Manipulation des Interactions dans les Gaz Quantiques

David Papoular

Laboratoire de Physique Théorique et Modèles Statistiques

11 juillet 2011

LPTMS, Université Paris-Sud

Introduction: interactions in ultracold gases

A two-dimensional crystal of composite bosons

Microwave-induced Feshbach resonances

Summary

Introduction: Ultracold collision between two atoms

 Interaction modelled by the rotationally invariant potential V(r) whose range is b.

- For very low energies E = ħ²k²/m such that λ = 2π/k ≫ b: isotropic scattering
 Ψ_{s-wave}(r) ∝ sin[k(r - a)]/kr
 - where *a* is the scattering length.

• Effective interaction: $V_{\rm eff} = \frac{4\pi\hbar^2}{m} a \,\delta(r)$

Ultracold interaction properties are encoded in the single real number a.

Manipulation of interactions: Why?

 Bose–Einstein condensates
 Vary magnitude and sign of *a* → explore various
 behaviours of quantum gas.

2. Metrology

Cold collisions cause a change in the transition frequency: $\delta \nu \propto n(a_{\beta\beta} - a_{\alpha\alpha})$ (*n* = atomic density) Tune $(a_{\beta\beta} - a_{\alpha\alpha}) \rightarrow$ control clock shift.

3. Explore novel quantum phases (crystal of composite bosons)

Manipulation of interactions: Why?

3. Explore novel quantum phases (crystal of composite bosons)

Manipulation of interactions: Why?

3. Explore novel quantum phases (crystal of composite bosons)

Manipulation of interactions: How?

Feshbach resonances in a static magnetic field

Using a static B, tune the energy of a scattering state of the two atoms in one internal state to resonance with a bound state in a different internal state.

▶ Broad Feshbach resonances ($\Delta B \gtrsim 10G$) = valuable tools Example: ⁷Li: $B_{res} = 700 G$, $\Delta B = 200 G$

Introduction: interactions in ultracold gases

A two-dimensional crystal of composite bosons

Microwave-induced Feshbach resonances

Summary

Composite bosons in a heteronuclear Fermi mixture

Start from an ultracold gas of fermionic atoms containing two different species, e.g. ⁶Li and ⁴⁰K.

- Weakly bound ($|E_b| \lesssim k_{\rm B} \cdot 10 \,\mu{\rm K}$) and large: size $\sim 1000 \,{\rm \AA}$
- Long lifetime: ~ 1 s at densities 10¹³ atoms/cm³ due to Pauli repulsion between identical fermions.

Effective interaction between composite bosons

- ► Heavy atoms: 2D motion. Light atoms: 3D (2 × 3) or 2D (2 × 2) motion.
- Born–Oppenheimer approach.

Zero–range interaction between heavy and light fermions. Dilute: mean distance \overline{R} between dimers > molecular size κ_0^{-1} .

- $U_{2\times3}$ and $U_{2\times2}$ are repulsive.
- Functions of $\kappa_0 R$.

 κ_0 determined by scattering length a.

• Both potentials $\propto |\varepsilon_0| = \frac{\hbar^2 \kappa_0^2}{2m}$

• Competition with zero–point vibrations $\propto 1/M$.

Effective interaction between composite bosons

- ► Heavy atoms: 2D motion. Light atoms: 3D (2 × 3) or 2D (2 × 2) motion.
- Born–Oppenheimer approach.

Zero-range interaction between heavy and light fermions.

Dilute: mean distance \overline{R} between dimers > molecular size κ_0^{-1} .

- $U_{2\times3}$ and $U_{2\times2}$ are repulsive.
- Functions of κ₀R.
 κ₀ determined by scattering length *a*.
- Both potentials $\propto |\varepsilon_0| = \frac{\hbar^2 \kappa_0^2}{2m}$

• Competition with zero–point vibrations $\propto 1/M$.

Effective interaction between composite bosons

- ► Heavy atoms: 2D motion. Light atoms: 3D (2 × 3) or 2D (2 × 2) motion.
- Born–Oppenheimer approach.

Zero-range interaction between heavy and light fermions.

Dilute: mean distance \overline{R} between dimers > molecular size κ_0^{-1} .

