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Introduction: interactions in ultracold gases

A two—dimensional crystal of composite bosons

Microwave—induced Feshbach resonances

Summary



Introduction: Ultracold collision between two atoms

» Interaction modelled by the
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» Effective interaction:

distance r

attractive
Van der Waals tail

For very low energies E = h?k?/m
such that A\ = 27 /k > b: isotropic scattering

ws—wave(r) X sin[k(r - a)]/kr
where a is the scattering length.

A2
Veff - Ta(S(I’)

Ultracold interaction properties are encoded in the single real number a.



Manipulation of interactions: Why?

1. Bose—FEinstein "Attractive" "Perfect Gas" "Repulsive"
a<0 a=0 a>0
condensates <€ ! >
BEC collapses BEC is stable

Vary magnitude and sign of a R

— explore various
behaviours of quantum gas.

Cornell
&
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(Nature 2001) (Science 1995)
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9.2 GHz change in the transition frequency:

(Cesium)
dv o n(ags — @w) (n= atomic density)

Tune (asg — @na) — control clock shift.
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3. Explore novel quantum phases (crystal of composite bosons)



Manipulation of interactions: How?
Feshbach resonances in a static magnetic field

» Using a static B, tune the energy of
a scattering state of the two atoms in one internal state
to resonance with a bound state in a different internal state.
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» Broad Feshbach resonances (AB 2 10G) = valuable tools
Example: 'Li: Bes=700G, AB=200G
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A two—dimensional crystal of composite bosons



Composite bosons in a heteronuclear Fermi mixture

scattering length a

» Star
cont

a>0
composite bosons

|

t from an ultracold gas of fermionic atoms
aining two different species, e.g. °Li and 4°K.

Feshbach resonance

» Using a Feshbach resonance,

tune scattering length to a > 0

O — bosonic °Li—*°K dimers appear.

BCS
a<0
[ ]

Bes magnetic field B

» Weakly bound (|Ep| < ks - 10 1K) and large: size ~ 1000 A

» Long lifetime:  ~ 1s  at densities 10" atoms/cm?3
due to Pauli repulsion between identical fermions.



Effective interaction between composite bosons
» Heavy atoms: 2D motion. Light atoms: 3D (2 x 3) or 2D (2 x 2) motion.

» Born—Oppenheimer approach.
Zero—-range interaction between heavy and light fermions.
Dilute: mean distance R between dimers > molecular size ;.
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Effective interaction between composite bosons

>

Heavy atoms: 2D motion. Light atoms: 3D (2 x 3) or 2D (2 x 2) motion.

Born—Oppenheimer approach.
Zero—range interaction between heavy and light fermions.
Dilute: mean distance R between dimers > molecular size r; '
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Reduced distance KR between two dimers

» Competition with zero—point vibrations o 1/M.



Gas—Crystal phase diagramat 7 =0

» Phase (gas or crystal) results from competition between
repulsive interaction (oc 1/m) and zero—point vibrations (< 1/M).

» Vary 2D density n and mass ratio M/m.
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» Phase (gas or crystal) results from competition between
repulsive interaction (oc 1/m) and zero—point vibrations (< 1/M).

» Vary 2D density n and mass ratio M/m.
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Two simple approaches to the phase diagram

Assume crystal has hexagonal lattice  (confirmed by QMC) T -

1. Harmonic/Lindemann approach: valid for all 2D densities
0.4

Nearest neighbours
5 rings of neighbours

First, assume crystalline phase:
Hharm = Z Ty al», ay,
K

M K :IF
k
Evaluate RMS displacement [, of a dimer from lattice site.

Lindemann criterion: crystal melts when [y > ~vd  (y ~ 0.24)



Two simple approaches to the phase diagram

Assume crystal has hexagonal lattice  (confirmed by QMC) R

1. Harmonic/Lindemann approach: valid for all 2D densities
0.4

Nearest neighbours
5 rings of neighbours

First, assume crystalline phase:

Hharm - Z heoy, al», =
K

M K ﬁl"
Evaluate RMS displacement [, of a dimer from lattice site.
Lindemann criterion: crystal melts when [y > ~vd  (y ~ 0.24)

2. For very low densities, model dimers by hard spheres
conserve dimer—dimer scattering length aqy(M/m)
critical density:  n{(M/m) = 0.33/a4,°> (Xing 1990)



Gas—Crystal phase diagramat 7 =0

» Phase (gas or crystal) results from competition between
repulsive interaction (oc 1/m) and zero—point vibrations (< 1/M).

» Vary 2D density n and mass ratio M/m.

@ Motion of heavy atoms is 2D.
Motion of light atoms is 3D or 2D.

@ Triangles and circles:
Quantum Monte Carlo results.

@ Dashed lines:
harmonic/Lindemann

@ Solid lines: low—n hard—disk limit.
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Composite bosons: Prospects
1. Suggestion for a new experiment:

» Vary n by changing number of atoms

» Vertical optical lattice confines

. heavy atoms to 2D.
waist
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Composite bosons: Prospects
1. Suggestion for a new experiment:

» Vary n by changing number of atoms

» Vertical optical lattice confines
heavy atoms to 2D.

