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Introduction: Ultracold collision between two atoms

I Interaction modelled by the
rotationally invariant potential V (r)

whose range is b.
Range b
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I For very low energies E = ~2k2/m
such that λ = 2π/k � b: isotropic scattering

Ψs–wave(r) ∝ sin[k(r − a)]/kr

where a is the scattering length.

I Effective interaction: Veff =
4π~2

m
a δ(r)

Ultracold interaction properties are encoded in the single real number a.



Manipulation of interactions: Why?

1. Bose–Einstein
condensates

Vary magnitude and sign of a
−→ explore various

behaviours of quantum gas.

a=0
"Perfect Gas"

a>0

"Repulsive"

BEC is stable

a<0

"Attractive"

BEC collapses

Wieman
&

Cornell

(Nature 2001) (Science 1995)

2. Metrology
Cold collisions cause a

change in the transition frequency:

δν ∝ n (aββ − aαα) (n = atomic density)

Tune (aββ − aαα) −→ control clock shift.

3. Explore novel quantum phases (crystal of composite bosons)
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Manipulation of interactions: How?

Feshbach resonances in a static magnetic field
I Using a static B, tune the energy of

a scattering state of the two atoms in one internal state
to resonance with a bound state in a different internal state.

I Broad Feshbach resonances (∆B & 10G) = valuable tools
Example: 7Li: Bres = 700 G, ∆B = 200 G
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Composite bosons in a heteronuclear Fermi mixture
I Start from an ultracold gas of fermionic atoms

containing two different species, e.g. 6Li and 40K.

magnetic field B
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composite bosons

a<0
BCS

BEC

Feshbach resonance

Bres

I Using a Feshbach resonance,

tune scattering length to a > 0

−→ bosonic 6Li–40K dimers appear.

I Weakly bound (|Eb| . kB · 10µK) and large: size∼ 1000 Å

I Long lifetime: ∼ 1 s at densities 1013 atoms/cm3

due to Pauli repulsion between identical fermions.



Effective interaction between composite bosons

I Heavy atoms: 2D motion. Light atoms: 3D (2× 3) or 2D (2× 2) motion.

I Born–Oppenheimer approach.

Zero–range interaction between heavy and light fermions.

Dilute: mean distance R between dimers > molecular size κ−1
0 .

I U2×3 and U2×2 are repulsive.

I Functions of κ0R.
κ0 determined by scattering length a.

I Both potentials ∝ |ε0| = ~2κ0
2

2m

I Competition with zero–point vibrations ∝ 1/M.
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Gas–Crystal phase diagram at T = 0

I Phase (gas or crystal) results from competition between
repulsive interaction (∝ 1/m) and zero–point vibrations (∝ 1/M).

I Vary 2D density n and mass ratio M/m.

Motion of heavy atoms is 2D.
Motion of light atoms is 3D or 2D.

Triangles and circles:
Quantum Monte Carlo results.

Dashed lines:
harmonic/Lindemann

Solid lines: low–n hard–disk limit.

Crystal expected for M/m & 100 and appropriate densities.
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Up to a normalization constant, G!0
is the wave function of

a bound state of a single molecule with energy "0 !
"@2!2

0=2m and molecular size !"1
0 . From Eqs. (1) and

(2) one gets a set of N equations:
P

jAijCj ! 0, where
Aij ! ##!$$ij %G!#Rij$#1" $ij$, Rij ! jRi "Rjj, and
##!$ ! limr!0&G!#r$ "G!0

#r$'. The single-particle en-
ergy levels are determined by the equation

 det&Aij#!; fRg$' ! 0: (3)

For Rij ! 1, Eq. (3) gives an N-fold degenerate ground
state with ! ! !0. At finite large Rij, the levels split into a
narrow band. Given a small parameter

 % ! G!0
# ~R$=!0j#0

!#!0$j ( 1; (4)

where ~R is a characteristic distance at which heavy atoms
can approach each other, the bandwidth is !" ) 4j"0j% (
j"0j. It is important for the adiabatic approximation that all
lowest N eigenstates have negative energies and are sepa-
rated from the continuum by a gap *j"0j.

