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Outline

1. Overview :

▶ Curriculum, research, and teaching

▶ Three earlier contributions (2016–) :

atomic interactions : Rydberg blockade

collective phenomena 1/2 : evaporation from a cold gas

collective phenomena 2/2 : evaporation from a Rydberg chain

2. Chaos and semiclassical physics :

Three Rydberg atoms in a circular trap (2023 & 2024)
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Curriculum Vitæ : France, Italy, and the USA
▶ 2015— Chargé de recherche au CNRS, currently CRCN 7

Laboratoire de Physique Théorique et Modélisation, Cergy–Pontoise

▶ 2011—2015 Post–doctoral appointment, BEC Center, Univ. Trento, Italy
Advisers : Profs. L.P. Pitaevskii and S. Stringari

▶ 2007–2011 PhD student, LPTMS, Univ. Paris–Sud, Orsay
Adviser : Prof. G.V. Shlyapnikov
PhD defended on 11/07/2011 : “Manipulation of Interactions in Quantum Gases”

▶ 2006 six-month Masters internship at NIST Gaithersburg (MD, USA)
in Prof. W.D. Phillips’s ‘Laser cooling and trapping’ group

▶ 2004—2008 Elève à l’Ecole Normale Supérieure, Ulm (concours Maths/Phys)

▶ 2001–2004 Classes préparatoires MPSI & MP∗, Lycée Louis le Grand, Paris 5
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Within LPTM
J. Avan, director of LPTM

A. Honecker, deputy director

Theme A:
Condensed matter,

quantum phenomena

Theme B/C:
Integrability, 

dynamics, stochasticity

Theme D:
Physics of

complex systems

10 faculty members

D. Papoular

B. Zumer, PhD student

collaboration with
M. Brune's experimental group
(LKB/Collège de France, Paris)

▶ Representative for one of the two QuanTiP teams of the lab :
Quantum matter : strong correlations, topology and out–of–equilibrium phenomena

at the federation for quantum technologies in Île–de–France
SIRTEQ (2017–2022), QuanTiP (2022–)
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Teaching : Quantum Physics at the M2 (graduate) level
▶ 2018— M2 ICFP–quantum physics track, ENS Paris

Exercise sessions, “Advanced quantum mechanics” course

▶ 2017— M2 in Theoretical Physics, Cergy–Pontoise
Formal lectures, “Advanced quantum mechanics” course

Illustrate the roles of correlations and interactions of identical quantum particles
in recent experiments involving atomic systems, e.g. :

Two–particle interference

[Hong, Ou, Mandel, PRL 1987]

Quantum coherence

[Bloch, Hänsch, Esslinger, Nature (2000)]

Low–energy scattering resonances

[Ketterle Nature 1998]

▶ Earlier teaching appointments : undergraduate physics courses
2008—2011 : Tutor at Université Paris–Sud, Orsay

2005—2008 : Tutor, classes préparatoires MPSI & MP∗, Lycée Louis le Grand, Paris 5 5 / 23



Model atomic systems comprised of trapped atoms
▶ Traps containing 105 atoms, or 2 atoms, or 1 single atom

Control over dimensionality and trapping geometry
Control over interactions : weak or strong, repulsive or attractive

▶ Quantum simulation : well–controlled systems analogous to more complicated ones
including minimal ingredients leading to considered effect

▶ Cold atomic gases : dilute, i.e. interaction range ≪ interatomic distance

[Cornell & Wieman,
Science 1995]

Rubidium 87
T>TB

T<TB

Bose–Einstein condensate

[Greiner, Esslinger, Hänsch, Bloch, Nature 2002]

superfluid to Mott–insulator transition

[Ketterle Nature 2005]

Lithium 6

transition between BEC and BCS superfluidity

More examples may be found in [Cl. Cohen–Tannoudji & D. Guéry–Odelin, Advances in atomic physics, World Scientific (2011)]

▶ For longer–ranged interactions, exploit dipole–dipole interaction
magnetic atoms ; heteronuclear molecules carrying an electric dipole ; Rydberg atoms
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Cold ground–state versus Rydberg atoms
▶ ‘Cold’ is a statement about the spatial motion of the atom as a whole

“Sufficiently cold to be confined in an optical trap” : All atoms considered in this talk
[Cohen–Tannoudji & Guéry–Odelin, World Scientific 2011, ch. 7] [S.E. Anderson PRL 2011] [Barredo PRL 2020] [Cortiñas PRL 2020]

