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Introduction



Notations and conventions

The cardinality of a finite set X will be written #X. For p a
prime number, we will write Zp the ring of p-adic integers and Z(p) the
localisation of Z at p. When G is a group and X ⊂ G, we denote ⟨X⟩
the subgroup generated by X. Rings are assumed to be associative but
not necessarily commutative. Let R be a ring. WhenW is an R-module
and X ⊂ W , we denote ⟨X⟩R the sub-R-module generated by X.
All R-modules are assumed to be finitely generated unless specified
otherwise. When f, g are positive functions, we will use the big O
notation f = O(g) and we will write f = Õ(g) for f = g·(log(2+g)O(1)).

1. A short history of Hecke operators

In 1916, Ramanujan [Ram16] considered the following series

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

After computing the values of τ(n) for 1 ≤ n ≤ 30, he proposed the
following conjecture1:

(1.1) τ(mn) = τ(m)τ(n) whenever gcd(m,n) = 1

and

(1.2) τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1)

for every prime number p and every r ≥ 1.
In 1917, this conjecture was proved by Mordell [Mor17], using the

modularity property of ∆: for z ∈ C with Im(z) > 0, let ∆(z) denote
the sum of the series above where q = exp(2πiz); then we have

(1.3) ∆(z + 1) = ∆(z) and ∆(−1/z) = z12∆(z).

In fact, he works with a slightly different form of the ∆ function, namely

f(ω1, ω2) =
(2π
ω2

)12
∆
(ω1

ω2

)
where ω1, ω2 ∈ C satisfy Im(ω1/ω2) > 0, where the modularity property
now becomes invariance under every change of basis

(ω1, ω2) 7→ (aω1 + bω2, cω1 + dω2)

for every ( a b
c d ) in SL2(Z). For every prime number p, Mordell intro-

duces a new function

φ(ω1, ω2) = f(pω1, ω2) + f(ω1, pω2) + · · ·+ f(ω1 + (p− 1)ω2, pω2)

where he calls the changes of variables “the reduced substitutions of
order p”, i.e. the changes of basis by the matrices(

p 0
0 1

)
,

(
1 0
0 p

)
, . . .

(
1 p− 1
0 p

)
,

1He also conjectured the famous and much more difficult bound τ(p)2 ≤ 4p11.
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which we would now call the matrices of determinant p in Hermite
normal form [Her51, Section II.]. He writes that it is a well-known fact
that φ is again modular, citing Hurwitz and Weber. He then shows
that this implies that φ is a scalar multiple of f , i.e.

φ = Qf

for some Q ∈ C. Finally, he proves Ramanujan’s conjecture using this
property for various p. He saw the potential for generalisation of the
method but dismissed it, writing “We should however have to consider
now invariants of a sub-group of the modular group, and it seems hardly
worth while to go into details.” Mordell’s paper does not seem to have
attracted much attention for the next 20 years.

In 1937, Hecke [Hec37a,Hec37b] introduced a general method to
prove properties similar to (1.1) and (1.2) for certain modular forms F
(i.e. functions satisfying a generalisation of (1.3), where 12 is replaced
by an integer k called the weight). For every integer n, Hecke defines
an operator Tn by2

F |Tn = nk−1
∑
a·d=n

b mod d,d>0

F
(az + b

d

)
d−k,

also writing them as coming from the action of the matrices ( a b
0 d ) of de-

terminant n and covering all classes up to left multiplication by SL2(Z)
exactly once, and emphasising the role of the finitely many cosets of
the subgroup SL2(Z) ∩ M SL2(Z)M−1 in SL2(Z) where M = ( n 0

0 1 ).
He shows that F |Tn is again a modular form, and he proves a general
identity satisfied by his operators3:

T (n)T (m) =
∑
d|n,m

T
(nm
d2

)
dk−1.

From the commutativity of his operators, he deduces that they admit
a basis of common eigenvectors F and that for such forms, which sat-
sify F |Tn = cnF for some cn ∈ C, the eigenvalues cn satisfy identities
similar to (1.1) and (1.2). We immediately see that Hecke’s method
is a general version of Mordell’s argument. However, after noting that
his results imply Ramanujan’s conjecture as a special case, he writes
“Dieses Resultat ist für ∆ von Ramanujan empirisch vermutet und,
wie ich inzwischen festgestellt habe, im Jahre 1917 von Herrn Mordell
bewiesen worden.” i.e. “This result was empirically conjectured for ∆
by Ramanujan and, as I have discovered in the meantime, was proved
by Mordell in 1917”. It therefore seems that Hecke was not aware of
Mordell’s paper before his own work.