We now calculate the single-particle energies up to
second order in %. To this order we write !##$ ) !0 %
!0
##% !00

###
2=2 and turn from Aij#!$ to Aij##$:

 Aij ! #$ij % &G!0
#Rij$ % !0

##@G!0
#Rij$=@!'#1" $ij$;

(5)

where all derivatives are taken at # ! 0. Using Aij (5) in
Eq. (3) gives a polynomial of degree N in #. Its roots #i
give the light-atom energy spectrum "i ! "@2!2##i$=2m.
The total energy E ! PN

i!1 "i is then given by

 E!"#@2=2m$
!
N!2

0%2!0!0
#

XN

i!1

#i%#!!0
#$0#

XN

i!1

#2
i

"
: (6)

Keeping only the terms up to second order in % and using
basic properties of determinants and polynomial roots we
find that the first order terms vanish, and the energy reads
E ! N"0 % 1

2

P
i!jU#Rij$, where

 U#R$ ! " @2
m

!
!0#!0

#$2
@G2

!0
#R$

@!
% #!!0

#$0#G2
!0
#R$

"
: (7)

Thus, up to second order in % the interaction in the system
of N molecules is the sum of binary potentials (7).

If the motion of light atoms is 3D, the Green function is
G!#R$ ! #1=4&R$ exp#"!R$, and ##!$ ! #!0 " !$=4&,
with the molecular size !"1

0 equal to the 3D scattering
length a. Equation (7) then gives a repulsive potential

 U3D#R$ ! 4j"0j!1" #2!0R$"1" exp#"2!0R$=!0R; (8)

and the criterion (4) reads #1=!0R$ exp#"!0R$ ( 1. For
the 2D motion of light atoms we have G!#R$ !
#1=2&$K0#!R$ and ##!$ ! "#1=2&$ ln#!=!0$, where K0
is the decaying Bessel function, and !"1

0 follows from [6].
This leads to a repulsive intermolecular potential

 U2D#R$ ! 4j"0j&!0RK0#!0R$K1#!0R$ " K2
0#!0R$'; (9)

with the validity criterion K0#!0R$ ( 1. In both cases,
which we denote 2+ 3 and 2+ 2 for brevity, the validity
criteria are well satisfied already for !0R ) 2.

The Hamiltonian of the many-body system reads

 H ! "#@2=2M$
X
i
!Ri

% 1

2

X
i!j

U#Rij$; (10)

and the state of the system is determined by two parame-
ters: the mass ratio M=m and the rescaled 2D density n!"2

0 .
At a large M=m, the potential repulsion dominates over the
kinetic energy and one expects a crystalline ground state.
For separations Rij < !"1

0 the adiabatic approximation
breaks down. However, the interaction potential U#R$ is
strongly repulsive at larger distances. Hence, even for an
average separation between heavy atoms "R close to 2=!0,
they approach each other at distances smaller than !"1

0

with a small tunneling probability P / exp#"'
###########
M=m

p
$ (

1, where '* 1. We extended U#R$ to R & !"1
0 in a way

providing a proper molecule-molecule scattering phase
shift in vacuum and checked that the phase diagram for
the many-body system is not sensitive to the choice of this
extension.

Using the DMC method [11] we solved the many-body
problem at zero temperature. For each phase, gaseous and
solid, the state with a minimum energy was obtained in a
statistically exact way. The lowest of the two energies
corresponds to the ground state, the other phase being
metastable. The phase diagram is displayed in Fig. 1.
The guiding wave function was taken in the Nosanow-
Jastrow form [12]. Simulations were performed with 30
particles and showed that the solid phase is a 2D triangular
lattice. For the largest density we checked that using more
particles has little effect on the results.

For both 2+ 3 and 2+ 2 cases the (Lindemann) ratio (
of the rms displacement of molecules to "R on the transition

FIG. 1 (color online). DMC gas-crystal transition lines for 3D
(triangles) and 2D (circles) motion of light atoms. Solid curves
show the low-density hard-disk limit, and dashed curves the
results of the harmonic approach (see text).

PRL 99, 130407 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

130407-2

Crystal expected for M/m & 100 and appropriate densities.



