoms (e.g. 6Li or 40K), in the presence of a weakly attractive
interaction between atoms of opposite spins. In the absence of interaction, the many–body ground state of this system
is a Fermi sea, characterised by the Fermi energy EF (i.e. the energy of the highest–occupied single–particle state)
and the corresponding Fermi wavevector kF , defined by EF = ℏ2k2F /(2m) with m being the mass of a single atom. We
focus on the case of very low temperatures, and we assume that the Fermi sea is not altogether destroyed by the weak
attraction: this will be confirmed by subsequent calculations described e.g. in Section 5 below. Then, interaction effects
dominantly involves atoms whose energies lie in a narrow range comprising EF . Typically, the Fermi temperature
TF = EF /kB is of the order of 1µK, and the temperature of the gas is T ≈ 0.05TF = 50nK [1, §2.1, Table II].
We focus on two atoms near the Fermi surface, undergoing a low–energy collision with an energy of the order of

EF . The Schrödinger for the relative motion of the two colliding atoms reads:

− ℏ2

2mred
∆ϕ + Vint(r)ϕ = E ϕ . (1)

In Eq. (1), the wavefunction ϕ(r) depends on the relative coordinate r = r1 − r2, the Laplacian ∆ is taken with
respect to r, the reduced mass mred = m2/(2m) = m/2, and the energy E characterises the relative motion. We now
consider, in turn, the interaction term Vint(r)ϕ(r), and the kinetic energy term proportional to ∆ϕ.

Interaction term. The interaction potential Vint(r) arises from the energy of the electron terms. The atomic nuclei
are much heavier than the outer electrons (mass ratio ∼ 104 for 6Li atoms), therefore the electron terms are calculated
in the Born–Oppenheimer approximation, whereby the nuclei are assumed to be fixed at a given distance r. For neutral
atoms, Vint depends on r = |r| only. For smaller distances, Vint(r) depends on the total two–atom spin S = 0 (singlet
potential) or S=1 (triplet potential) due to exchange effects [2, chap. 32]. However, these decrease exponentially with
increasing distance, and they are negligible for the distances at play in the centrifugal effect considered here, so that
Vint is simply a function of r with no spin dependence. It is well represented by the attractive van der Waals ‘tail’

Vint(r) = −C6/r
6 , where the interaction strength C6 > 0. (2)

For instance, for 6Li [3, Table I], C6 = 1390EHa
6
0, where

1 EH is the Hartree energy and a0 is the Bohr radius.

Kinetic energy term. The direction of the incident atoms sets a specific direction in space about with the collisional
problem exhibits cylindrical symmetry. However, thanks to the spherical symmetry of Vint(r), the scattering state
ϕ(r) may be expanded into a series of partial waves [4, Sec. VIII-C-3] of the form Rl(r)Y

m
l (θ, ϕ), with Y m

l being
the spherical harmonic corresponding to the integer quantum numbers l and m. Each of the terms in this sum is
a simultaneous eigenstate of three operators: (i) the Hamiltonian H describing the relative motion (eigenvalue: the
energy E); (ii) the squared modulus ℓ2 = l2x + l2y + l2z of the angular momentum operator (eigenvalue: l(l+1) ℏ2), and
(iii) the operator lz representing the angular momentum along the quantisation axis z (eigenvalue: m ℏ). We focus
on one such term Rl(r), and use the following representation of the Laplacian in spherical cooordinates:

∆f(r) =
1

r

∂2

∂r2
(rf) − ℓ2

r2
f , valid for r > 0. (3)

1The Hartree energy EH = 4.36× 10−18 J, the Bohr radius a0 = 5.29× 10−11 m, and the electron mass me = 9.11× 10−31 kg make up
the atomic unit system, often used to describe low–energy atomic scattering phenomena. They are related through EH = ℏ2/(mea20).
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Centrifugal barrier for l = 1

Figure 1 Total effective potential Vint(r) + Vcentrif(r), appearing in the Schrödinger equation governing the behaviour of the
radial wave function ul, represented for 6Li atoms. (a) The effective potential exhibits a maximum for each l > 0, leading to
the centrifugal barrier. (b) Zoom–in onto the partial waves with l = 0 (black curve, no barrier) and l = 1 (brown curve, the
barrier is present). The dashed golden curve shows Vcentrif(r) for l = 1.

Introducing the function ul(r) such that Rl(r) = ul(r)/r, and combining Eqs. (1) and (3), we obtain:

− ℏ2

2mred

∂2ul
∂r2

+

[
ℏ2 l(l + 1)

2mred r2
+ Vint(r)

]
ul = E ul . (4)

Equation (4) shows that the function ul(r) satisfies a one–dimensional Schrödinger equation involving the effective
potential [Vint(r) + Vcentrif ], where the term Vcentrif = ℏ2 l(l + 1)/(2mredr

2). If the quantum number l = 0 (‘s–wave’
component: ‘s’ like ‘sharp’ and like ’spherical’), the term Vcentrif vanishes. However, for all higher partial waves,
characterised by the integer quantum numbers l > 0, Vcentrif(r) is the centrifugal barrier, which is repulsive.

