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Bardeen{Cooper{Schrieffer theory:

Ultracold Fermi gas in the BCS regime

We consider N identical fermions in a three–dimensional box–like potential. Each fermion has two accessible
internal states, labelled |↑⟩ and |↓⟩. We assume that N is even, and that the two states are equally populated: N↑ =
N↓ = N/2 (for odd N , this amounts to neglecting the effect of a mismatch between N↑ and N↓ by a single particle).

The Pauli exclusion principle precludes any short–ranged interaction between two fermions in the same internal
state. By contrast, two fermions in different internal states |↑⟩ and |↓⟩ may exhibit short–ranged interactions, which
we model using a contact potential characterised by its scattering length a. The value of a may be tuned to take positive
values (repulsive interactions) or negative ones (attractive interactions) using a Feshbach resonance.

The goal of this problem is to characterise the ground state and low–energy excitations of this many–body system in
the case where kF a is small and negative, with kF being the Fermi wavevector. In this case, there is no two–body bound
state, but the system is affected by the Cooper instability: the long–ranged pairing of fermions with opposite momenta
and spins is energetically favoured. The many–body ground state will be found to consist of multiple long–ranged pairs;
the low–energy excitation spectrum is related to the particle–hole spectrum of ideal Fermi gases, and it exhibits a gap.
It satisfies Landau’s criterion for superfluidity.

The problem deals with fermions. Nevertheless, the commutator [A, B]− = AB −BA of two operators A and B plays
a role in multiple questions. The answers to all questions and all required equations are given in the text,
so that you may explore the whole problem even without providing a full answer to each question.

1 The Bardeen–Cooper–Schrieffer (BCS) wavefunction
1.1 Wavefunction with a well–defined number of particles
We assume that N is even, and we introduce the N–fermion wavefunction |ΨN ⟩ consisting of pairs, defined by:

ΨN (r1, . . . , rN ) = A [ϕ(r1, r2) |χ12⟩ , . . . ϕ(rN−1, rN ) |χN−1,N ⟩] , (1)

where A is the antisymmetriser acting on the fermionic positions r1, . . . , rN , ϕ(ri, rj) is the spatial wavefunction of
the pair involving the fermions i and j, and |χij⟩ is the corresponding two–fermion internal state.

1. In a spatially uniform system whose volume is Ω, justify that ϕ(ri, rj) = φ(rj − ri)/
√

Ω.

2. Recall which partial wave plays the most important role in low–temperature quantum collisions, and justify the
name ‘s–wave pairing mechanism’. Identify an additional symmetry satisfied by the wavefunction ϕ, and explain
why |χ⟩ is the singlet state |χ⟩ = (|↑↓⟩ − |↓↑⟩)/

√
2.

Hint: The centrifugal barrier plays a role in the discussion.

1.2 Creation and destruction operators, commutation relations
In order to write |ΨN ⟩ in second–quantised notation, we introduce the operator b†:

b† =
∫

d3r1 d3r2 ϕ(r1, r2) Ψ̂†
↑(r1) Ψ̂†

↓(r2) , (2)

where the field operator Ψ̂†
σ(r) creates a particle with the spin σ =↑ or ↓ at the point r.
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3. Show that |ΨN ⟩ = 1√
(N/2)!

b†N/2 |vac⟩.

We wish to express b† in terms of the creation operators c†
k,σ, creating a particle with the spin σ in the plane–wave

state |k⟩ defined by ⟨r|k⟩ = eik·r/
√

Ω, where Ω is the volume of the system. These states satisfy ⟨k1|k2⟩ = δk1,k2 .

4. Show that ⟨r1, r2|ϕ⟩ expands onto the plane waves as follows:

⟨r1, r2|ϕ⟩ =
∑
k

ϕ|k| eik·(r1−r2)/Ω =
∑
k

ϕk ⟨r1|k⟩ ⟨r2|(−k)⟩ . (3)

Hints: (a) First, accounting for the spatial symmetry of φ(r) = φ(r), show that its Fourier coefficients φk depend only on k = |k|.
(b) Equation (3) enforces the condition

∑
k |ϕk|2 = 1.

5. Express Ψ̂†
σ(r) in terms of the creation operators c†

k,σ, and conclude:

b† =
∑
k

ϕk c†
k↑c†

−k↓ . (4)

6. Show that the bosonic commutators for b satisfy:

[b, b]− = [b†, b†]− = 0 and [b, b†]− =
∑
k

|ϕk|2(1 − nk↑ − nk↓) . (5)

May b† be considered a true bosonic creation operator?

1.3 The BCS wavefunction and its normalisation
We relax the assumption of a fixed number of particles, and consider instead instead the state |ΨBCS⟩, whose total
particle number is not fixed:

|ΨBCS⟩ = 1
N

exp
(√

Np b†
)

|vac⟩ with Np = N/2. (6)

In Eq. (6), N is a normalisation factor.

7. What is the average pair number? What is the standard deviation of the pair number?
Explain why, for large N , the state |ΨBCS⟩ closely mimics the N–particle state |ΨN ⟩.
Hint: The results of the supplementary exercise on coherent states may be useful.