- $U_{2\times3}$ and $U_{2\times2}$ are repulsive.
- Functions of κ₀R.
 κ₀ determined by scattering length *a*.
- Both potentials $\propto |\varepsilon_0| = \frac{\hbar^2 \kappa_0^2}{2m}$

• Competition with zero–point vibrations $\propto 1/M$.

Gas–Crystal phase diagram at T = 0

- Phase (gas or crystal) results from competition between repulsive interaction (∝ 1/m) and zero-point vibrations (∝ 1/M).
- Vary 2D density n and mass ratio M/m.
- Motion of heavy atoms is 2D.
 Motion of light atoms is 3D or 2D.
- Triangles and circles: Quantum Monte Carlo results.
- Dashed lines:
 harmonic/Lindemann
- Solid lines: low-n hard-disk limit.

Crystal expected for $M/m \gtrsim 100$ and appropriate densities.

Gas–Crystal phase diagram at T = 0

- Phase (gas or crystal) results from competition between repulsive interaction (∝ 1/m) and zero-point vibrations (∝ 1/M).
- Vary 2D density n and mass ratio M/m.

Crystal expected for $M/m \gtrsim 100$ and appropriate densities.

Two simple approaches to the phase diagram Assume crystal has hexagonal lattice (confirmed by QMC)

1. Harmonic/Lindemann approach: valid for all 2D densities

Evaluate RMS displacement l_0 of a dimer from lattice site. Lindemann criterion: crystal melts when $l_0 > \gamma d$ ($\gamma \approx 0.24$)

2. For very low densities, model dimers by hard spheres conserve dimer–dimer scattering length $a_{dd}(M/m)$ critical density: $n^{crit}(M/m) = 0.33/a_{dd}^2$ (Xing 1990)

Two simple approaches to the phase diagram Assume crystal has hexagonal lattice (confirmed by QMC)

1. Harmonic/Lindemann approach: valid for all 2D densities

Evaluate RMS displacement l_0 of a dimer from lattice site. Lindemann criterion: crystal melts when $l_0 > \gamma d$ ($\gamma \approx 0.24$)

2. For very low densities, model dimers by hard spheres conserve dimer–dimer scattering length $a_{dd}(M/m)$ critical density: $n^{crit}(M/m) = 0.33/a_{dd}^2$ (Xing 1990)

Gas–Crystal phase diagram at T = 0

- Phase (gas or crystal) results from competition between repulsive interaction (∝ 1/m) and zero-point vibrations (∝ 1/M).
- Vary 2D density n and mass ratio M/m.

Crystal expected for $M/m \gtrsim 100$

and appropriate densities.

1. Suggestion for a new experiment:

- Vary n by changing number of atoms
- Vertical optical lattice confines heavy atoms to 2D.
- To achieve 2x2 regime, add vertical optical lattice acting on light atoms.
- Horizontal optical lattice conveys effective mass M* to heavy atoms.

Use *e.g.* $\Lambda_{horizontal} = 250 \text{ nm}, M^* = 20M, a = 500 \text{ nm}$ to observe crystal.

 (theory) Devise a method to distinguish crystal and gas phases (for example, compare low-energy excitation spectra).

1. Suggestion for a new experiment:

- Vary n by changing number of atoms
- Vertical optical lattice confines heavy atoms to 2D.
- To achieve 2x2 regime, add vertical optical lattice acting on light atoms.

 Horizontal optical lattice conveys effective mass M* to heavy atoms.

Use *e.g.* $\Lambda_{horizontal} = 250 \text{ nm}, M^* = 20M, a = 500 \text{ nm}$ to observe crystal.

 (theory) Devise a method to distinguish crystal and gas phases (for example, compare low-energy excitation spectra).

1. Suggestion for a new experiment:

- Vary n by changing number of atoms
- Vertical optical lattice confines heavy atoms to 2D.
- To achieve 2x2 regime, add vertical optical lattice acting on light atoms.
- Horizontal optical lattice conveys effective mass *M** to heavy atoms.

Use *e.g.* $\Lambda_{horizontal} = 250 \text{ nm}, M^* = 20M, a = 500 \text{ nm}$ to observe crystal.

 (theory) Devise a method to distinguish crystal and gas phases (for example, compare low–energy excitation spectra).