2We restrict to level 1 for simplicity.
3The change of notation from Tn to T (n) is Hecke’s.
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In 1959, Shimura [Shi59, §7], who was studying discrete subgroups
of SL2(R) more general than SL2(Z), introduces a new abstract con-
struction, for which he credits “une idée de A. Weil”. Starting from an
arbitrary group G and a subgroup G, he defines

G̃ = {ρ ∈ G | G ∩ ρ−1Gρ has finite index both in G and in ρ−1Gρ},

which is a subgroup of G containing G, which we would now call the
commensurator of G in G. He then defines a ring structure on the
group A of finite formal linear combinations of double cosets GρG
for ρ ∈ G̃, which we would now write Z[G\G̃/G] and call an abstract
Hecke ring; he proves that his multiplication is associative by embed-
ding A into the endomorphism ring of the permutation module Z[G/G].
Finally, he specialises to G = PSL2(R) and constructs actions of his al-
gebra A via what he calls Hecke operators, on spaces of modular forms,
cohomology groups of G, and abelian varieties attached to modular
curves. Although he does not write it explicitly, it is very clear that he
had in mind Hecke’s operators Tn for ρ = ( n 0

0 1 ); however he does not re-
fer to commutativity properties. The structure of some abstract Hecke
rings was investigated by Iwahori [Iwa64], who emphasised the relation
to endomorphisms of permutation modules, expressed as induced from
the trivial representation. Iwahori writes that this relation “seems to
be well-known”. He was right: in 1951 Mackey [Mac51] had already
described homomorphisms between induced representations in terms of
double cosets. Shimura’s construction gradually percolated into group
theory, and eventually appeared outside of a number theoretic context
(for example [RW70,Yos83]).

In 1960, Tamagawa [Tam60] independently introduced a topologi-
cal version of Shimura’s construction. Inspired by Gel’fand’s theory
of spherical functions [Gel50] and Selberg’s work on the trace for-
mula [Sel56], which take place in real Lie groups, he proposes the follow-
ing version: starting from G a locally compact group and U a compact
subgroup, he defines L(G,U) to be the space of complex-valued contin-
uous functions on G with compact support and that are bi-U -invariant.
This bi-invariance is equivalent to saying that the functions are con-
stant on double cosets UgU . However, contrary to Shimura’s ring A
that only contains finite linear combinations of double cosets and has
a unit element, Tamagawa’s functions can a priori be supported on
infinitely many cosets and his algebra L(G,U) may not contain a unit
element. He defines multiplication by convolution, making the associa-
tivity property immediate. He emphasises the importance of commu-
tativity of his algebra L(G,U) but does not refer to endomorphisms of
induced representations. Tamagawa does not mention Hecke operators,
but he clearly has p-adic and adélic groups in mind since he studies re-
stricted direct products of groups and points to future applications in
number theory. This is confirmed by his next paper [Tam63], where
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he uses L(G,U) for p-adic and adélic groups G, and explicitly refers
to Hecke and Shimura. He also thanks “Professor Shimura for some
valuable suggestions about” his section on Hecke algebras.

The adélic version of the Hecke algebra became a standard in au-
tomorphic forms theory in the 1960s, and was for instance used in
Jacquet and Langlands’s book [JL70] where they generalise Hecke’s the-
ory to arbitrary number fields. In the adélic version, the tensor prod-
uct decomposition over primes of the Hecke algebra replaces Hecke’s
relations for coprime integers that lead to (1.1), and Satake’s isomor-
phism [Sat62,Sat63] between the local Hecke algebra at a prime and a
polynomial ring replaces Hecke’s relations for prime powers that lead
to (1.2).

2. Finite groups

In this section, G denotes a finite group. When R is a commutative
ring, we write R[G] the corresponding group ring.

