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1 The virial theorem

We consider the following Hamiltonian describing a single quantum particle in three–dimensional space:

H =
p2

2m
+ V (r) , (1)

where r is the position of the particle, p its conjugate momentum, and m its mass. The operator V (r) is the external
trapping potential. Our aim is to obtain a relation between the expectation values, calculated in a stationary state of
H, of the kinetic and potential energies under a hypothesis on the behaviour of V (r) under scaling transformations.
Specifically, we assume that the potential energy is a homogeneous function of degree α:

For any real number λ, V (λr) = λα V (r) . (2)

1. We consider a stationary state |Φ〉 of H.

a) Show that, for any operator T , the expectation value 〈Φ| [H,T ] |Φ〉 of the commutator [H,T ] is equal to 0.

b) We now assume that T is a hermitian operator, and interpret it as the generator for a continuous unitary
transformation1 Uν indexed by ν. In other words:

For small ν, Uν = 1− iν T . (3)

Calculate the expectation value 〈Φ|(1 + iν T )H(1− iν T )|Φ〉 up to first order in ν, and interpret the property
of question 1a in terms of the stationarity of the energy E[Ψ] associated with Schrödinger’s equation,

E[Ψ] = 〈Ψ|H|Ψ〉 =

∫
d3r

(
− h̄2

2m
Ψ∗∇2Ψ + V (r) |Ψ(r)|2

)
, (4)

near the stationary state Ψ(r) = Φ(r).

We now focus on scaling transformations. We introduce the transformation Uν , which maps the wavefunction Ψ(r)
onto the wavefunction Ψν(r), defined by:

Ψν(r) = 〈r|Uν |Ψ〉 = (1 + ν)3/2 Ψ((1 + ν)r) . (5)

2. Two properties of the transformation Uν :

a) Prove that Uν is a unitary transformation.

b) Show that the corresponding generator is S = −(r · p + p · r)/(2h̄), meaning that:

Ψν(r) = Ψ(r) + iν
r · p + p · r

2h̄
Ψ(r) . (6)

3. Proof of the virial theorem:

a) Calculate the commutator [H,S]:

[H, S ] = [H, −p · r + r · p
2h̄

] = i

[
2
p2

2m
− (r · ∇)V (r)

]
. (7)

1For example, for translations along x, T = px/h̄ and ν = x; for rotations of angle θ about the axis ez , T = Jz/h̄ is the projection of the
angular momentum along z and ν = θ.
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b) Recast the homogeneity property of Eq. (2) into the form: (r · ∇)V (r) = αV (r).

c) Using questions 1a, 3a, and 3b, show that the expectation values, calculated in the stationary state |Φ〉, of
the kinetic energy and the potential energy satisfy:

2 〈Φ| p
2

2m
|Φ〉 = α 〈Φ|V (r)|Φ〉 . (8)

4. Applications of the virial theorem:

a) For a three–dimensional harmonic oscillator (which is not necessarily isotropic), show that the virial theo-
rem states the equipartition of the total energy of any stationary state between the kinetic energy and the
potential energy: 〈Φ|p2/(2m)|Φ〉 = 〈Φ|V (r)|Φ〉.

b) For the hydrogen atom, we consider a discrete stationary state |φn,l,m〉 with the energy En,l,m, labelled by
the principal, angular, and magnetic quantum numbers n, l, m. Show that the expectation value of the
kinetic energy only depends on n:

〈φn,l,m|
p2

2m
|φn,l,m〉 = −En,l,m = +

Ry

n2
, (9)

where the Rydberg energy Ry = 13.6 eV = h× 3.28× 1015 Hz is the ionisation energy.

Further reading
• More details concerning continuous symmetry groups and their generators may be found in [1, chap. XIV, §9]. Reference [2, chap. 10]

provides a more mathematically–oriented (but accessible) presentation.

• The virial theorem is not specifically quantum–mechanical. It also holds in classical mechanics, where the average is performed over
time [3, §3.4]. An alternate derivation of the quantum–mechanical result may be given which closely follows the classical argument
[4, chap. 3, §6]. It involves interpreting the result of question 1a in terms of the time–derivative of the expectation value 〈p · r〉.
However, it obfuscates both the stationary nature of the quantum result and the key role of scaling transformations.