Heavy atoms

in 2D plane " To achieve 2x2 regime, add vertical

optical lattice acting on light atoms.

» Horizontal optical lattice conveys
effective mass M* to heavy atoms.

lliqht

Use e.9. Aporizontas = 250nm, M*=20M, a=500nm to observe crystal.

2. (theory) Devise a method to distinguish crystal and gas phases
(for example, compare low—energy excitation spectra).
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Microwave—induced Feshbach resonances



Manipulation of interactions: How?
Feshbach resonances in a static magnetic field

» Using a static B, tune the energy of
a scattering state of the two atoms in one internal state
to resonance with a bound state in a different internal state.
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» Broad Feshbach resonances (AB 2 10G) = valuable tools
Example: 'Li: Bes=700G, AB=200G



Feshbach resonances in static B fields: Limitations

1. Resonances occur for fixed (often large) values of B.

2. Broad Feshbach resonances not available for all atoms.

» Examples: Feshbach resonances in
2Na — AB=1G, Bs = 1200G
8Rb — AB=02G, B.=1000G
— harder to use in experiments.

— Look for another way to tune the scattering length.



Alternatives to Feshbach resonances in static B fields

Resonances in a static magnetic field
proposed by Verhaar et al. (1992), first observed by Ketterle (1998).

» RF magnetic field
(Moerdijk & Verhaar 1996)

» optical electric field
(Fedichev et al. 1996, add experiment)

» Manipulate existing FFRs using MW or RF magnetic fields
(Thompson et al 2005, Zhang et al 2009, Kaufman et al 2009)



Our

suggestion:

Microwave—Induced Feshbach resonances

» 2 bosonic alkali atoms in a given internal state collide in
the presence of a microwave oscillating magnetic field.

Energy E

» If w is tuned correctly, coupling to a bound state
corresponding to different internal atomic states.

[f;, 1=

/’_l [i+1/2,i+1/2]

iAE

\MF=2i

Mp=2i
weakly bound state

[i+1/2,i-1/2]
iclosed channel
i AEy

zero-energy :
scattering state

[i-1/2,i-1/2]
open channel

Relative distance r

a(w ) = abackground(‘I +

scattering length a

w

Resonance =

width Aw =
................... ;.......é..........
T . background
Magnetic field
frequency w
. wres
Aw

— Wres



A simple approach: the Two—Channel Model

Energy E

Replace
[fy, f]=

/—j[i+1/2,i+1/2]
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PhOton  Jerg energy :

scattering state ¢

[i-1/2,i-1/2]
open channel

Relative distance r
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A simple approach: the Two—Channel Model

Replace
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Internal states for alkali atoms with nuclear spin 3/2

5 h o] e C a
» Single—atom states
for 7Li, 23Na, 87Rb 1 T~ "4 b
l l l l l
-2 -1 0 1 2 Mg
» Two—atom states, oT—polarised mw with hw ~ AEy;

connecting | bb ) to |ab)

[flifZ]
[2 2]A ........... ahcgee| ag ce |ae cc|
(127].|bg cf de | af be cd|ad be | ab ABnr
AEn¢
[1,1] , ............ T R TS .
0 1 Mg




Beyond the two—channel model

Use realistic electronic potentials Vs(r) and Vr(r), which
depend on total electronic spin S (S = s + s2) — spin recoupling:

ATOMS CLOSE TOGETHER:

The two electronic spins
couple together.

T
............

.
‘e

|VT(r) - VS(r)’ > Vhypcrﬁnc

ATOMS FAR APART:

The electronic spin of each atom
couples with its nuclear spin.

-----------
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.......

_ .
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‘e, % HR
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0 3
g
s

‘VT(r) - Vs(f)| < Vhypcrﬁnc

Accounted for in the coupled—channel method.



Modelling the interaction between two alkali atoms

H=E + + +



Modelling the interaction between two alkali atoms
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Modelling the interaction between two alkali atoms

H= + + Vi + +
~~

ant (81 i1 + 82 - i2)
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Modelling the interaction between two alkali atoms

_ i
H= + + + hwa'a +

photon engies
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Modelling the interaction between two alkali atoms

ot
H= + + + + %
w; (S+a+ S_aT)




Modelling the interaction between two alkali atoms

2
p + +
H= Va(r Vie hw a'a We
2u+ a(r)  + i + . +
VS Ps + VT PT ant (51 : ii + Sz - i2) phOtOﬂ ensies W1 (S+a+ S_aT)
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Modelling the interaction between two alkali atoms

2
p .
H="— Via(r Vie hwa'a we
ot X))+ U G R w_
Vs Ps+ Vr Pr an (S1 -1 +s2-ip)  photon en# Wi (Sta+S-al)

8 coupled channels: His an 8 x 8 matrix, |¥ ) is an 8—comp. wavefunction.



How do we calculate multichannel wavefunctions?
| use my own C++ implementation of the coupled—channel method.

» Inputs: electronic pots. Vs, V1 for r 2 20ag
and scattering lengths ag, ar.