8. Show that the wavefunction |ΨBCS⟩ may be written as:

N |ΨBCS⟩ =
∏
k

exp(
√

Np ϕk c†
k↑c†

−k↓) |vac⟩ =
∏
k

(
1 +

√
Np ϕk c†

k↑c†
−k↓

)
|vac⟩ . (7)

9. Show that the BCS wavefunction, normalised such that ⟨ΨBCS|ΨBCS⟩ = 1, reads:

|ΨBCS⟩ =
∏
k

(
uk + vkc†

k↑c†
−k↓

)
|vac⟩ with uk = 1√

1 + Np|ϕk|2
and vk =

√
Np ϕk√

1 + Np|ϕk|2
. (8)

What are the values of uk and vk in the absence of any interaction between the particles?

2 The BCS Hamiltonian
2.1 Full BCS Hamiltonian
We start from the Hamiltonian for N fermions, written using second–quantisation operators:

H =
∑
k,σ

ϵk c†
kσ ckσ + g

Ω
∑

k,k′,q

c†
k+ q

2 ,↑ c†
−k+ q

2 ,↓ ck′+ q
2 ,↓ c−k′+ q

2 ,↑ . (9)

In Eq. (9), the spin index σ =↑ or ↓, the operator c†
k,σ creates a fermion in the single–particle state |k⟩ whose energy is

ϵk = ℏ2k2/(2m), and the operator ck,σ is the corresponding annihilation operator. The coupling constant g = 4πℏ2a/m
is related to the scattering length a and encodes the nature (repulsive for a > 0, attractive for a < 0) and the strength
of the two–body interaction between opposite–spin fermions. Finally, Ω is the total volume of the system.
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Figure 1 Two particles scattering on top of the Fermi sea. (a)
Particles with equal and opposite momenta may scatter into final
states in a narrow shell (shaded in blue) on top of the Fermi sea.
(b) For non–zero total momentum 2q, the only accessible final
states are in a narrow band of the Fermi surface around a circle
of radius (k2

F − q2)1/2, with kF being the Fermi wavevector.
Reproduced from Ref. [1].

10. What is the conservation relation satisfied by the momenta involved in the interaction term?
Which property of the two–body interaction potential does it reflect?

11. Explain why pairs with the total linear momentum q = 0 play the most important role in the pairing mechanism.
Hint: Consider two fermions colliding at the Fermi surface, with the total linear momentum 2q. You may refer to Figure 1.

12. Conclude that the Hamiltonian may be approximated by:

HBCS =
∑
k,σ

ϵk c†
kσ ckσ + g

Ω
∑
k,k′

c†
k↑ c†

−k↓ ck′↓ c−k′↑ . (10)

2.2 Effective quadratic Hamiltonian and its diagonalisation
We assume that the double–annihilation operator ck↑ c−k↓ fluctuates only weakly about its non–zero expectation value
Ck = ⟨ck↑c−k↓⟩, which we assume to be real. Therefore, we write:

ck↑ c−k↓ = Ck + (ck↑ c−k↓ − Ck) , (11)

where the operator within the parentheses yields fluctuations that are small compared to Ck. The isotropy of the
system implies that Ck only depends on k = |k|. We introduce the ‘gap parameter’ ∆ defined in terms of the Ck as:

∆ = g

Ω
∑
k

Ck . (12)

13. Show that ⟨c†
k↑c†

−k↓⟩ = −Ck and ⟨ck′↓c−k′↑⟩ = −Ck′ .
Conclude that, up to first order in the operators (ck↑c−k↓ − Ck), Eq. (10) reduces to a quadratic Hamiltonian:

HBCS ≈ Heff = − ∆2

g/Ω
+

∑
k

[
ϵk

(
c†
k↑ck↑ + c†

−k↓c−k↓

)
− ∆

(
c†
k↑c†

−k↓ + c−k↓ck↑

)]
. (13)

In order to diagonalise the quadratic Hamiltonian of Eq. (13), we perform a Bogoliubov transformation, i.e. we
introduce the new ‘quasi–particle’ operators γk↑ and γ†

−k↓ defined by:(
ck↑

c†
−k↓

)
=

(
uk vk

−vk uk

) (
γk↑

γ†
−k↓

)
, (14)

where the real numbers uk and vk depend on k = |k|. We shall now choose them such that:

Heff − µN̂ = EGC
G +

∑
k

Ek

(
γ†
k↑γk↑ + γ†

−k↓γ−k↓

)
. (15)

In Eq. (15), N̂ is the total particle number operator. The chemical potential µ sets the average value N = ⟨N̂⟩. The
grand–canonical ground–state energy EGC

G is related to the true ground–state energy EG through EGC
G = EG − µN .

14. We require that the operators γkσ and γ†
kσ satisfy fermionic commutation rules.

Show that this amounts to the normalisation condition u2
k + v2

k = 1.