• The quantum virial theorem may also be formulated in the context of the Gross–Pitaevskii equation [5, §11.3] There, the variational
principle of question 1b is very useful.

• The virial theorem plays a key role in the statistical physics of gases because of its relation to the virial expansion [6, exercise 7.6
and chap. 10]. The link resides in the following equation, valid for a uniform gas described by classical or quantum physics:

3

2

PV

〈K〉
= 1 +

〈
∑

i ri · dpi/dt〉
2 〈K〉

, (10)

where P is the pressure, V is the total volume occupied by the gas, and 〈K〉 is the average kinetic energy (which reduces to 3NkBT/2
for N classical particles). Inside the average on the right–hand side of Eq. (10), the sum is taken over all particles in the system,
whose positions and momenta are ri and pi. In the classical limit, and assuming the particles do not interact with each other,
Eq. (10) reduces to the ideal gas law. The virial expansion characterises the deviation from the ideal case: it consists in expanding
the fraction on the right–hand side of Eq. (10) in increasing powers of the density n = N/V .
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Figure 1 The contours C+ and C− in the complex plane used
in Eq. (14). Both are parallel to the real axis and infinitesimally
close to it. The contour C+ is slightly above the real axis and
oriented from right to left; C− is slightly below the real axis and
oriented from left to right.

2 Perturbation theory using the resolvent and projection operators

2.1 Evolution and resolvent operators

We consider a quantum system described by the Hamiltonian H. We introduce the resolvent operator G(z), which is
a function of the complex number z (homogeneous to an energy) defined by:

G(z) =
1

z −H
. (11)

1. Recall the link between the bound states and continuous spectrum of H on the one hand, and the poles and
branch cut of G on the other hand. Show the poles and the branch cut of G on a sketch of the complex plane.

We now turn to the evolution operator associated with H, which is a function U(t) of the time t, defined by:

U(t) = exp(−iH t/h̄) (12)

2. Show that G(z) may be obtained from U(t) through the following relation:

G(z) = − i
h̄

∫ η∞

0

eizt/h̄ U(t) dt , where η = sign(Im z) is the sign of the imaginary part of z. (13)

Hint: Introduce a basis of states in which H is diagonal.

The inverse transformation, expressing U(t) in terms of G(z), requires more care. We call C+ the (open) contour in
the complex plane which is parallel to the real axis and goes from +∞+ i0+ to −∞+ i0+, from right to left. Similarly,
we call C− the (open) contour which is parallel to the real axis and goes from −∞− i0+ to +∞− i0+, from left to
right. The contours C+ and C− are both shown on Fig. 1.

3. Show the following relations by completing C+ and C− into two different closed contours in the complex plane:

θ(t)e−iHt/h̄ =

∫
C+

dz

2πi
e−izt/h̄

1

z −H
and θ(−t)e−iHt/h̄ =

∫
C−

dz

2πi
e−izt/h̄

1

z −H
, (14)

where θ(t) is the Heaviside step function: θ(t) = 0 for t < 0 and θ(t) = 1 for t > 0.

4. Combining the two parts of Eqs. (14), conclude as to the reciprocal transformation of Eq. (13):

U(t) = −
∫ +∞

−∞

dE

2πi
e−iEt/h̄

[
G(E + i0+)−G(E − i0+)

]
. (15)

2.2 Projection operators, linewidths and shifts

We write H = H0 + V , all three operators in this equality being hermitian. We introduce a projector P (that is, a
linear operator satisfying P 2 = P ) which is orthogonal (i.e. hermitian: P † = P ) and commutes with H0: PH0 = H0P .
We call Q = 1− P the projector on the supplementary subspace.

5. Show that PH0Q = QH0P = 0, meaning that H0 has no “off–diagonal” elements in terms of P and Q.

6. Establish the following two identities:

P (z −H)PG(z)P − PV QG(z)P = P and −QV PG(z)P +Q(z −H)QG(z)P = 0 (16)

Hint: Start from the definition, (z−H)G(z) = 1, and think in terms of a matrix written by blocks corresponding to the

subspaces represented by P and Q. One relation represents a diagonal block and the other an off–diagonal block.
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7. Eliminate QGP between the two relations of Eq. (16) to obtain the key result:

PG(z)P = P
1

z − PHP −W (z)
P, where W (z) = PV Q

1

z −QHQ
QV P . (17)

On which Hilbert space or subspace does the operator W (z) operate?