Two simple approaches to the phase diagram
Assume crystal has hexagonal lattice (confirmed by QMC) d

1. Harmonic/Lindemann approach: valid for all 2D densities
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First, assume crystalline phase:

Hharm =
∑
κ

~ωκ a†κ aκ

Evaluate RMS displacement l0 of a dimer from lattice site.
Lindemann criterion: crystal melts when l0 > γ d (γ ≈ 0.24)

2. For very low densities, model dimers by hard spheres

conserve dimer–dimer scattering length add (M/m)

critical density: ncrit(M/m) = 0.33/add
2 (Xing 1990)
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Composite bosons: Prospects
1. Suggestion for a new experiment:

waist
w

Iheavy

Heavy atoms
in 2D plane

I Vary n by changing number of atoms

I Vertical optical lattice confines
heavy atoms to 2D.

I To achieve 2x2 regime, add vertical
optical lattice acting on light atoms.

I Horizontal optical lattice conveys
effective mass M∗ to heavy atoms.

Use e.g. Λhorizontal = 250 nm, M∗ = 20M, a = 500 nm to observe crystal.

2. (theory) Devise a method to distinguish crystal and gas phases
(for example, compare low–energy excitation spectra).
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Manipulation of interactions: How?

Feshbach resonances in a static magnetic field
I Using a static B, tune the energy of

a scattering state of the two atoms in one internal state
to resonance with a bound state in a different internal state.

I Broad Feshbach resonances (∆B & 10G) = valuable tools
Example: 7Li: Bres = 700 G, ∆B = 200 G



Feshbach resonances in static B fields: Limitations

1. Resonances occur for fixed (often large) values of B.

2. Broad Feshbach resonances not available for all atoms.

I Examples: Feshbach resonances in
23Na −→ ∆B = 1G, Bres = 1200 G
87Rb −→ ∆B = 0.2 G, Bres = 1000 G

−→ harder to use in experiments.

=⇒ Look for another way to tune the scattering length.



Alternatives to Feshbach resonances in static B fields

Resonances in a static magnetic field
proposed by Verhaar et al. (1992), first observed by Ketterle (1998).

I RF magnetic field
(Moerdijk & Verhaar 1996)

I optical electric field
(Fedichev et al. 1996, add experiment)

I Manipulate existing FFRs using MW or RF magnetic fields
(Thompson et al 2005, Zhang et al 2009, Kaufman et al 2009)



Our suggestion:
Microwave–Induced Feshbach resonances

I 2 bosonic alkali atoms in a given internal state collide in
the presence of a microwave oscillating magnetic field.

I If ω is tuned correctly, coupling to a bound state
corresponding to different internal atomic states.
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A simple approach: the Two–Channel Model
Replace
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0 . (So does a small shift on ωres: ωres = ω0
res + αB0

2)
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Internal states for alkali atoms with nuclear spin 3/2

I Single–atom states
for 7Li, 23Na, 87Rb

I Two–atom states, σ+++–polarised mw with ~ω ≈ ∆Ehf

connecting | bb 〉 to | ab 〉



Beyond the two–channel model

Use realistic electronic potentials VS(r) and VT (r), which

depend on total electronic spin S (S = s1 + s2)→ spin recoupling:

ATOMS CLOSE TOGETHER: ATOMS FAR APART:

The two electronic spins
couple together.

The electronic spin of each atom
couples with its nuclear spin.

S
I

f1
f2

|VT (r)− VS(r)| � Vhyperfine |VT (r)− VS(r)| � Vhyperfine

Accounted for in the coupled–channel method.



Modelling the interaction between two alkali atoms

H =
p2

2µ
+ Vel(r)︸ ︷︷ ︸

VS PS + VT PT

+ Vhf︸︷︷︸
ahf (s1 · i1 + s2 · i2)

+ ~ω a†a︸ ︷︷ ︸
photon engies

+ W σ+︸ ︷︷ ︸
W1

(
S+a + S−a†

)

8 coupled channels: H is an 8× 8 matrix, |Ψ 〉 is an 8–comp. wavefunction.
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Modelling the interaction between two alkali atoms

H =
p2

2µ
+ Vel(r)︸ ︷︷ ︸
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[f1,f2]
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ΔEhf

ΔEhfσ+
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M
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=
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How do we calculate multichannel wavefunctions?
I use my own C++ implementation of the coupled–channel method.