2.1. Permutation modules and Hecke operators. For everyG-
set X and every commutative ring R we write R[X] the corresponding
permutation R[G]-module; for every x ∈ X we write [x] the corre-
sponding element of R[X].

Let U be a subgroup of G. We write

NU =
∑
u∈U

u ∈ Z[G]

which is called the norm element of U . For every Z[G]-module W ,
denote

WU = {w ∈ W | u · w = w for all u ∈ U}
the set of U -fixed points; for every w ∈ W , we have NU ·w ∈ WU . We
have an isomorphism

HomZ[G](Z[G/U ],W ) ∼= WU

given by φ 7→ φ([1 · U ]). In other words, the Z[G]-module Z[G/U ]
represents the functor of fixed points W 7→ WU . In particular, if U ′ is
another subgroup of G, we get an isomorphism

HomZ[G](Z[G/U ],Z[G/U ′]) ∼= Z[G/U ′]U ∼= Z[U\G/U ′].

In particular, the abelian group Z[U\G/U ] inherits from from the en-
domorphism ring EndZ[G](Z[G/U ]) the structure of a ring called the
Hecke ring of (G,U). More generally, for all subgroups U,U ′, U ′′ of G,
we obtain a composition law

Z[U\G/U ′]⊗ Z[U ′\G/U ′′] −→ Z[U\G/U ′′],

and the elements of Z[U\G/U ′] are also called Hecke operators. By
the representability property above (or unravelling the isomorphisms
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above), to every T ∈ Z[U\G/U ′] and every Z[G]-module W we can
attach a map

T : WU ′ −→ WU ,

in a way compatible with the composition laws; such maps T are
also called Hecke operators. There is a linear map Z[U\G/U ′] →
Z[U ′\G/U ] given by UgU ′ 7→ U ′g−1U , which we denote by T 7→ T ∗.
We have (T ∗)∗ = T , and (TT ′)∗ = T ′∗T ∗ whenever the product makes
sense.

More generally, let X be a finite G-set. By decomposing X into
orbits we get an isomorphism of G-sets

X ∼=
n⊔

i=1

G/Ui

for some subgroups Ui of G, and correspondingly an isomorphism of
Z[G]-modules

Z[X] ∼=
n⊕

i=1

Z[G/Ui].

For every G-set Z (finite or infinite) we write

ZX = HomG(X,Z),

so that we have a bijection

ZX ∼=
n∏

i=1

ZUi .

In particular, if W is a Z[G]-module, we have an isomorphism

HomZ[G](Z[X],W ) ∼= WX

given by restriction to X. If Y is another finite G-set, we also call
Hecke operator every element T ∈ HomZ[G](Z[X],Z[Y ]), and the in-
duced linear map

T : W Y −→ WX .

These can be decomposed as sums of Hecke operators corresponding
to double cosets of subgroups.

2.2. Brauer relations. The Burnside group4 Ω(G) of G is the
group of finite formal linear combinations

∑
i aiXi of finite G-sets Xi

and ai ∈ Z, modulo all relations of the form (X⊔Y )−(X+Y ) for finite
G-setsX, Y and of the formX−Y for isomorphic G-setsX ∼= Y . Every
element of Ω(G) can be written X−Y for G-sets X and Y . When U is
a subgroup of G, we also abbreviate U ∈ Ω(G) to mean G/U ∈ Ω(G).

Let R be a commutative ring, and Θ = X − Y ∈ Ω(G). We say
that Θ is an R[G]-relation if there is an isomorphism of R[G]-modules

R[X] ∼= R[Y ].

4It is in fact a ring, but we will not need this extra structure.
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Lemma 2.1. Let Θ ∈ Ω(G). Let p be a prime number that does not
divide #G. The following are equivalent:

(1) Θ is a Q[G]-relation;
(2) Θ is a C[G]-relation;
(3) Θ is an Fp[G]-relation.

When these conditions are satisfied, we also say that Θ is a Brauer
relation [Bra51].

Lemma 2.2. Let Θ ∈ Ω(G). Let p be a prime number. The following
are equivalent:

(1) Θ is an Fp[G]-relation;
(2) Θ is a Zp[G]-relation;
(3) Θ is a Z(p)[G]-relation.