1. Suggestion for a new experiment:

- Vary n by changing number of atoms
- Vertical optical lattice confines heavy atoms to 2D.
- To achieve 2x2 regime, add vertical optical lattice acting on light atoms.
- Horizontal optical lattice conveys effective mass *M** to heavy atoms.

Use *e.g.* $\Lambda_{horizontal} = 250 \text{ nm}$, $M^* = 20M$, a = 500 nm to observe crystal.

 (theory) Devise a method to distinguish crystal and gas phases (for example, compare low–energy excitation spectra).

Introduction: interactions in ultracold gases

A two-dimensional crystal of composite bosons

Microwave-induced Feshbach resonances

Summary

Manipulation of interactions: How?

Feshbach resonances in a static magnetic field

Using a static B, tune the energy of a scattering state of the two atoms in one internal state to resonance with a bound state in a different internal state.

▶ Broad Feshbach resonances ($\Delta B \gtrsim 10G$) = valuable tools Example: ⁷Li: $B_{res} = 700 G$, $\Delta B = 200 G$

Feshbach resonances in static *B* fields: Limitations

- 1. Resonances occur for fixed (often large) values of B.
- 2. Broad Feshbach resonances not available for all atoms.
- Examples: Feshbach resonances in

²³Na $\longrightarrow \Delta B = 1G$, $B_{\rm res} = 1200 \,\rm G$

⁸⁷Rb $\longrightarrow \Delta B = 0.2 \text{ G}, \quad B_{\text{res}} = 1000 \text{ G}$

 \rightarrow harder to use in experiments.

 \implies Look for another way to tune the scattering length.

Alternatives to Feshbach resonances in static B fields

Resonances in a static magnetic field

proposed by Verhaar et al. (1992), first observed by Ketterle (1998).

- RF magnetic field (Moerdijk & Verhaar 1996)
- optical electric field (Fedichev et al. 1996, add experiment)
- Manipulate existing FFRs using MW or RF magnetic fields (Thompson et al 2005, Zhang et al 2009, Kaufman et al 2009)

Our suggestion:

Microwave–Induced Feshbach resonances

- 2 bosonic alkali atoms in a given internal state collide in the presence of a microwave oscillating magnetic field.
- If ω is tuned correctly, coupling to a bound state corresponding to different internal atomic states.

A simple approach: the Two–Channel Model Replace with

$$a(\omega) = a_{bg} \left(1 + \frac{\Delta \omega}{\omega - \omega_{res}}\right)$$

Res. frequency: $\hbar\omega_{\rm res}^0 = \Delta E_{\rm hf} - |E_T|$ (energy of resonant bound state) Res. width: $\Delta\omega \propto \frac{\mu}{a_{\rm bg}} B_0^2 |\langle \Psi_{\rm closed} | S^+ | \Psi_{\rm open} \rangle|^2$

A simple approach: the Two–Channel Model Replace with

$$a(\omega) = a_{\rm bg} \left(1 + \frac{\Delta \omega}{\omega - \omega_{\rm res}}\right)$$

Res. frequency: $\hbar \omega_{\rm res}^0 = \Delta E_{\rm hf} - |E_T|$ (energy of resonant bound state)

Res. width:
$$\Delta \omega \propto \frac{\mu}{a_{\rm bg}} B_0^2 |\langle \Psi_{\rm closed} | S^+ | \Psi_{\rm open} \rangle|^2$$

 $\Delta \omega$ scales with B_0^2 . (So does a small shift on ω_{res} : $\omega_{\text{res}} = \omega_{\text{res}}^0 + \alpha B_0^2$)

Internal states for alkali atoms with nuclear spin 3/2

-2

-1

 m_{f}

► Two–atom states, σ^+ –polarised mw with $\hbar \omega \approx \Delta E_{\rm hf}$ connecting $| bb \rangle$ to $| ab \rangle$

Beyond the two-channel model

Use realistic electronic potentials $V_S(r)$ and $V_T(r)$, which depend on total electronic spin S ($S = s_1 + s_2$) \rightarrow spin recoupling:

ATOMS CLOSE TOGETHER:

The two electronic spins couple together.

ATOMS FAR APART:

The electronic spin of each atom couples with its nuclear spin.

 $|V_T(r) - V_S(r)| \gg V_{\text{hyperfine}}$

 $|V_T(r) - V_S(r)| \ll V_{\text{hyperfine}}$

Accounted for in the coupled-channel method.