22000 Coupled channels

» Encode small-r Physics in v

“Accumulated Phase” boundary condition Vso-Velo)
6000 1 L

at finite ry  [Verhaar et al., PRA 2009]. 15 3 45

Interatomic distance r (ag)

Electronic potentials (h-1GHz)

Decoupled MW-dressed states

» Large—r boundary condition:
atoms in relevant mw—dressed state.

» Solve coupled Schrédinger equations numerically.
One trick: take advantage of spin recoupling.

Output: Multichannel wavefunction | ¥ ) for relative motion of two atoms.
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100
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Scattering length a (a)
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The coupled—channel approach: Results
15 - 8 0
] Resonance width Aw/(2m) Resonance shift (0,,-®" /27
L = 1 St 5
B(=0.25G € g
= g 24
B,=1G background 30.5 E
\ BNg E . et BNa o - BNa
-10 0 0 10 20 15 30 0 15 30
Frequency (-0, )/27 (kHz) Amplitude B, (G) Amplitude By (G)
Li 2Na | 1K 87Rb 133CS
|Ep|/h (MHz) | 12000 | 200 | 140 | 25 | 5-10°°
W0 /2x  (GHz) | 12 | 16 |012| 68 | 92
Awce/2m  (Hz/G?) 6 1400 | 350 | 60 | —6-10°

Narrow Aw for “Li due to no weakly—bound state in closed channel.

Narrow Aw for 8Rb due to ar = 99 ag being very close to as = 90 ag.

133Cs: very weakly—bound state — non—hyperbolic resonance for By > 4 mG.



SYRTE’s static—field resonances in Cesium 133
» Atomsin |fi =4,m =0) & |b =3,Mr), Mr=1,2, or 3.
Measured at SYRTE
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SYRTE’s static—field resonances in Cesium 133
» Atomsin |fi =4,my =0) & | o =3,Mg), Mr=1,2, or 3.

Measured at SYRTE

04

10

Calculated (coupled channels)

M.

AR

Scattering length a [1000 aj]

Cs

M=2

60 40 20

pmd 40 € 8 100 20

0 2
Static magnetic field B [mG]

» Due to s—wave triplet bound state with |[E7| = h- 5kHz.

> 3 triplet 2—atom states in (f; = 4,f» = 3,Mr = 2) — 3 peaks.

40

Resonance positions Bies [MG]

Mg =1 Mg =2 Mg =3
measured | calculated measured | calculated measured | calculated
—-114+£5
2.7 4.0 3.0
51 8 7.2 4.2
18+ 3 16.5 25 22 541 5.5




A giant MW-induced resonance in Cesium

10 "

0.1mG

Scattering length a
S

133

ImG}

) Cs

-0.04

-0.02 0
Frequency detuning & (MHz)
» By < 1mG: hyperbolic resonance with Aw/27 = 6 GHz/ G?



A giant MW-induced resonance in Cesium

10

0.1mG

Scattering length a
S

-10

.,

“, ImG}
5mG3

133

Cs

-0.04

-0.02

Frequency detuning 8 (MHz)
» By < 1mG: hyperbolic resonance with Aw /27 = 6 GHz/G?
» Larger values of By: non—hyperbolic resonance.

Me=2i+1"",
6>0

[Es|

10

Scattering length a
o

—
S)

133

Cs

0
Frequency detuning & (MHz)

BO z ’ET’/,U/B =4mG

Dressed—state effects important for

Lowest—energy dressed state is
different for 6 < 0Oand ¢ > 0
— different scattering lengths.



MW-induced resonances: Conclusion and Outlook

7Li 23Na 5] K 87Rb 133CS
Aw/2m (HZ/GZ) 6 | 1400 | 350 | 60 —6-10°

v

Realistic mw amplitudes: By < 10G

Optimistic prospects for experiments with Na, K, Rb, Cs.

v

Wide resonance in 33Cs:  width ~ 5kHz for By = 1 mG.

Observable in a Cesium fountain clock.

v

Our scheme can be transposed to
fermionic atoms and heteronuclear mixtures.

v

It can be used to tune the interaction in spinor gases.

v

It can be used to improve control over clock shifts.



Manipulation of Interactions in Quantum Gases

M ' ' -
" ‘i S » One novel quantum phase:
0 . 2D crystal of composite bosons
AN 2x3, y=0.24
B pageom [PRL 99, 130407 (2007)]
s a. ) TR &
2 .‘;;7!7>7>>§—
1%.00 0.05 0.10 0.15 0.20 0.25
nK’ e MFp=2i [ 1=
2 \ _—li+12i+1/72]
H EAE A
» A new way to manipulate interactions:
g [\i+lé2'{1-1/2]I
microwave—induced Feshbach resonances g 0,
photon zert_)-energyé
[PRA 81, 041603(R) (2010)] IS [1/2,0-1/2]
open channel

Relative distance r

Thanks to  G. Shlyapnikov, J. Dalibard, C. Salomon,
D. Petrov, S. Bize, P. Rosenbusch.
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