Let Θ = X − Y ∈ Ω(G) be a Brauer relation. By definition there
exist Hecke operators

T : Z[X] −→ Z[Y ] and T ′ : Z[Y ] −→ Z[X]

and an integer d ∈ Z>0 such that

TT ′ = d · Id and T ′T = d · Id .
If Θ is a Z(p)[G]-relation, then we may assume that p does not divide d.
If Θ is a Z[G]-relation, then we may assume that d = 1.

2.3. Regulator constants. Let W be a Q[G]-module, let ⟨·, ·⟩
be a Q-bilinear, G-invariant, non-degenerate R-valued pairing, and
let Θ =

∑
i niUi be a Q[G]-relation. The regulator constant of W

with respect to Θ is defined to be

CΘ(W ) =
∏
i

det

(
1

#Ui

⟨·, ·⟩ | WUi

)ni

∈ R×/(Q×)2,

where the determinant is computed with respect to any Q-basis ofWUi .

Theorem 2.3 (Theorem 2.17 in [DD09]). The value of CΘ(W ) is
independent of the pairing ⟨·, ·⟩ and belongs to Q×/(Q×)2.

Proof. We give our proof using Hecke operators, as in [P10, Sec-
tion 2.2]. Write Θ = X − Y for G-sets X, Y , so that we have

CΘ(W ) =
det(⟨·, ·⟩X | WX)

det(⟨·, ·⟩Y | W Y )

where ⟨·, ·⟩X , ⟨·, ·⟩Y are given on their direct summandsWUi by 1
#Ui
⟨·, ·⟩.

Let
T : Z[X] −→ Z[Y ]

be a Hecke operator that is invertible over Q. We obtain two isomor-
phisms of vector spaces

T : W Y → WX and T ∗ : WX → W Y .
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Moreover, T and T ∗ are adjoint with respect to ⟨·, ·⟩X and ⟨·, ·⟩Y . In
other words, we have a commutative diagram

W Y ⊗ R T
//

⟨·,·⟩Y
��

WX ⊗ R

⟨·,·⟩X
��

Hom(W Y ,R) T ∗
// Hom(WX ,R).

Fixing Q-bases of WX and W Y , we obtain

(2.1)
det(⟨·, ·⟩X)
det(⟨·, ·⟩Y )

=
detT ∗

detT
.

The left hand side is CΘ(W ), and the right hand side does not depend
on ⟨·, ·⟩ and is visibly rational, proving the result. □

2.4. Galois theory. An étale F -algebra is a finite product of finite
separable extensions of F . We recall Galois theory for étale algebras.

Let F̃ /F be a Galois extension with Galois group G. For every finite G-

set X there is a ring structure on F̃X given by pointwise multiplication
of G-equivariant maps. This induces an equivalence of categories

{étale F -algebras} ←→ {finite G-sets}
L 7−→ HomF -alg(L, F̃ )

F̃X ←− [ X

In this equivalence of categories, the decomposition as a product of
fields corresponds to the decomposition of a G-set into orbits. If the
étale algebras L1, L2 correspond to X1, X2 respectively, then the direct
product L1 × L2 corresponds to the disjoint union X1 ⊔ X2 and the
tensor product L1 ⊗F L2 corresponds to the product X1 ×X2.

Now assume that L1, L2 are fields. A compositum of L1 and L2 is
a triple (C, ι1, ι2) where C/F is a field extension, ιi : Li → C are F -
algebra morphisms and C is generated by ι1(L1) and ι2(L2). In other
words, a compositum is a field generated by L1 and L2 but we also
record the exact maps. The compositums of L1 and L2 are exactly
the field quotients of L1 ⊗F L2. For i = 1, 2, let Ui be a subgroup
of G such that G/Ui corresponds to Li. Then the compositums of L1

and L2 correspond to the G-orbits on G/U1×G/U2, i.e. to the elements
of U1\G/U2.

We will sometimes refer to infinite Galois theory. In that case, F̄
will denote a separable closure of F and GF = Gal(F̄ /F ) will be its
absolute Galois group equipped with its profinite topology.