I Inputs: electronic pots. VS, VT for r & 20a0

and scattering lengths aS, aT .

I Encode small–r Physics in
“Accumulated Phase” boundary condition
at finite r0 [Verhaar et al., PRA 2009].
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I Large–r boundary condition:
atoms in relevant mw–dressed state.

I Solve coupled Schrödinger equations numerically.
One trick: take advantage of spin recoupling.

Output: Multichannel wavefunction |Ψ 〉 for relative motion of two atoms.



The coupled–channel approach: Results

7Li 23Na 41K 87Rb 133Cs
|Eb|/h (MHz) 12000 200 140 25 5 · 10−3

ω0
res/2π (GHz) 12 1.6 0.12 6.8 9.2

∆ωCC/2π (Hz/G2) 6 1400 350 60 −6 · 109

Narrow ∆ω for 7Li due to no weakly–bound state in closed channel.

Narrow ∆ω for 87Rb due to aT = 99 a0 being very close to aS = 90 a0.

133Cs: very weakly–bound state→ non–hyperbolic resonance for B0 & 4 mG.



SYRTE’s static–field resonances in Cesium 133
I Atoms in | f1 = 4,m1 = 0 〉 & | f2 = 3,MF 〉, MF = 1, 2, or 3.

Measured at SYRTE Calculated (coupled channels)

I Due to s–wave triplet bound state with |ET | = h · 5 kHz.

I 3 triplet 2–atom states in (f1 = 4,f2 = 3,MF = 2)→ 3 peaks.

Resonance positions Bres [mG]
MF = 1 MF = 2 MF = 3

measured calculated measured calculated measured calculated
−11± 5

2.7 4.0 3.0
5.1 8 7.2 4.2

18± 3 16.5 25 22 5± 1 5.5
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A giant MW–induced resonance in Cesium

I B0 . 1 mG: hyperbolic resonance with ∆ω/2π = 6 GHz/G2

I Larger values of B0: non–hyperbolic resonance.

Dressed–state effects important for
B0 & |ET |/µB = 4 mG

Lowest–energy dressed state is
different for δ < 0 and δ > 0
−→ different scattering lengths.
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I B0 . 1 mG: hyperbolic resonance with ∆ω/2π = 6 GHz/G2

I Larger values of B0: non–hyperbolic resonance.

δ=ω-ΔEhf

M
F=2i

MF=2i-1

|Eb|MF=2i+1

δ<0

δ>0

Dressed–state effects important for
B0 & |ET |/µB = 4 mG

Lowest–energy dressed state is
different for δ < 0 and δ > 0
−→ different scattering lengths.



MW–induced resonances: Conclusion and Outlook
7Li 23Na 41K 87Rb 133Cs

∆ω/2π (Hz/G2) 6 1400 350 60 −6 · 109

I Realistic mw amplitudes: B0 . 10 G

Optimistic prospects for experiments with Na, K, Rb, Cs.

I Wide resonance in 133Cs: width ∼ 5 kHz for B0 = 1 mG.

Observable in a Cesium fountain clock.

I Our scheme can be transposed to
fermionic atoms and heteronuclear mixtures.

I It can be used to tune the interaction in spinor gases.

I It can be used to improve control over clock shifts.



Manipulation of Interactions in Quantum Gases

Up to a normalization constant, G!0
is the wave function of

a bound state of a single molecule with energy "0 !
"@2!2

0=2m and molecular size !"1
0 . From Eqs. (1) and

(2) one gets a set of N equations:
P

jAijCj ! 0, where
Aij ! ##!$$ij %G!#Rij$#1" $ij$, Rij ! jRi "Rjj, and
##!$ ! limr!0&G!#r$ "G!0

#r$'. The single-particle en-
ergy levels are determined by the equation

 det&Aij#!; fRg$' ! 0: (3)

For Rij ! 1, Eq. (3) gives an N-fold degenerate ground
state with ! ! !0. At finite large Rij, the levels split into a
narrow band. Given a small parameter

 % ! G!0
# ~R$=!0j#0

!#!0$j ( 1; (4)

where ~R is a characteristic distance at which heavy atoms
can approach each other, the bandwidth is !" ) 4j"0j% (
j"0j. It is important for the adiabatic approximation that all
lowest N eigenstates have negative energies and are sepa-
rated from the continuum by a gap *j"0j.