Total effective potential. The total effective potential is shown on Fig. 1(a), in the case of 6Li, for the lowest partial
waves l = 0 to 4. For each value of l, it exhibits a maximum, whose position rmax and value Vmax may be calculated
using the van der Waals approximation to Vint(r) given by Eq. (2):

rmax =

(
3

l(l + 1)

)1/4

lvdw and Vmax = 2

(
l(l + 1)

3

)3/2

Evdw . (5)

In Eq. (5), lvdw = (mC6/ℏ2)1/4 and Evdw = [ℏ6/(m3C6)]
1/2 are the van der Waals length and energy2. For 6Li atoms,

the barrier height for l = 1 is of the order of 8mK (maximum of the brown curve on Fig. 1(b)). Furthermore, for all
incident energies E ≲ 2mK, the interaction Vint(r) is negligible compared to the centrifugal term Vcentrif(r). Hence,
for such incident energies, the interaction plays no role3 for partial waves l ≤ 1, and the centrifugal barrier prevents
the atoms from coming close enough to be affected by it.

s–wave superfluidity. The temperature (T = 50nK) and Fermi temperature (TF = 1µK) in typical experiments
on weakly attractive Fermi gases are much smaller than the barrier height for l = 1. Therefore, interaction plays no
role in all partial waves other than the s–wave. The paring mechanism which underlies superfluidity hinges on the
presence of interaction, so that its dominant contribution comes from the s–wave component. In this case, l = 0, so
that the relevant spherical harmonic Y 0

0 = 1/
√
4π is a constant. Hence, the corresponding wavefunction for the relative

motion is spherically symmetric. Consequently, the spatial wavefunction for the two particles is symmetric under the
exchange of the two particles. For fermions, the full (i.e. spatial and spin) wavefunction must be antisymmetric under
the exchange of the particles. Hence, the two–particle spin state must be chosen to be antisymmetric, i.e. it must be
the singlet state |χ12⟩ = (|↑↓⟩ − |↓↑⟩)/

√
2.

2Beware: some authors include dimensionless numerical prefactors in their definitions of lvdw and Evdw: see e.g. Ref. [3, Eq. 13].
3This simple conclusion is invalid in the presence of a ‘shape’ resonance [5, Sec. II.B.1].
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2 Question 3: Second–quantised expression for |ΨN⟩
We consider the wavefunction |ΨN ⟩, representing a well–defined number N of atoms, paired into N/2 Cooper pairs:

ΨN (r1, . . . , rN ) = A [ϕ(r1, r2) |χ12⟩ , . . . ϕ(rN−1, rN ) |χN−1,N ⟩] , (6)

where the antisymmetriser A acts on all fermionic coordinates, and ϕ(ri, rj) is the spatial wavefunction of the pair
involving the fermions i and j. We choose the two–fermion internal state |χij⟩ = (|↑↓⟩ − |↓↑⟩)/

√
2 to be the singlet

state so that it is antisymmetric, which ensures that the spatial wavefunction ϕ(ri, rj) is symmetric and, hence, allows
for s–wave pairing. The wavefunction |ΨN ⟩ is antisymmetric and normalised to unity:

⟨ΨN |ΨN ⟩ =
∫
d3r1 . . . d

3rN |ΨN (r1, . . . , rN )|2 = 1 . (7)

In order to write |ΨN ⟩ in second–quantised form, we introduce the pair creation operator b†:

b† =

∫
d3r1d

3r2 ϕ(r1, r2) Ψ̂
†
↑(r1)Ψ̂

†
↓(r2) , (8)

where the field operator Ψ̂σ(r) creates a particle with the spin σ =↑ or ↓ at the point r.

2.1 A single Cooper pair

We first consider the action of b† on the vacuum state |vac⟩:

b† |vac⟩ =
∫
d3r1d

3r2 ϕ(r1, r2) Ψ̂
†
↑(r1)Ψ̂

†
↓(r2) |vac⟩ =

∫
d3r1d

3r2 ϕ(r1, r2) |r1 ↑, r2 ↓⟩ . (9)

The ket |r1 ↑, r2 ↓⟩ appearing in the right–hand side of Eq. (9) is written in second–quantised notation. It is a
two–fermion state which is properly antisymmetrised, and whose first–quantised expression is:

|r1 ↑, r2 ↓⟩ = 1√
2
(|1 : r1 ↑, 2 : r2 ↓⟩ − |1 : r2 ↓, 2 : r1 ↑⟩) . (10)

Replacing Eq. (10) into Eq. (9), we obtain:

b† |vac⟩ =
∫
d3r1d

3r2 ϕ(r1, r2)
1√
2
(|1 : r1 ↑, 2 : r2 ↓⟩ − |1 : r2 ↓, 2 : r1 ↑⟩) . (11)

We exchange the role of the integration variables r1 and r2 in the term involving |1 : r2 ↓, 2 : r1 ↑⟩ Recalling that
ϕ(r1, r2) = ϕ(r2, r1), we obtain:

b† |vac⟩ =
∫
d3r1d

3r2 ϕ(r1, r2)
1√
2
(|1 : r1 ↑, 2 : r2 ↓⟩ − |1 : r1 ↓, 2 : r2 ↑⟩) (12)

=

[∫
d3r1d

3r2 ϕ(r1, r2) |1 : r1, 2 : r2⟩
]
|χ12⟩ , (13)

where we have factorised the spatial and internal–state parts of the wavefunction. Hence, b† |vac⟩ is the properly
normalised and antisymmetric wavefunction for a single Cooper pair.