▶ Alkali atoms, e.g. 87Rb, have one outer electron : principal quantum number n

n = 5 : electronic ground state

SMALL off–diagonal electric dipole d

Stable

n = 50 : Rydberg state

LARGE off–diagonal electric dipole d

Long lifetime ∼ 30 ms for ‘circular’ state |n,l = m = n − 1⟩

▶ Motivation : interaction between two atoms in the same electronic state

Van der Waals interaction, range lvdW = (m|C6|/ℏ2)1/2

lvdW = 10 nm ≪ mean distance 100 nm

“Contact interaction g δ(r)”
Many–body ground state is usually a gas

lvdW = 70µm > mean distance 10µm

Longer–ranged interaction

Many–body ground state is a crystal
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3 connected scientific interests, from 2015 onwards
▶ All considered systems are experimentally accessible

They are comprised of cold ground–state atoms and/or Rydberg atoms

manipulation of atomic interactions

PRA 81, 041603(R) (2010)

evaporation of a superfluid Bose gas

PRA 94, 023622 (2016)

entangled atom pairs

PRL 119, 160502 (2017)

evaporative cooling of a Rydberg chain

PRR 2, 023014 (2020) 

interacting circular Rydberg atoms

arXiv:2407.04109 (2024)

3 Rydberg atoms in a circular trap
PRA 107, 022217 (2023)

PRA 110, 012230 (2024)

Atomic interactions Collective phenomena

Chaos & semiclassical physics

cold ground-state atoms

Rydberg atoms

▶ Joint papers with experimentalists : WIPM, Wuhan (China) ; CQED, LKB (Paris)

▶ Supervision of one PhD student : B. Zumer, Cergy, 2021–2024 (2 papers in PRA)
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Entanglement of two distinguishable atoms
[Zeng, Zhan, Papoular, Shlyapnikov et al, Phys. Rev. Lett. 119, 160502 (2017)]

Collaboration between Wuhan, LPTM, and LPTMS, cited 173 times (Google Scholar)

▶ One 87Rb atom and one 85Rb atom, each in its own microtrap, ∼ 4µm apart
2 states per atom in ground hyperfine manifold : |↑87⟩, |↓87⟩ for 87Rb ; |↑85⟩, |↓85⟩ for 85Rb ; 1 Rydberg state per atom : |r87⟩, |r85⟩

▶ The states |↑85⟩ and |r85⟩ of 85Rb

are Rabi–coupled by a two–photon transition

▶ Prepare 87Rb in |r87⟩ to push |r85⟩ out of resonance

Rydberg blockade

79d5/2 79d5/2

87Rb
85Rb

Ω85

detunedBlockade

79d5/2 79d5/2

87Rb
85Rb

Ω85

Experimental Rydberg blockade

no 87Rb

with 87Rb
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Texp

Double-excitation probability
(theory)

Calculation of double–excitation probability
▶ accounts for 437 internal states

external magnetic field,
thermal atomic motion within microtraps

Agrees with measured Rabi oscillation amplitude

▶ Rydberg blockade is conditional on 87Rb being in its Rydberg state |r87⟩

Start from superposition state to achieve 2–atom entangled state (|↑87↑85⟩ + |↓87↓85⟩)/
√

2
9 / 23



Quantum evaporation of a Bose gas
[Papoular, Pitaevskii & Stringari, Phys. Rev. A 94, 023622 (2016)] collaboration LPTM / Trento (Italy)

Cold atomic gas : Identical bosonic atoms, e.g. 87Rb, in their ground electronic state

▶ The trap is filled with a weakly–interacting Bose–Einstein condensate, g n0 ≈ |V0|
An atom with a given energy E < |V0| impinges on it

n0 = condensate density, g = 4πℏ2a/m > 0 is the interaction strength, a = scattering length

BEC

incident
atom

transmitted
atom?

z

E E

▶ In the absence of a collective mechanism,
The atom would experience the mean–field shift 2gn0

potential barrier −|V0| + 2gn0 = |V0| : atom blocked
2gn0 because incident and condensate atoms are in different states

▶ Collective transport mechanism :
The atom impinges on one end of the constriction,
Excites a phonon : condensation,
which propagates to the other end,

where an atom is emitted : evaporation.

z
0

atom atomphonon

For superfluid Helium 4 : [Johnston & King PRL 1966] [Anderson Phys. Lett. A 1969] [Dalfovo PRL 1995] 10 / 23



Evaporative cooling of a chain of Rydberg atoms
[Brune & Papoular, Phys. Rev. Research 2, 023014 (2020)] collaboration LPTM / LKB

L

VL

VR
Rydberg atom chain

▶ Trapped chain of circular Rydberg atoms, mean spacing 5µm

Repulsive interatomic interaction C6/x6, range 70µm ;
▶ Slowly bring plugs closer : the leftmost atom evaporates

The remaining trapped chain thermalises to a lower temperature
Initially proposed in [Nguyen, Brune et al, PRX 2018]