3. Algebraic number theory

3.1. Notations. Let F be a number field, i.e. a finite extension
of Q. The signature of F is the pair (r1, r2) where r1 is the number of
real embeddings of fields F ↪→ R, and r2 is the number of conjugate
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pairs of nonreal complex embeddings F ↪→ C. We write ZF for the
ring of integers of F and ∆F its discriminant. Let Cl(F ) denote the
class group, Reg(F ) the regulator, and w(F ) the number of roots of
unity in F . We write N(a) = #(ZF/a) for the norm of a nonzero
ideal a ≤ ZF .

For every prime ideal p of ZF , we write Fp the p-adic completion of F
with ring of integers Zp, and vp : Fp → Z ∪ {∞} the p-adic valuation;
let Fp = ZF/p denote the residue field. For every set S of prime ideals
of ZF , we write

ZF,S = {x ∈ F | vp(x) ≥ 0 for every p /∈ S}

the ring of S-integers in F ; its unit group Z×
F,S is called the group

of S-units of F . When S ⊂ Z is a set of prime numbers, we use the
shortcut ZF,S = ZF,S′ where S ′ is the set of all prime ideals of ZF above
the prime numbers in S.

The Dedekind zeta function

ζ(F, s) =
∑
a≤ZF

N(a)−s,

where the sum ranges over nonzero ideals of ZF , converges for Re(s) >
1, admits a meromorphic continuation to C with a simple pole at s = 1,
and satisfies the functional equation

Λ(F, s) = Λ(F, 1− s)

where

Λ(F, s) = |∆F |s/2ΓR(s)
r1ΓC(s)

r2ζ(F, s)

and

ΓR(s) = π−s/2Γ(s) and ΓC(s) = ΓR(s)ΓR(s+ 1),

and the analytic class number formula

Ress=1 ζ(F, s) =
2r1(2π)r2h(F ) Reg(F )

|∆F |1/2w(F )
,

or equivalently

(3.1) ζ(F, s) = −h(F ) Reg(F )
w(F )

sr1+r2−1 +O(sr1+r2)

as s→ 0.
One of the most important conjectures in number theory is the Rie-

mann hypothesis, including its generalisations to various L-functions.

Conjecture 3.1 (Generalised Riemann hypothesis for ζ(F, s)).
Every zero ρ of ζ(F, s) that lies in the critical strip 0 ≤ Re(ρ) ≤ 1
actually lies on the vertical line Re(ρ) = 1

2
.



14

We will abbreviate “generalised Riemann hypothesis” to “GRH”.
We write FR = F ⊗Q R ∼= Rr1 × Cr2 with x 7→ x∗ its canonical

involution, which is the identity on the R factors and complex conju-
gation on the C factors. The R-algebra FR has a canonical Euclidean
structure given by ⟨x, y⟩ = TrFR/R(xy

∗).

Let Ẑ = lim←−n
Z/nZ ∼=

∏
p Zp be the profinite completion of Z. We

write ẐF = ZF ⊗Z Ẑ and F̂ = F ⊗Z Ẑ ∼=
∏′

p Fp the ring of finite

adèles of F , and AF = F̂ × FR the ring of adèles of F . A Hecke
character Ψ is a continuous character of F×\A×

F . There is an attached
L-function L(Ψ, s) which is conjectured to satisfy the Riemann hypoth-
esis.

Amodulus M is a pair (Mf ,M∞) whereMf is a nonzero ideal of ZF

and M∞ is a subset of the set of real embeddings of F . Let U(Mf ) ⊂
Ẑ×

F be the open subgroup of elements congruent to 1 mod Mf and
let U(M∞) ⊂ F×

R the subgroup of elements that are positive at all σ ∈
M∞. Then the ray class group Cl(F,M) = F\A×

F/U(Mf )U(M∞) is a
finite group.

3.2. Computation of class groups. One of the most important
problem in algorithmic number theory is the following.

Problem 3.2. Given the ring of integers ZF of a number field F ,
compute its class group Cl(F ) and unit group Z×

F .

We add the ring of integers to the input to separate the problem of
computing ZF , which is related to factorisation [BL94], from the one
we really want to focus on. Computing the torsion subgroup of Z×

F , in
other words the group of roots of unity, is easy (see for instance [LS17,
Proposition 3.5] for a polynomial time algorithm, see also [Mol10]).

The following algorithm, due to Buchmann [Buc90], assumes the
validity of GRH for ζ(L, s) for every abelian unramified extension L/F .