2.2 N/2 Cooper pairs

We now wish to write the wavefunction |ΨN ⟩ in terms of b†. This wavefunction consists of N atoms and, hence, of
N/2 Cooper pairs. Therefore, we consider:

b†N/2 |vac⟩ =
∫
d3r1 . . . d

3rN ϕ(r1, r2) . . . ϕ(rN−1, rN ) |r1 ↑, r2 ↓, . . . , rN−1 ↑, rN ↓⟩ , (14)

where the ket |r1 ↑, r2 ↓, . . . , rN−1 ↑, rN ↓⟩ is written in second–quantised notation, so that the indices on the variables
r1, . . . , rN have nothing to do with particle ordering. The wavefunction b†N/2 |vac⟩ is a superposition of antisym-
metrised wavefunctions, hence, it is itself antisymmetrised. Therefore, it is equal to |ΨN ⟩ up to a normalisation
factor.
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We now calculate the norm of b†N/2 |vac⟩:

⟨vac|bN/2b†N/2|vac⟩ =
∫
d3r1 . . . d

3rN

∫
d3r′1 . . . d

3r′N

ϕ∗(r′1, r
′
2) . . . ϕ

∗(r′N−1, r
′
N ) ϕ(r1, r2) . . . ϕ(rN−1, rN )

⟨r′1 ↑, r′2 ↓, . . . , r′N−1 ↑, r′N ↓ | r1 ↑, r2 ↓, . . . , rN−1 ↑, rN ↓⟩ . (15)

If the pairs appearing in the bra ⟨(r′1, r′2), . . . , (r′N−1, r
′
N )| match those appearing in the ket |(r1, r2), . . . , (rN−1, rN )⟩

up to a permutation of the N/2 pairs the scalar product between the two N–particle states on the last line of Eq. (15)
is non–zero. There are (N/2)! such transpositions. For each of them, the scalar product is equal to the product
of N Dirac peaks δ(r1 − r′1) · · · δ(rN − r′N ). The expression for |ΨN ⟩ put forward in question 3 of the problem set
is obtained by neglecting4 the contributions of the permutations which mix the pairs (r2i−1, r2i) among each other.
Then, Eq. (15) reduces to:

⟨vac|bN/2b†N/2|vac⟩ = (N/2)!

∫
d3r1d

3r2 |ϕ(r1, r2)|2 · · ·
∫
d3rN−1d

3rN |ϕ(rN−1, rN )|2 = (N/2)! (16)

Thus, the norm of b†N/2 |vac⟩ is
√

(N/2)! , and |ΨN ⟩ is expressed in terms of b† as follows:

|ΨN ⟩ = b†N/2√
(N/2)!

|vac⟩ , (17)

where the numerical prefactor is the same as for a true bosonic creation operator.

3 Questions 7–9: The BCS wavefunction

3.1 The many–particle Hilbert space

We consider the BCS wavefunction |ΨBCS⟩, defined by Eq. 6 in the problem set:

|ΨBCS⟩ =
1

N
exp

(√
Np b

†
)
|vac⟩ , (18)

where Np = N/2 is the average number of pairs, which is one half of the average number of particles N = ⟨N̂⟩,
b† =

∑
k ϕk c

†
k↑c

†
−k↓ is the creation operator for a Cooper pair, and the (real and positive) number N is a normalisation

factor which ensures that ⟨ΨBCS|ΨBCS⟩ = 1. The state |ΨBCS⟩ does not have a well–defined particle number, hence,
the Hilbert space H it belongs to is best described in the language of second quantisation.
The Hilbert space H is usually decomposed into subspaces Hn with well–defined particle numbers n:

H = H0 ⊕H1 ⊕H2 ⊕ · · · =
⊕
n

Hn . (19)

In Eq. (19), H is written in terms of the subspaces Hn as a direct sum, because if |ψn1⟩ is a valid n1–particle quantum
state (i.e. an element of Hn1) and |ψn2⟩ is a valid n2–particle quantum state (i.e. an element of Hn2), then both |ψn1⟩
and |ψn2

⟩ are valid elements of H, and the superposition state (|ψn1
⟩+ |ψn2

⟩)/
√
2 is also a valid quantum state.

In the context of BCS theory, the decomposition of H in terms of particle numbers is not the most adequate one:
it is more convenient to decompose H in terms of spatial modes. We first consider the plane–wave state |k⟩. Because
of Pauli’s exclusion principle, there are only four licit fermionic states that may be constructed from this spatial
state, which may be non–populated (|vack⟩), or populated by a single particle (|k ↑⟩ or |k ↓⟩), or populated by two
particles (|k ↑,k ↓⟩). We call H0

k the four–dimensional Hilbert space spanned by these four states. Then, the complete
many–body Hilbert space H is the tensor product of the spaces H0

k over all plane–wave indices k:

H =
⊗
k

H0
k . (20)

This new decomposition of H involves tensor products and not direct sums, because it involves independent spatial
modes which may be independently populated. For instance, let us consider two different plane–wave states |k1⟩ and
|k2⟩. Then, |k1 ↑⟩ is a single–mode state, which is an element of H0

k1
, and |k2 ↑,k2 ↓⟩ is another single–mode state,

which is an element of H0
k2
; these two states may be combined to obtain an element of H which is |k1 ↑⟩⊗|k2 ↑,k2 ↓⟩ =

|k1 ↑,k2 ↑,k2 ↓⟩, and which contains two populated modes5.

4The exact normalisation of the state |ΨN ⟩ is a difficult problem: see e.g. [1, §4.4] and references therein.
5One may also consider the superposition (|k1 ↑⟩+ |k2 ↑,k2 ↓⟩)/

√
2 = (|k1 ↑⟩ ⊗ |vack2

⟩+ |vack1
⟩ ⊗ |k2 ↑,k2 ↓⟩)/

√
2.
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The most convenient decomposition of H in the context of BCS theory is a variant of Eq. (20). We wish the
elementary Hilbert spaces Hk to encode the presence or the absence of Cooper pairs, each of which consists of one
atom in the state |k ↑⟩ and another in the state |−k ↓⟩. Hence, instead of using the spaces H0

k, we introduce the
four–dimensional spaces Hk spanned by the states |vack↑,−k↓⟩, |k ↑⟩, |−k ↓⟩, and |k ↑,−k ↓⟩. Here, the vacuum state
|vack↑,−k↓⟩ should be understood as the absence of any particle in the states |k ↑⟩ and |−k ↓⟩. We may finally write:

H =
⊗
k

Hk . (21)

3.2 Factorisation of the BCS wavefunction

The commutator [c†k1↑c
†
−k1↓, c

†
k2↑c

†
−k2↓] = 0 for any two plane waves |k1⟩ and |k2⟩. Therefore, the exponential of the

sum of operators in Eq. (18) may be written as a product of exponentials:

N |ΨBCS⟩ =
∏
k

exp
(√

Np ϕk c
†
k↑c

†
−k↓

)
|vac⟩ . (22)

Now, we recall that c†k↑ and c†−k↓ are fermionic operators, so that c†2k↑ = 0 and c†2−k↓ = 0. The exponential appearing in

Eq. (22) is a series involving the integer powers (c†k↑c
†
−k↓)

n, which are all zero for n ≥ 2. Therefore, one may replace
each exponential in Eq. (22) by the only two surviving terms, which leads to:

N |ΨBCS⟩ =
∏
k

(
1 +

√
Np ϕk c

†
k↑c

†
−k↓

)
|vac⟩ . (23)

Now, we shall factorise |ΨBCS⟩ into a form which is compatible with the decomposition of Eq. (21). The vacuum
state |vac⟩ appearing in Eq. (23) is the product of all vacuum states |vack↑,−k↓⟩:

|vac⟩ =
∏
k

|vack↑,−k↓⟩ . (24)

Furthermore, for two different wavevectors k1 and k2 and any two complex numbers αk1
and αk2

,(
1 + αk1

c†k1↑c
†
−k1↓

)(
1 + αk2

c†k2↑c
†
−k2↓

)
|vack1↑,−k1↓⟩ |vack2↑,−k2↓⟩ (25)

=
(
1 + αk1

c†k1↑c
†
−k1↓

)(
|vack1↑,−k1↓⟩ |vack2↑,−k2↓⟩+ αk2

|vack1↑,−k1↓⟩ c
†
k2↑c

†
−k2↓ |vack2↑,−k2↓⟩

)
(26)

=
[(

1 + αk1
c†k1↑c

†
−k1↓

)
|vack1↑,−k1↓⟩

] [(
1 + αk2

c†k2↑c
†
−k2↓

)
|vack2↑,−k2↓⟩

]
. (27)

Therefore, Eq. (23) may be rewritten as:

N |ΨBCS⟩ =
∏
k

[(
1 +

√
Np ϕk c

†
k↑c

†
−k↓

)
|vack↑,−k↓⟩

]
. (28)

Equation (28) is of the form |ΨBCS⟩ =
∏

k |Ψk⟩, where each |Ψk⟩ is an element of Hk given by:

|Ψk⟩ =
1

Nk

(
|vack↑,−k↓⟩+

√
Np ϕk |k ↑,−k ↓⟩

)
, with N =

∏
k

Nk . (29)

In order to normalise |ΨBCS⟩, it is sufficient to impose ⟨Ψk|Ψk⟩ = 1 for all k. This leads to Nk =
√
1 +Np|ϕk|2, so

that we may finally write:

|ΨBCS⟩ =
∏
k

(uk |vack↑,−k↓⟩+ vk |k ↑,−k ↓⟩) , (30)

where uk and vk read:

uk =
1√

1 +Np|ϕk|2
and vk =

√
Np ϕk√

1 +Np|ϕk|2
. (31)

3.3 Interpretation of the BCS wavefunction

The factorisation |ΨBCS⟩ =
∏

k |Ψk⟩ provided by Eq. (30) allows for a simple physical interpretation of the BCS
wavefunction, which may be understood as follows. It describes a collection of independent subsystems labelled by
the wavevectors k, and whose wavefunctions are |Ψk⟩. Each of these independent systems is in a superposition state
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involving the state |vack↑,−k↓⟩ (meaning that the Cooper pair |k ↑,−k ↓⟩ is absent) with the probability amplitude
uk, and the state |k ↑,−k ↓⟩ (the Cooper pair is present) with the probability amplitude vk.
The factorisation described above is only possible with the BCS state |ΨBCS⟩. It does not hold for the state |ΨN ⟩ with

a fixed total number of particles. This is why |ΨBCS⟩ is more amenable to calculations and interpretations than |ΨN ⟩.

The coefficients uk and vk may be determined exactly in the case of vanishing interactions (a = 0). In this limit,
the N–particle system consists of a Fermi sea defined by the Fermi wavevector kF = (3π2n)1/3, where n is the spatial
density (cf. Problem 2, the different numerical prefactor reflects the fact that all single–particle states may now be
populated by two particles with the internal states |↑⟩ and |↓⟩). Then, below the Fermi surface, all single–particle
states are occupied, so that uk = 0 and vk = 1; above the Fermi surface, all single–particle states are empty, meaning
that uk = 1 and vk = 0.