Modelling the interaction between two alkali atoms $H = \frac{p^2}{2\mu} + \underbrace{V_{el}(r)}_{V_S P_S + V_T P_T} + \underbrace{V_{hf}}_{a_{hf}(s_1 \cdot l_1 + s_2 \cdot l_2)} + \underbrace{\hbar \omega \ a^{\dagger} a}_{photon \ en^{sites}} + \underbrace{W^{\sigma^{\dagger}}}_{W_1 \ (S^+ a + S^- a^{\dagger})}$

8 coupled channels: *H* is an 8×8 matrix, |

 $\mathbf{\Psi}$) is an 8–comp. wavefunction.

Modelling the interaction between two alkali atoms

8 coupled channels: *H* is an 8×8 matrix,

 $| oldsymbol{\Psi}
angle$ is an 8–comp. wavefunction.

Modelling the interaction between two alkali atoms $H = \frac{p^2}{2\mu} + \underbrace{V_{el}(r)}_{V_S P_S + V_T P_T} + \underbrace{V_{hf}}_{a_{hf}(s_1 \cdot i_1 + s_2 \cdot i_2)} + \underbrace{\hbar \omega \ a^{\dagger} a}_{photon \ en^{sites}} + \underbrace{W^{\sigma^{\dagger}}}_{W_1 \ (S^+ a + S^- a^{\dagger})}$

8 coupled channels: *H* is an 8 \times 8 matrix, $|\Psi\rangle$ is an 8–comp

Modelling the interaction between two alkali atoms $H = \frac{p^2}{2\mu} + \underbrace{V_{el}(r)}_{V_S P_S + V_T P_T} + \underbrace{V_{hf}}_{a_{hf}(s_1 \cdot i_1 + s_2 \cdot i_2)} + \underbrace{\hbar \omega \, a^{\dagger} a}_{photon \, en^{gies}} + \underbrace{W_{\tau}^{\sigma^+}}_{W_1 \, (S^+ a + S^- a^{\dagger})}$

8 coupled channels: *H* is an 8 \times 8 matrix, $|\Psi\rangle$ is an 8–comp. w

Modelling the interaction between two alkali atoms $H = \frac{p^2}{2\mu} + \underbrace{V_{el}(r)}_{V_S P_S + V_T P_T} + \underbrace{V_{hf}}_{a_{hf}(s_1 \cdot i_1 + s_2 \cdot i_2)} + \underbrace{\hbar\omega a^{\dagger} a}_{photon en^{gies}} + \underbrace{W_{\tau}^{\sigma^+}}_{W_1(S^+a + S^-a^{\dagger})}$

e_z B

8 coupled channels: *H* is an 8×8 matrix,

 $|\Psi\rangle$ is an 8–comp. wavefunction.

8 coupled channels: *H* is an 8×8 matrix,

 $|\Psi\rangle$ is an 8–comp. wavefunction.

8 coupled channels: *H* is an 8×8 matrix,

 $|\Psi\rangle$ is an 8–comp. wavefunction.

How do we calculate multichannel wavefunctions? I use my own C++ implementation of the coupled-channel method.

- Inputs: electronic pots. V_S, V_T for r ≥ 20a₀ and scattering lengths a_S, a_T.
- Encode small—r Physics in "Accumulated Phase" boundary condition at finite r₀ [Verhaar *et al.*, PRA 2009].
 - Large-r boundary condition: atoms in relevant mw-dressed state.
 - Solve coupled Schrödinger equations numerically.
 One trick: take advantage of spin recoupling.

The coupled-channel approach:

Results

		⁷ Li	²³ Na	⁴¹ K	⁸⁷ Rb	¹³³ Cs
<i>E_b</i> / <i>h</i>	(MHz)	12000	200	140	25	$5 \cdot 10^{-3}$
$\omega_{ m res}^0/2\pi$	(GHz)	12	1.6	0.12	6.8	9.2
$\Delta \omega_{\rm CC}/2\pi$	(Hz/G^2)	6	1400	350	60	-6 · 10 ⁹

Narrow $\Delta \omega$ for ⁷Li due to no weakly–bound state in closed channel.

Narrow $\Delta \omega$ for ⁸⁷Rb due to $a_T = 99 a_0$ being very close to $a_S = 90 a_0$.