Algorithm 3.3 (Buchmann). Assume GRH.

• Input: a number field F and its ring of integers ZF .
• Output: the structure of the class group Cl(F ) and a basis of
the unit group Z×

F .

(1) Choose X ≥ 4(log |∆F |)2.
(2) Let S be the set of all prime ideals in ZF of norm at most X.

(3) Compute an approximation h̃R of h(F ) Reg(F ) up to a fac-
tor
√
2.

(4) h0 ←∞, R0 ←∞
(5) B ← ∅, B′ ← ∅
(6) While h0R0 > h̃R:

(a) Generate random elements x ∈ ZF until x ∈ Z×
F,S .

(b) B′ ← B′ ∪ {x}
(c) Let vS : ⟨B′⟩ → ZS be given by b 7→ (vp(b))p∈S .
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(d) C ← ZS/ im(vS)
(e) B ← basis of ker(vS)
(f) R0 ← Reg(B)
(g) h0 ← #C

(7) Return C,B

The GRH is used to guarantee that the classes of primes in S gener-

ate Cl(F ) and that a low-precision approximation h̃R can be computed
efficiently. The correctness relies on the fact that in this case, we have

Cl(F ) ∼= ZS/vS(Z×
F,S).

There are various ways of adjusting the bound X and generating
random elements to improve the probability of finding enough S-units,
but the fundamental problem is that we do not have a very good strat-
egy for this step.

Question 3.4. Can we generate “random” S-units in F efficiently?

3.3. Selmer groups. A different class of groups that bear some
resemblance with class groups are Selmer groups. They were intro-
duced in the context of descent on elliptic curves [Sil86, Section X.4]
but also play an important role in understanding special values of L-
functions [Kol89,Kol90,BK90] and in the theory of deformations of
Galois representations [Maz89]. They already have algorithmic ap-
plications: of course effective descent on elliptic curves [SS04] but also
effective class field theory [Coh00, Section 5].

First, for L an arbitrary field with absolute Galois group GL and W
a Z[GL]-module, we use the usual notation from Galois cohomology:

H i(L,W ) = H i(GL,W ).

Let W be a Z[GF ]-module.
Let p be a prime ideal of ZF , and let F ur

p /Fp be the maximal un-
ramified extension. Define

H1
ur(Fp,W ) = ker(Res : H1(Fp,W )→ H1(F ur

p ,W )).

A Selmer structure F is a collection (Fp)p indexed by prime ideals
of ZF , where

• for every p, the group Fp is a subgroup of H1(Fp,W ), and
• for all but finitely many p, we have Fp = H1

ur(Fp,W ).

The corresponding Selmer group is the subgroupH1
F(F,W ) ⊂ H1(F,W )

of classes that land in the local subgroup Fp everywhere locally:

H1
F(F,W ) = ker

(
H1(F,W )→

∏
p

H1(Fp,W )

Fp

)
.

Example 3.5. Let n ∈ Z≥2 and consider W = µn = µn(F̄ ). For
every field L, we have an isomorphism H1(L, µn) ∼= (L×)/(L×)n.
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In addition, for every prime ideal p of ZF whose residue character-
istic does not divide n, we have H1

ur(Fp, µn) ∼= (Z×
p )/(Z×

p )
n.

Define, for every prime ideal p of ZF :

Fp = (Z×
p )/(Z×

p )
n.

Then we get

H1
F(F, µn) ∼= {x ∈ F× | vp(x) ≡ 0 mod n for all p}/(F×)n.

Every element of this Selmer group, seen as an element of F×, gen-
erate an ideal that is an n-th power; we therefore have a well-defined
map x 7→ n

√
xZF , which gives an exact sequence

1→ Z×
F/(Z

×
F )

n → H1
F(F, µn)→ Cl(F )[n]→ 1.

This is one way of seeing that Selmer groups are closely related to class
groups.

Given the usefulness of Selmer groups and the fact that they are
analogous to class groups, it is important to find efficient algorithms
for the following generalisation of Problem 3.2.

Problem 3.6. Given a number field F , a finite GF -module W and
a Selmer structure F , compute H1

F(F,W ).

In fact, the problem is also interesting for H2.