3.4 Statistics of the number of particles in the BCS state

In order to determine the statistics of the total atom number N̂ in this state, we follow a procedure similar to the
one we employed in Problem 1 when calculating the photon or electron number statistics in two–particle interference
experiments. More precisely, we first calculate the properties of the atom number n̂k = n̂k↑ + n̂−k↓ for a given

wavevector k, and then use the independence of the random variables nk to conclude as to the properties of N̂ =
∑

k n̂k.
The random variable nk takes the value 0 with probability |uk|2, and the value 2 with the probability |vk|2 (the value

is 2 and not 1 because each Cooper pair contains two particles). Therefore, its mean value is ⟨n̂k⟩ = 2|vk|2. Similarly,
the random variable n2k takes the value 0 with the probability |uk|2, and the value 22 = 4 with the probability |vk|2,
so that its mean value is ⟨n̂2k⟩ = 4|vk|2. Therefore, the variance of the random variable nk is:

∆n2k = ⟨n2k⟩ − ⟨nk⟩2 = 4(|vk|2 − |vk|4) = 4|uk|2|vk|2 , (32)

where the last step follows from the normalisation condition |uk|2 + |vk|2 = 1.
Now, we recall that N̂ =

∑
k n̂k. The random variables nk are independent, so that the mean value N = ⟨N̂⟩ of

the particle number and its variance ∆N2 = ⟨N̂2⟩ − ⟨N̂⟩
2
satisfy:

⟨N̂⟩ =
∑
k

⟨nk⟩ = 2
∑
k

|vk|2 and ∆N2 =
∑
k

∆n2k = 4
∑
k

|uk|2|vk|2 . (33)

Finally, we show that for large particle numbers N , the fluctuation ∆N of the particle number is small. For each
wavevector k, the normalisation |uk|2+ |vk|2 = 1 entails that |uk|2 ≤ 1. Combining this inequality with the expression
for ∆N2 in Eq. (33), we obtain:

∆N2 ≤ 4
∑
k

|vk|2 = 2 ⟨N̂⟩ , so that
∆N

⟨N̂⟩
≤

√
2

⟨N̂⟩
. (34)

The second inequality in Eq. (34) shows that ∆N/N becomes arbitrarily small for sufficiently large N . Therefore,
for large mean atom numbers, the fluctuations of the atom number in the BCS state are negligible, meaning that in
the large–N limit the state |ΨBCS⟩ should capture the physics of a system containing a fixed number of particles (i.e.
described by the wavefunction |ΨN ⟩).

4 Complement: The BCS ground state through a variational approach

Section 2.2 of the problem presents the analysis of the BCS Hamiltonian HBCS in terms of the Bogoliubov approach [6,
chap. 5]. This approach is applicable both to the homogeneous gas and to inhomogeneous systems, i.e. in the presence
of a trapping potential V (r). It involves three steps:

1. First, one exploits off–diagonal long–range order to replace the quartic Hamiltonian HBCS by an approximate
quadratic Hamiltonian.

2. Second, Bogoliubov rotations, parametrised by the coefficients uk and vk, are applied to the operators ck↑ and

c†−k↓ to diagonalise this quadratic Hamiltonian.

3. Third, the coefficients uk and vk are interpreted as those appearing in Eq. (30), i.e. they define the Fourier
coefficient ϕk of the pair wavefunction ϕ(r1, r2).
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The case of a uniform Fermi gas (V (r) = 0) allows for a more direct approach, which relies on a variational argument.
In this approach, one chooses the coefficients uk and vk appearing in Eq. (30) so as to minimise the grand–canonical
energy ⟨ΨBCS|HBCS − µN̂ |ΨBCS⟩. This yields the same values for uk and vk as the Bogoliubov approach presented in
the problem.

In this variational approach, we start from the expression for HBCS which appears as Eq. 10 in the problem.
Substracting from it the operator µN̂ , we obtain the grand–canonical Hamiltonian:

HBCS − µN̂ =
∑
k

(ϵk − µ)
(
c†k↑ck↑ + c†−k↑c−k↑

)
+
g

Ω

∑
k,k′

c†k↑c
†
−k↓ck′↓c−k′↑ . (35)

In the spirit of the Hilbert space decomposition of Eq. (21), we replace the sum over k′ by a sum over −k′. We also
split the double sum over k and k′ according to whether the two wavevectors are equal or different, and exploit the
anticommutation rules in the case of equal wavevectors:

HBCS − µN̂ =
∑
k

(ϵk − µ)
(
c†k↑ck↑ + c†−k↑c−k↑

)
+
g

Ω

∑
k

c†k↑ck↑c
†
−k↓c−k↓ +

g

Ω

∑
k ̸=k′

c†k↑c
†
−k↓c−k′↓ck′↑ . (36)

The first two sums in Eq. (36) do not mix the subspaces Hk of Eq. (21). In order to evaluate their average, we split
the wavefunction |ΨBCS⟩ into two terms |Ψk0⟩ and |Ψk1⟩, corresponding to the cases where the pair (k ↑,−k ↓) is
absent or present, respectively. Thanks to Eq. (30):

|ΨBCS⟩ = uk |Ψk0⟩+ vk |Ψk1⟩ . (37)

Using this decomposition, one finds that the average of the kinetic energy term related to the wavevector k is 2(ϵk−µ)v2k,
and the average of the interaction term for k = k′ is (g/Ω)v2k.

The third sum in Eq. (36) mixes two subspaces Hk and Hk′ with k ̸= k′. In order to evaluate its average, we split
the wavefunction |ΨBCS⟩ into four terms |Ψk0k′0⟩, |Ψk0k′1⟩, |Ψk1k′0⟩, |Ψk1k′1⟩, describing the absence or the presence
of the two pairs (k ↑,−k ↓) and (k′ ↑,−k′ ↓):

|ΨBCS⟩ = ukuk′ |Ψk0k′0⟩+ ukvk′ |Ψk0k′1⟩+ vkuk′ |Ψk1k′0⟩+ vkvk′ |Ψk1k′1⟩ . (38)

Using this decomposition, one finds that the average of the interaction term corresponding to k ̸= k′ is (g/Ω)ukvkuk′vk′ .
Combining the averages for all three sums in Eq. (36), we obtain:

⟨ΨBCS|HBCS − µN̂ |ΨBCS⟩ =
∑
k

(
ϵk − µ+

g

Ω

)
v2k +

g

Ω

∑
k ̸=k′

ukuk′vkvk′ . (39)

The interaction terms for k = k′ shift the chemical potential by |g|/Ω. In the BCS limit, this shift is negligible
compared to µ ∼ EF , so that the average grand–canonical energy finally reduces to:

⟨ΨBCS|HBCS − µN̂ |ΨBCS⟩ =
∑
k

(ϵk − µ) v2k +
g

Ω

∑
k ̸=k′

ukuk′vkvk′ . (40)

In order to minimise Eq. (40), we recall that u2k + v2k = 1. Hence, we let uk = cos θk and vk = sin θk, and write
Eq. (40) in terms of the angles θk:

⟨ΨBCS|HBCS − µN̂ |ΨBCS⟩ =
1

2

∑
k

(ϵk − µ) [1− cos(2θk)] +
1

4

g

Ω

∑
k ̸=k′

sin(2θk) sin(2θk′) . (41)

Derivating Eq. (41) with respect to θk, we obtain the minimisation conditions:

(ϵk − µ) tan(2θk) = −1

2

g

Ω

∑
k′ ̸=k

sin(2θk′) . (42)

We introduce the gap parameter ∆, defined as an average in the state |ΨBCS⟩:

∆ =
g

Ω

∑
k

⟨ΨBCS|ck↑c−k↓|ΨBCS⟩ = − g

Ω

∑
k

ukvk = −1

2

g

Ω

∑
k

sin(2θk) , (43)

where the second equality follows from Eq. (37). Combining Eqs. (42) and (43):(
ϵk − µ− 1

2

g

Ω
cos(2θk)

)
tan(2θk) = ∆ . (44)
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We again neglect |g|/Ω compared to µ on the left–hand side, and obtain:

tan(2θk) =
∆

ϵk − µ
, (45)

from which we extract the absolute values cos(2θk) and | sin(2θk)|:

| cos(2θk)| =
|ϵk − µ|
Ek

and | sin(2θk)| =
|∆|
Ek

, where Ek =
√

(ϵk − µ)2 +∆2. (46)

We choose the sign of cos(2θk) to ensure the convergence of the average total number of particles:

N =
∑
k

⟨ΨBCS|c†k↑ck↑ + c†−k↓c−k↓|ΨBCS⟩ =
∑
k

2v2k , (47)

where the last step follows from the decomposition of Eq. (37). In order for the sum of Eq. (47) to converge, the
coefficients vk must go to zero for large k = |k|. Therefore,

For large k, cos(2θk) = cos2 θk − sin2 θk = u2k − v2k > 0 . (48)

We expect ∆ > 0; additionally, for large k, ϵk − µ > 0. Hence, cos(2θk) and sin(2θk) satisfy:

cos(2θk) = +
ϵk − µ

Ek
and sin(2θk) = +

∆

Ek
. (49)

Using cos2 θk = [1 + cos(2θk)]/2, sin
2 θk = [1− cos(2θk)]/2, and cos θk sin θk = sin(2θk)/2:

u2k = 1− v2k =
1

2

(
1 +

ϵk − µ

Ek

)
and ukvk =

∆

2Ek
, (50)

in accordance with Eq. 18 in the problem.

5 Chemical potential µ and gap ∆ in terms of a and N

The BCS model is parametrised by two key quantities: the chemical potential µ and the gap ∆. Our last step is
to relate µ and ∆ to two parameters which may be tuned experimentally: the scattering length a and the particle
number N . This is done by simultaneously solving the gap equation and the number equation, which appear together
as Eq. 22 in the problem set.
In the BCS limit, the interaction between the particles is attractive and arbitrarily weak. This leads to a gap

parameter ∆ which is positive and very small. We shall make this assumption throughout this section and check its
validity at the end of the calculation. In particular, we shall evaluate the integrals appearing in the gap and number
equations to leading order in ∆/EF .

5.1 Questions 22–23: Chemical potential µ

We start from the expression for the total number of particles given by Eq. (47) above. Replacing v2k by its value given
by Eq. (50), we obtain:

N =
∑
k

(
1− ϵk − µ

Ek

)
=

∫
d3k

(2π)3/Ω

(
1− ϵk − µ

Ek

)
. (51)

The gas is homogeneous, therefore its spatial density is n = N/Ω:

n =

∫
d3k

(2π)3

(
1− ϵk − µ

Ek

)
. (52)

In Eq. (52), the integrand f(ϵk) is a function of ϵk = ℏ2k2/(2m) only. Introducing the Fermi energy EF and wavevector
kF , related through EF = ℏ2k2F /(2m), we change variables from d3k to dϵ in the integral using the general formula:∫

d3k

(2π)3
f(ϵk) =

k3F
4π2

∫
dϵ

EF

(
ϵ

EF

)1/2

f(ϵ) . (53)

Applying Eq. (53) to Eq. (52), we find:

n =
k3F
4π2

∫
dϵ

EF

(
ϵ

EF

)1/2 (
1− ϵk − µ

Ek

)
. (54)
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Replacing kF by its expression for a Fermi gas with two accessible internal states, kF = (3π2n)1/3, the spatial density
cancels out and we obtain:

4

3
=

∫ ∞

0

dϵ

EF

(
ϵ

EF

)1/2 (
1− ϵ− µ

Ek

)
. (55)

We consider the integral appearing in Eq. (55) in the limit where ∆ → 0. In this limit, the excitation energy

Ek =
[
(ϵk − µ)2 +∆2

]1/2
reduces to Ek = |ϵk − µ|. The content of the second pair of parentheses in Eq. (55) is equal

to 2 for ϵ < µ, and equal to 0 for ϵ > µ. Therefore, Eq. (55) reduces to:

4

3
=

∫ µ

0

dϵ

EF

(
ϵ

EF

)1/2

2 =
4

3

(
µ

EF

)3/2

. (56)

We conclude from Eq. (56) that µ = EF : In the BCS limit, the attractive interaction is so weak that it does not affect
the chemical potential, which retains its non–interacting value.