We wish to calculate PU(t)P using Eq. (15). Therefore, we specialise Eq. (17) to the two important cases z = E±i0+.
We recall the following identity relating the Cauchy principal value P to the Dirac peak δ:

1

u± i0+
= P

1

u
∓ iπδ(u) . (18)

8. Justify the following relation between operators:

1

E −QHQ± i0+
= P

1

E −QHQ
∓ iπδ(E −H) . (19)

9. Write W (E± i0+) = ∆(E)∓ iΓ(E)/2 in terms of the shift operator ∆(E) and the linewidth Γ(E), both of which
depend on E and are Hermitian:

∆(E) = PV QP
1

E −QHQ
QV P and Γ(E) = 2π PV Q δ(E −QHQ)QV P . (20)

Check that Γ(E) is a positive operator: its average in any state |ψ〉 satisfies 〈ψ|Γ(E)|ψ〉 ≥ 0.

10. Justify that the expansions W̃ (z), ∆̃(E), Γ̃(E) of W (z), ∆(E), and Γ(E) to second order in V are obtained by
replacing QHQ by H0 in Eq. (20):

W̃ (z) = PV Q
1

z −H0
QV P, ∆̃(E) = PV QP

1

E −H0
QV P, Γ̃(E) = 2π PV Q δ(E −H0)QV P . (21)

2.3 The case where P projects onto a single eigenstate of H0

From now on, we consider an eigenstate |φ0〉 of H0 with the energy E0. We choose the projector P which projects
onto the unidimensional subspace spanned by |φ0〉, that is, P = |φ0〉 〈φ0|. Then, the operators PG(z)P , W (z), ∆(E)
and Γ(E) reduce to the functions 〈φ0|G(z)|φ0〉, 〈φ0|∆(E)|φ0〉, and 〈φ0|Γ(E)|φ0〉. Equation (17) now reads:

〈φ0|G(z)|φ0〉 =
1

z − E0 − 〈φ0|V |φ0〉 − 〈φ0|W (z)|φ0〉
(22)

11. Explain why replacing W by a perturbative approximation in Eq. (22) yields an approximation for 〈φ0|G(z)|φ0〉
which is non–perturbative, in the sense that it amounts to summing over an infinite number of terms in the
perturbative expansion (but not over all terms).

Hint: Rewrite Eq. (22) as the sum of a geometric series, which you may then interpret diagramatically.

Our final step in this section is to highlight the link between ∆̃(E) and Γ̃(E). For that purpose, we now introduce
a full basis {|φa〉} in which the bare Hamiltonian H0 is diagonal: H0 =

∑
aEa |φa〉 〈φa|. The index a = 0 corresponds

to the eigenstate |φ0〉 related to the projector P = |φ0〉 〈φ0|, so that Q = 1− P =
∑
a6=0 |φa〉 〈φa|.

12. Express the approximate shift ∆̃(E) and linewidth Γ̃(E) in terms of the basis states {|φa〉}:

∆̃(E) = P
∑
a6=0

| 〈φa|V |φ0〉 |2

E − Ea
and Γ̃(E) = 2π

∑
a6=0

| 〈φa|V |φ0〉 |2δ(E − Ea) . (23)

13. Deduce from Eq. (23) that the displacement ∆̃(E) and the linewidth Γ̃(E) satisfy the following relation:

∆̃(E) =
1

2π
P

∫
dE′

Γ̃(E′)

E − E′
. (24)

Equation (24) expresses the Kramers–Kronig relation connecting the dissipative effect of the perturbation V (i.e.

the linewidth Γ̃(E) describing irreversible decay) to its reactive effect (i.e. the radiative shift ∆̃(E)).

14. In which other context have you encountered similar Kramers–Kronig relations?
Identify the common point shared by the two theories.
Hint: What is the theory underlying e.g. susceptibilities, refractive indices . . . etc.?
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Further reading
• A concise and rigorous presentation of the techniques associated with the resolvent may be found in Messiah’s book [1]: §15–17 in

chapter XVI, and §13 and §15 in chapter XXI, are especially relevant.
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