15. Write Eq. (15) in terms of commutators:

[γk↑, Heff − µ N̂ ]− = Ek γk↑ and [γ†
−k↓, Heff − µ N̂ ]− = −Ek γ†

−k↓ . (16)
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Figure 2 Energy spectrum for the particle and hole excitations
in an ideal Fermi gas (dashed blue curve) and in a balanced
Fermi gas in the BCS regime (solid red curve). In the latter
case, the value of the gap parameter, ∆/EF = 0.2, is greatly
exaggerated to make its smoothing effect near k = kF apparent.

16. Calculate the commutator [ck↑, Heff − µN ]−.
Combine the result with Eq. (16) to establish the Bogoliubov–de Gennes equations, which determine uk and vk:(

(ϵk − µ) ∆
∆ −(ϵk − µ)

) (
uk

vk

)
= Ek

(
uk

vk

)
. (17)

17. Interpret the terms appearing in Eq. (15) and justify that Ek should be chosen to be positive. Conclude:

Ek =
√

(ϵk − µ)2 + ∆2, u2
k = 1 − v2

k = 1
2

(
1 + ϵk − µ

Ek

)
, and uk vk = ∆

2Ek
. (18)

18. Check that the grand–canonical ground–state energy is given by:

EGC
G = − ∆2

g/Ω
−

∑
k

[Ek − (ϵk − µ)] . (19)

Check that the wavefunction |ΨBCS⟩ of Eq. (8) is the ground state of Heff , that is to say: γkσ |ΨBCS⟩ = 0.

19. Using Eqs. (15) and (18), determine the low–energy excitation spectrum.
Compare it to the excitation spectrum for an ideal Fermi gas (see Fig. 2).

20. Justify that the minimum value of Ek/k is strictly positive, and conclude that the system exhibits superfluidity.

2.3 Gap and number equations
21. Calculate the gap parameter ∆ in the ground state |ΨBCS⟩ using Eq. (12), and show that:

−1
g

=
∫

d3k

(2π)3
1

2Ek
(20)

22. Calculate the average number of particles N = ⟨N̂⟩ in the ground state |ΨBCS⟩, and show that:

n = ⟨N⟩
Ω

=
∫

d3k

(2π)3

(
1 − ϵk − µ

Ek

)
. (21)

3 Calculation of the gap ∆, in the BCS limit, at the temperature T = 0
The final step is to obtain µ and ∆ as a function of a and N . We focus on the BCS regime, i.e. in the weakly–attractive
limit, where kF a is small and negative. We work at the temperature T = 0, so that the system is in its ground state
|ΨBCS⟩. Therefore, the gap equation (Eq. (20)) and the number equation (Eq. (21)) are applicable.

We assume µ > 0 with |∆| ≪ µ, an assumption to be checked at the end of the calculation.

23. Taking the limit ∆ → 0 in Eq. (21), show that µ ≈ EF .
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24. Approximate evaluation of the integral in Eq. (20):
a) Justify that the integral is dominated by the contribution of wavevectors k such that k ∼ kF .
b) In this region of momentum space, justify that the quantity η = ϵk − µ satisfies η ≈ ℏ2kF (k − kF )/m.
c) Under this approximation, show that Eq. (20) reduces to:

−1
g

≈ mkF

4π2ℏ2

∫ ϵ̄

−ϵ̄

dη

(η2 + ∆2)1/2 , (22)

where ϵ̄ is an energy cut–off chosen of the order of µ.
d) Conclude as to the expression for the gap in the BCS regime:

∆ ≈ 2 ϵ̄ exp
(

− π

2kF |a|

)
, (23)

and confirm the validity of the assumption ∆ ≪ µ.
Hint: d[arcsinh(u)]/du = 1/(1 + u2)1/2.

25. Explain why reaching the superfluid regime in the BCS limit with ultracold Fermi gases is a particularly chal-
lenging goal for experimentalists.

*
* *

The approximate approach suggested in question 24 provides the correct exponent in Eq. (23), but not the correct
prefactor (the prefactor in Eq. (23) depends on the value of the energy cut–off). The more elaborate approach required
to obtain the correct prefactor is briefly sketched e.g. in Ref. [2, Sec. 26.5.2].

Further reading
Introductory

• Sà de Melo’s popularisation article [3] gives a brief overview of the BEC–BCS crossover in ultracold Fermi gases, and mentions the
current related hot topics.

• The (long but accessible) review article by Zwierlein and Ketterle [1] provides an excellent overview of the theory and experiments
on ultracold Fermi gases. The BEC–BCS crossover is reviewed in §4.4–4.12, including a discussion of finite–temperature effects.

More advanced

• Reference [4, chap. 4] gives an extremely clear and detailed presentation of the BCS theory in the context of condensed–matter
systems, including a brief description of the fermionic Josephson effect.

• The link between BCS theory and superconductor phenomenology (Meissner effect, SQUIDs, . . . ) is presented in Ref. [5, chap. 10].

This problem is directly inspired from Ref. [1, Secs. 4.3–4.5] and Ref. [4, chaps. 4 & 5].
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