▶ Thermodynamic description
valid both in classical and quantum regimes

▶ long 1D crystal, comprising > 700 atoms
close to quantum ground state

Spatial order, even though no spatially periodic potential is used
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▶ As for cold gases, classical regime described by truncated Boltzmann distribution
[Luiten, Reynolds, & Walraven, PRA 1996]

▶ One important difference with respect to cold gases :
The partition function of the chain does not factorise in terms of atoms or modes
Hence, the quantum regime is not described by a truncated Bose–Einstein distribution 11 / 23



Chaos and semiclassical physics

Three Rydberg atoms in a circular trap
[D.J. Papoular & B. Zumer, Phys. Rev. A 107, 022217 (2023)]

[D.J. Papoular & B. Zumer, Phys. Rev. A 110, 012230 (2024)]

▶ An experimentally accessible system analysed using well–established tools

Heller’s quantum scar, Gutzwiller’s trace formula, EBK theory, . . .

▶ Quantum energy levels satisfy Berry–Robnik statistics [Berry & Robnik, J. Phys. A 17, 2413 (1984)]

▶ Two mechanisms impeding ergodicity : quantum scar, classical localisation
[Heller, The semiclassical way to dynamics and spectroscopy, Princeton (2018), chap. 22]

▶ Links with the Hénon–Heiles Hamiltonian and recent many–body experiments
[Hénon & Heiles, Astron. J. 69, 73 (1964)] [Bernien, Lukin et al, Nature 551, 579 (2017)]
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Three Rydberg atoms in a circular trap
▶ No longitudinal potentials : dynamics due to interaction between particles

Interacting particles are e.g. trapped circular Rydberg atoms
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The effective potential V (x ,y) within the triangle ABC exhibits triangular symmetry (group C3v )

Analogous to V (x ,y) = mω2
0(x2 + y2)/2 + α(x2y − y3/3) [Hénon & Heiles (1963)] 13 / 23



Mixed classical phase space
Surface of section at energy ε : intersections of classical trajectories with a plane

x

(yn+1,py,n+1) (yn,pyn)

x=0

▶ The brown ergodic zone covers a fraction of the surface

▶ Non–ergodic tori yield concentric closed curves (blue, green)

▶ Periodic trajectories yield fixed points (blue, red, green)

[Gutzwiller, Chaos in classical and quantum mechanics, Springer(1990), ch. 7&8]

Surface of section drawn for
the given energy ε = 7C6/R6

• Experimentally accessible

• Ergodic region and non–ergodic islands
occupy comparable areas

▶ Classical phase space comprises both an ergodic region and non–ergodic islands
Stable (blue, green) and unstable (red) periodic trajectories

Consequences in quantum mechanics? (i) energy spectra ; (ii) some specific wavefunctions
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Statistics of the quantum energy levels
▶ Dimensionless parameter η = ℏR2/(mC6)1/2 = 0.01 experimentally accessible value
trap radius R = 7µm, atomic mass m = m87Rb, interaction strength C6/h = 3 GHzµm6

▶ For each irreducible representation r = A1, A2, E of C3v ,

I calculate > 1000 wavefunctions & energies (εi ) near 7C6/R6

using the Finite Element Method (FreeFEM, open–source)

▶ The integrated densities of states Nr (ε)
fluctuate about their smooth components N̄r (ε)
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▶ Unfolded level spacing : si = N̄r (εi+1) − N̄r (εi )
[Bohigas, Tomsovic, Ullmo, Phys. Rep. 223, 43 (1993)]

Integrable : Poisson statistics ; Fully chaotic : Wigner statistics

▶ Mixed phase space : Berry–Robnik statistics

[Berry & Robnik, J. Phys. A 17, 2413 (1984)]
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Stable and unstable classical periodic trajectories
▶ Three families A, B, C of periodic trajectories found numerically

using our own C++ implementation of [Baranger et al, Ann. Phys. 186, 95 (1988)]

There are multiple trajectories in each family due to discrete symmetries
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Quantum scar due to the unstable Trajectory B
▶ For most eigenstates, the density |ψn(r)|2 is unrelated to Trajectory B

▶ For each irreducible representation r = A1, A2, E of C3v ,

multiple quantum states exhibit enhanced density near the unstable trajectory B

Three examples, Finite–Element Method numerical results : (there are other similar states)

▶ Quantum scar satisfying Heller’s definition [Heller, PRL 53, 1515 (1984)]

▶ No longitudinal single–particle trapping potential along the circular trap
The quantum scar is due to interatomic interactions
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Quantum scar due to Traj. B : semiclassical analysis
▶ Impact of unstable periodic trajectory B analysed using Gutzwiller’s trace formula

density of states for Representation r : n(r)(ε) = sum over classical periodic trajectories
[Gutzwiller, Chaos in classical and quantum mechanics, Springer (1990), Sec. 17.4]