We now calculate the single-particle energies up to
second order in %. To this order we write !##$ ) !0 %
!0
##% !00

###
2=2 and turn from Aij#!$ to Aij##$:

 Aij ! #$ij % &G!0
#Rij$ % !0

##@G!0
#Rij$=@!'#1" $ij$;

(5)

where all derivatives are taken at # ! 0. Using Aij (5) in
Eq. (3) gives a polynomial of degree N in #. Its roots #i
give the light-atom energy spectrum "i ! "@2!2##i$=2m.
The total energy E ! PN

i!1 "i is then given by

 E!"#@2=2m$
!
N!2

0%2!0!0
#

XN

i!1

#i%#!!0
#$0#

XN

i!1

#2
i

"
: (6)

Keeping only the terms up to second order in % and using
basic properties of determinants and polynomial roots we
find that the first order terms vanish, and the energy reads
E ! N"0 % 1

2

P
i!jU#Rij$, where

 U#R$ ! " @2
m

!
!0#!0

#$2
@G2

!0
#R$

@!
% #!!0

#$0#G2
!0
#R$

"
: (7)

Thus, up to second order in % the interaction in the system
of N molecules is the sum of binary potentials (7).

If the motion of light atoms is 3D, the Green function is
G!#R$ ! #1=4&R$ exp#"!R$, and ##!$ ! #!0 " !$=4&,
with the molecular size !"1

0 equal to the 3D scattering
length a. Equation (7) then gives a repulsive potential

 U3D#R$ ! 4j"0j!1" #2!0R$"1" exp#"2!0R$=!0R; (8)

and the criterion (4) reads #1=!0R$ exp#"!0R$ ( 1. For
the 2D motion of light atoms we have G!#R$ !
#1=2&$K0#!R$ and ##!$ ! "#1=2&$ ln#!=!0$, where K0
is the decaying Bessel function, and !"1

0 follows from [6].
This leads to a repulsive intermolecular potential

 U2D#R$ ! 4j"0j&!0RK0#!0R$K1#!0R$ " K2
0#!0R$'; (9)

with the validity criterion K0#!0R$ ( 1. In both cases,
which we denote 2+ 3 and 2+ 2 for brevity, the validity
criteria are well satisfied already for !0R ) 2.

The Hamiltonian of the many-body system reads

 H ! "#@2=2M$
X
i
!Ri

% 1

2

X
i!j

U#Rij$; (10)

and the state of the system is determined by two parame-
ters: the mass ratio M=m and the rescaled 2D density n!"2

0 .
At a large M=m, the potential repulsion dominates over the
kinetic energy and one expects a crystalline ground state.
For separations Rij < !"1

0 the adiabatic approximation
breaks down. However, the interaction potential U#R$ is
strongly repulsive at larger distances. Hence, even for an
average separation between heavy atoms "R close to 2=!0,
they approach each other at distances smaller than !"1

0

with a small tunneling probability P / exp#"'
###########
M=m

p
$ (

1, where '* 1. We extended U#R$ to R & !"1
0 in a way

providing a proper molecule-molecule scattering phase
shift in vacuum and checked that the phase diagram for
the many-body system is not sensitive to the choice of this
extension.

Using the DMC method [11] we solved the many-body
problem at zero temperature. For each phase, gaseous and
solid, the state with a minimum energy was obtained in a
statistically exact way. The lowest of the two energies
corresponds to the ground state, the other phase being
metastable. The phase diagram is displayed in Fig. 1.
The guiding wave function was taken in the Nosanow-
Jastrow form [12]. Simulations were performed with 30
particles and showed that the solid phase is a 2D triangular
lattice. For the largest density we checked that using more
particles has little effect on the results.

For both 2+ 3 and 2+ 2 cases the (Lindemann) ratio (
of the rms displacement of molecules to "R on the transition

FIG. 1 (color online). DMC gas-crystal transition lines for 3D
(triangles) and 2D (circles) motion of light atoms. Solid curves
show the low-density hard-disk limit, and dashed curves the
results of the harmonic approach (see text).
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