¹³³Cs: very weakly–bound state \rightarrow non–hyperbolic resonance for $B_0 \gtrsim 4 \text{ mG}$.

SYRTE's static-field resonances in Cesium 133

• Atoms in $|f_1 = 4, m_1 = 0\rangle \& |f_2 = 3, M_F\rangle, M_F = 1, 2, \text{ or } 3.$

Measured at SYRTE

Calculated (coupled channels)

• Due to *s*-wave triplet bound state with $|E_T| = h \cdot 5 \text{ kHz}$.

▶ 3 triplet 2-atom states in $(f_1 = 4, f_2 = 3, M_F = 2) \rightarrow 3$ peaks.

	-11 ± 5					
	2.7		4.0			
	5.1		7.2		4.2	
18 ± 3	16.5	25	22	5 ± 1	5.5	

SYRTE's static-field resonances in Cesium 133

• Atoms in $|f_1 = 4, m_1 = 0\rangle \& |f_2 = 3, M_F\rangle$, $M_F = 1, 2, \text{ or } 3$.

Measured at SYRTE Calculated (coupled channels) 0.4 - m. = 2 scattering length a [1000 a₀] 0- -5 - -5 - -5 0.2 0.0 Re(a) -0.2 Im(a) -0.6 -0.8 -1.0- $M_{E}=2$ -15 -60 -40 -20 0 B (mG) 40 60 80 100 -20 0 20 40 Static magnetic field B [mG]

- Due to *s*-wave triplet bound state with $|E_T| = h \cdot 5 \text{ kHz}$.
- ▶ 3 triplet 2-atom states in $(f_1 = 4, f_2 = 3, M_F = 2) \rightarrow 3$ peaks.

Resonance positions <i>B</i> _{res} [mG]						
$M_F = 1$		M _F	= 2	$M_F = 3$		
measured	calculated	measured	calculated	measured	calculated	
	-11 ± 5					
	2.7		4.0		3.0	
	5.1	8	7.2		4.2	
18 ± 3	16.5	25	22	5 ± 1	5.5	

A giant MW-induced resonance in Cesium

▶ $B_0 \lesssim 1 \text{ mG}$: hyperbolic resonance with $\Delta \omega / 2\pi = 6 \text{ GHz} / G^2$

Larger values of B₀: non–hyperbolic resonance.

Dressed-state effects important for $B_0 \gtrsim |E_T|/\mu_{\rm B} = 4 \, {\rm mG}$

Lowest–energy dressed state is different for $\delta < 0$ and $\delta > 0$ \rightarrow different scattering lengths.

A giant MW-induced resonance in Cesium

- ▶ $B_0 \lesssim 1 \text{ mG}$: hyperbolic resonance with $\Delta \omega / 2\pi = 6 \text{ GHz} / G^2$
- ► Larger values of *B*₀: non–hyperbolic resonance.

Dressed-state effects important for $B_0 \gtrsim |E_T|/\mu_B = 4 \text{ mG}$

Lowest–energy dressed state is different for $\delta < 0$ and $\delta > 0$ \rightarrow different scattering lengths.

MW-induced resonances: Conclusion and Outlook

		⁷ Li	²³ Na	⁴¹ K	⁸⁷ Rb	¹³³ Cs
$\Delta \omega/2\pi$	(Hz/G^2)	6	1400	350	60	$-6 \cdot 10^{9}$

• Realistic mw amplitudes: $B_0 \lesssim 10 \,\mathrm{G}$

Optimistic prospects for experiments with Na, K, Rb, Cs.

- Wide resonance in ¹³³Cs: width $\sim 5 \text{ kHz}$ for $B_0 = 1 \text{ mG}$. Observable in a Cesium fountain clock.
- Our scheme can be transposed to fermionic atoms and heteronuclear mixtures.
- It can be used to tune the interaction in spinor gases.
- It can be used to improve control over clock shifts.

Manipulation of Interactions in Quantum Gases

A new way to manipulate interactions:

microwave-induced Feshbach resonances

[PRA 81, 041603(R) (2010)]

One novel quantum phase:
 2D crystal of composite bosons
 [PRL 99, 130407 (2007)]

Thanks to G. Shlyapnikov, J. Dalibard, C. Salomon, D. Petrov, S. Bize, P. Rosenbusch.