5.2 Gap parameter ∆

5.2.1 Question 21: Integral equation for the gap ∆

We now turn to the gap parameter ∆, which we express in terms of the coefficients uk and vk thanks to Eq. (43)
above. We replace ukvk by its value given by Eq. (50):

∆ = − g

Ω

∑
k

ukvk = − g

Ω

∑
k

∆

2Ek
. (57)

The gap ∆ cancels out from Eq. (57) (although it is still present implicitly through Ek):

1 = −1

2

g

Ω

∑
k

1

Ek
. (58)

We replace the discrete sum appearing in Eq. (58) with an integral over the integration element is d3k × Ω/(2π)3:

−1

g
=

∫
d3k

(2π)3
1

2Ek
. (59)

In Eq. (59), we express the coupling constant g in terms of the scattering length a through g = 4πℏ2a/m, and use the
relation Ek = [(ϵk − µ)2 +∆2]1/2 (see Eq. 18 in the problem set) to obtain:

− π

2 kFa
=

∫
dk k2

k3F

EF

[(ϵk − µ)2 +∆2]1/2
. (60)

The integral appearing on the right–hand side of Eq. (60) does not converge for large momenta, in which limit the
integrand tends to a constant. This reflects the pathological behaviour of the contact potential gδ(r), whose Fourier
transform does not fall off for large momenta. An accurate determination of the gap parameter ∆ requires a more
elaborate analysis of the relation between g and a, sketcked e.g. in Ref. [7, Sec. 26.5.2] (see in particular their Eqs. 26.33
and 26.34). We shall not address this issue, and rely instead on a standard, but approximate, approach involving a
truncation of the integral. Therefore, our final expression for the gap ∆ should not be expected to be entirely correct
(see Eq. (65) below and the discussion of its shortcomings).

5.2.2 Question 24: Approximate evaluation of the integral giving the gap ∆

Using Eq. (53) above, we change variables in Eq. (60) to integrate over the single–particle energy ϵ. This leads to:

− π

2 kFa
=

1

2

∫
dϵ

EF
F∆(ϵ) , with F∆(ϵ) =

[
ϵ/EF

[(ϵ/EF − 1)2 + (∆/EF )2]

]1/2
. (61)

The integrand F∆ in Eq. (61) depends on two adimensional quantities: ϵ/EF and the parameter ∆/EF . It is repre-
sented on Fig. 2. It is strongly peaked near ϵ = EF , the peak being more pronounced for smaller values of ∆/EF .

In Eq. (61), The strongly peaked structure of F∆(ϵ) allows us to replace ϵ by EF in the numerator of the square
root in the integral on the right–hand side of Eq. (61). We change the integration variable from ϵ to η = ϵ − EF .
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Figure 2 The integrand F∆(ϵ) of Eq. (61), represented as a
function of the single–particle energy ϵ/EF , for various values
of the adimensional ratio ∆/EF . It is strongly peaked in the
vicinity of the Fermi momentum k = kF . The peak is more
pronounced for smaller values of ∆/EF .

Furthermore, as anticipated at the end of the previous section 5.2.1, we introduce an energy cut–off ϵ̄. The value of
ϵ̄ is chosen of the order of the Debye frequency ℏωD. This reflects the fact that the interaction by phonon exchange
in the weakly–interacting Fermi gas involves only particles in a comparatively thin shell of p–space near the Fermi
surface, whose thickness ℏωD is small in comparison with the chemical potential µ = EF . Hence, Eq. (61) reduces to:

− π

2 kFa
=

1

2

∫ +ϵ̄

−ϵ̄

dη

EF

EF

[η2 +∆2]1/2
=

∫ +ϵ̄

0

dη

EF

EF

[η2 +∆2]1/2
, (62)

where the last step follows from the integrand being an even function of η. Changing variables to u = η/∆ yields:

− π

2 kFa
=

∫ +ϵ̄/∆

0

du

(1 + u2)1/2
= arcsinh(ϵ̄/∆) . (63)

Recalling that a < 0, so that −a = |a|, we rewrite Eq. (63) as:

ϵ̄

∆
= sinh

(
π

2kF |a|

)
=

1

2

[
exp

(
+

π

2kF |a|

)
+ exp

(
− π

2kF |a|

)]
, (64)

where the last step exploits the definition of the function sinh. Recalling the assumption that kF |a| is small, the second
exponential term (negative argument) is negligible compared to the first one (positive argument). We finally obtain:

ϵ̄

∆
=

1

2
exp

(
+

π

2kF |a|

)
, or, equivalently, ∆ = 2ϵ̄ exp

(
− π

2kF |a|

)
. (65)

Equation (65) is the famous result of BCS theory which expresses the gap parameter ∆ in terms of the scattering
length a, and more precisely in terms of the adimensional parameter kFa. This equation validates the two assumptions
we had made on ∆ throughout the calculation: First, ∆ > 0. Second, in the deep BCS regime where kFa is negative
and small, the exponential is extremely small, so that ∆ ≪ EF . One may also verify that the many–body state defined
by Eq. (30) is indeed energetically favoured compared to the non–interacting ground state [1, §4.6.1]
The approximate approach involving the cut–off energy ϵ̄ provides the correct exponent in Eq. (65), but not the

correct prefactor. In fact, the approximate nature of Eq. (65) is easily seen from the fact that the prefactor it involves,
2ϵ̄, depends on the cut–off energy ϵ̄. The more elaborate approach mentioned at the end of Sec. 5.2.1 yields the exact
result ∆/EF = (8/e2) exp [−π/(2kF |a|)], which involves no dependence on any cut–off parameter.