▶ The contribution from Trajectory B exhibits peaks with nonzero width
Their positions provide approximate energies for the scarred eigenstates

This approach does not yield semiclassical wavefunctions
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▶ We find one scarred eigenstate near the maximum of each peak 18 / 23



Classical localisation near stable Trajectory A
Similar results for Trajectory C in [Papoular & Zumer, Phys. Rev. A 110, 012230 (2024)]

▶ Some eigenstates are localised near the stable periodic Trajectory A
NOT quantum scars : quantum mechanics brings no qualitative change

Two examples, numerical Finite–Element Method results (there are other similar states)

EBK quantized tori Trajectory A
295 296 297 298 299 300 301 302 303 304 305

Representation A1

-228 -182 -140 -91 -45 0 47 93 140 187 234

Representation A2

no states due to symmetry

6.8 7 7.2

Quantum stationary-state energies R6/C6

Representation E
-456 -365 -274 -183 -89 0 95 186 279 373 466

▶ Energies & wavefunctions obtained semiclassically
using the Einstein–Brillouin–Keller approach

[Martens & Ezra, J. Chem. Phys. 86, 279 (1987)]

▶ Selection rules reflecting the symmetries
of the classical trajectories : no such states in A2
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Classical localisation near Trajectory A : wavefunctions
Similar results for Trajectory C in [Papoular & Zumer, Phys. Rev. A 110, 012230 (2024)]

▶ Numerical solution of the stationary Schrödinger equation (Finite–Element Method)

▶ Semiclassical Einstein–Brillouin–Keller wavefunctions [Knudson et al, J. Chem. Phys. (1986)]

Differences near the caustics (e.g. dashed gray lines in left insets) 20 / 23



Comparison with many–body scar in a Rydberg chain
▶ Experiment [Bernien, Lukin, et al, Nature 551, 579 (2017)]

51 87Rb ground–state atoms |◦⟩ in array of optical microtraps
Each atom is coupled to Rydberg state |•⟩ (via Raman transition)

Prepare |• ◦ • ◦ • ◦ · · ·⟩, then observe spin dynamics
The period–2 chain thermalises only very slowly [Bernien Nature 2017]

▶ Theoretical description [Michailidis, Papić et al, Phys. Rev. X 10, 011055 (2020)]
Approximate many–body dynamics using Hamiltonian system, phase space dimension 4

3 ATOMS IN A CIRCULAR TRAP
exact Hamiltonian description

Stable (blue, green) & unstable (red) fixed points
[Papoular & Zumer, PRA (2023) & PRA (2024)]

RYDBERG ATOM CHAIN
initial condition different from experiment

Stable fixed points
[Michailidis, Papić et al, PRX 2020] 21 / 23



Prospects : Three Rydberg atoms in a circular trap
▶ Localised and non–localised quantum eigenstates :

I have calculated ∼ 3 × 1000 eigenstate wavefunctions and energies near 7C6/R6

Periodic trajectories beyond families A, B, C may explain other localised quantum states

Interpret non–localised quantum states as random Gaussian waves? [Berry, J. Phys. A (1977)]

Non–localised? Bifurcation from family C ? Bifurcation from family A ?

▶ Periodic modulation e.g. of the interaction strength C6 (RF electric field)
Analogy with a recent experiment by Lukin (Harvard) [Bluvstein et al, Science (2021)]

Does it stabilise the unstable trajectory B ?
If so, is the stabilisation mechanism quantum or classical ?
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3 connected scientific interests, from 2015 onwards
▶ All considered systems are experimentally accessible

They are comprised of cold ground–state atoms and/or Rydberg atoms

manipulation of atomic interactions

PRA 81, 041603(R) (2010)

evaporation of a superfluid Bose gas

PRA 94, 023622 (2016)

entangled atom pairs

PRL 119, 160502 (2017)

evaporative cooling of a Rydberg chain

PRR 2, 023014 (2020) 

interacting circular Rydberg atoms

arXiv:2407.04109 (2024)

3 Rydberg atoms in a circular trap
PRA 107, 022217 (2023)

PRA 110, 012230 (2024)

Atomic interactions Collective phenomena

Chaos & semiclassical physics

cold ground-state atoms

Rydberg atoms

▶ Joint papers with experimentalists : WIPM, Wuhan (China) ; CQED, LKB (Paris)

▶ Supervision of one PhD student : B. Zumer, Cergy, 2021–2024 (2 papers in PRA)

▶ Prospects concerning chaos and semiclassical physics in atomic systems
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