6 Question 25: Validity and experimental considerations

6.1 The BEC–BCS crossover

This problem has explored the BCS model applied in the BCS limit, i.e. kFa negative and small. However, the model
it presents is also applicable in the deep BEC regime, i.e. kFa positive and small. The BCS model is a mean–field
theory6, therefore it cannot be expected to provide an accurate solution in the strongly–correlated regime where

6In the Bogoliubov treatment outlined in the problem, the mean–field approximation intervenes when one replaces the BCS Hamiltonian

of Eq. (35), which is of order 4 in the operators ckσ and c†kσ , by the quadratic Hamiltonian Heff (cf. question 12).
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Figure 3 Critical temperature for superfluidity along the BEC–
BCS crossover. The smooth solid line labelled “condensation”
results from the BCS approach discussed in the problem. The
diamond indicates the value of Tc/TF in the unitary regime ob-
tained using numerical quantum Monte Carlo calculations. Re-
produced from Ref. [8].

kF |a| ≳ 1. Nevertheless, it provides useful orders of magnitude, and in the context of this model all thermodynamic
functions vary smoothly when 1/(kFa) is varied along the crossover from the BCS to the BEC regimes [8, §16.7].
Among these thermodynamic quantites, the critical temperature Tc below which the system is superfluid is an

important example. The order of magnitude for Tc is dictated by the gap: kBTc ∼ ∆, with kB being Boltzmann’s
constant. An improved approximation may be obtained by solving the BCS equations at non–zero temperature [1,
§4.8]. The resulting adimensional ratio Tc/TF is represented as a function of 1/(kFa) on Fig. 3 (solid line labelled
‘condensation’).
The two weakly–interacting limits for the critical temperature Tc are well–understood. First, for kFa small and

negative, the BCS theory yields:

kBT
BCS
c =

eγ

π
∆(T = 0) , (66)

where γ ≈ 0.577 is Euler’s constant, and ∆(T = 0) is the zero–temperature value of the gap, which is given by Eq. (65)
and is exponentially small. Second, for kFa small and positive, the pairs are tightly–bound bosonic molecules, and the
critical temperature is given by the standard formula for a uniform Bose gas, with the mass of a single boson being
mmol = 2m and the bosonic density being nmol = n/2:

nmol Λ
3
Tc

= ζ(3/2) . (67)

In Eq. (67), ΛT = [2πℏ2/(mmolkBT )]
1/2 is the thermal de Broglie wavelength and ζ(3/2) =

∑
1/n3/2 ≈ 2.61. Solving

Eq. (67) for Tc, one obtains the critical temperature in the BEC limit:

kBT
BEC
c

EF
=

(
2

π

1

[3ζ(3/2)]2

)1/3

≈ 0.218 . (68)

The investigation of the strongly–interacting regime is much more challenging. The prediction of the BCS model is
smooth but non–monotonic near the unitary limit where 1/(kFa) = 0 (see the solid curve on Fig. 3). In the regime
where |kFa| ≳ 1, mean–field theories are expected to be inaccurate, and at present no exact solution for the many–
body problem is available. Therefore, one turns to more involved numerical Quantum Monte Carlo calculations, which
yield the following universal7 result for 1/(kFa) = 0 (see e.g. Ref. [8, §16.6]):

kBT
unitarity
c

EF
≈ 0.167 , (69)

which is in excellent agreement with recent experimental results [9], but is slightly below the mean–field prediction,
thus confirming that the latter is not sufficiently accurate.
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Figure 4 Left: Abrikosov lattice of vortices observed by scanning tunnelling microscopy in the superconductor NbSe2, which
exhibits BCS superconductivity for T < Tc = 7.2K. Reproduced from Ref. [10]. Right: Experimental proof of superfluidity in
an interacting ultracold gas of fermionic 6Li: Abrikosov lattices of vortices have been nucleated and observed for 1/(kF a) = 1.6
(BEC regime), 1/(kF a) = 0 (unitary regime), and 1/(kF a) = −0.7 (BCS regime). Reproduced from Ref. [1].

6.2 Observation of Abrikosov lattices

The observation of vortex lattices in interacting Fermi gases (see e.g. Ref. [1, Sec. 6.6]) has provided spectacular
experimental proof of their superfluid character. As illustrated on the right panel of Fig. 4, these lattices have been
nucleated for various values of a in the BEC regime (1/(kFa) = 1.6), at unitarity (1/(kFa) = 0), and in the BCS
regime (1/(kFa) = −0.7). For these values of the interaction parameter 1/(kFa), Eqs. (68) and (69) show that
the critical temperature is of the order of a few tenths of the Fermi energy, so that Tc ∼ 200 nK, a temperature
which is nowadays routinely accessed experimentally. However, bringing a Fermi gas deep into the BCS regime is an
experimental challenge because of the exponentially small critical temperature in the BCS limit (see Eq. (66)). To the
best of my knowledge, this challenge remains to be met. For now, the equivalent of the very deep BCS regime on the
far left of Fig. 3 is more easily accessed in condensed–matter systems, i.e. metallic superconductors, where TBCS

c is of
the order of a few Kelvin. For example, the left panel of Fig. 4 shows a vortex lattice observed by scanning tunnelling
microscopy in niobium diselenide, whose critical temperature is Tc = 7.2K, in the presence of a magnetic field.
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