4. Arithmetic manifolds

4.1. Manifolds. Unless otherwise specified, by manifold we al-
ways mean an orientable Riemannian manifold. Similarly all our orb-
ifolds will be orientable Riemannian (recall that an orbifold is defined
similarly to a manifold but locally modelled on Rn/G where G is a finite
group, see [Car19,Gor12] for general references); we will freely refer to
homology, differential forms, spectrum, etc. for orbifolds. An orbifold
is closed if it is compact without boundary. If M1,M2 are manifolds,
we write M1#M2 their connected sum. We write Sn for the n-sphere
and D2 for the 2-disc. We write Hn for the hyperbolic n-space, which
is the unique simply connected manifold of constant curvature −1. A
concrete model for hyperbolic 2-space is H2 = {τ ∈ C | Im(τ) > 0}
with the metric dx2+dy2

y2
where τ = x+iy ∈ H2; its group of orientation-

preserving isometries is PSL2(R) = PGL2(R)+ with the action by linear
fractional transformations(

a b
c d

)
· τ =

aτ + b

cτ + b
,

and we have

H2 ∼= PSL2(R)/ SO2(R) ∼= PGL2(R)/O2(R).
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The group of orientation-preserving isometries of H3 is PGL2(C) =
PSL2(C) and we have

H3 ∼= PSL2(C)/PSU2(C).
An orbifold is hyperbolic if it is of the form Γ\Hn where Γ is a discrete
subgroup of Isom(Hn).

LetM be an orbifold. For all i ≥ 0, the Riemannian metric induces
a Euclidean norm on Hi(M,R). The i-th regulator of M is

Regi(M) = vol

(
Hi(M,R)
Hi(M,Z)

)
.

Let d = dim(M); we have Regi(M) = Regd−i(M)−1 for all i ≥ 0,

and Regd(M) = vol(M)1/2. See [Rai21] for a survey of regulators of
hyperbolic manifolds.

4.2. Arithmetic groups and Hecke operators. Let G ⊂ GLn

be a linear algebraic group over a number field F , and assume that G
is reductive, i.e. it has no nontrivial connected normal unipotent sub-
group. Examples include GLn, SLn, Sp2g, and A

× where A is a central
simple algebra over F . Let G = G(FR), let K ⊂ G be a maximal
compact subgroup, and let Z be the identity component of largest Q-
split torus in the center of G. Concretely, Z = 1 if G is semisimple
(e.g. SLn, Sp2g), and Z = R>0 if G = A× as above. The symmetric
space attached to G is the manifold

X = G/KZ.

Two subgroups Γ1,Γ2 of G are commensurable if Γ1 ∩ Γ2 has finite
index in both Γ1 and Γ2. An arithmetic group in G is a subgroup Γ ⊂
G that is commensurable with G(ZF ), which is defined as G(F ) ∩
GLn(ZF ). Arithmetic groups are discrete subgroups of G and of G/Z.
The associated arithmetic orbifold is the quotient

M =M(Γ) = Γ\X .
By a theorem of Borel and Harish-Chandra [BHC62], the orbifold M
has finite volume; it is compact in the case G = D× where D is a divi-
sion algebra. Let g ∈ G(F ). Then the group gΓg−1 is commensurable
with Γ, so we have two finite covering maps

π1 : M(Γ ∩ g−1Γg) −→M(Γ)

and
π2 : M(Γ ∩ g−1Γg) ∼= M(gΓg−1 ∩ Γ) −→M(Γ).

The Hecke operator Tg = π2 ◦ π∗
1 defines a correspondence (i.e. it

sends a point to a formal sum of points) M(Γ) → M(Γ) that only
depends on the double coset ΓgΓ; in particular in acts on abelian groups
functorially attached to M : homology, functions, differential forms,
etc. The degree deg(Tg) of the Hecke operator Tg is the degree of the
covering π1.



18

More generally, let U ⊂ G(F̂ ) be a compact open subgroup. The
associated adélic double quotient is

M =M(U) = G(F )\G(AF )/UKZ.

The orbifoldM can be disconnected, and it is a disjoint union of finitely
many arithmetic orbifolds as above:

M(U) =
⊔

c∈G(F )\G(F̂ )/U

Γc\X ,

where Γc = G(F ) ∩ cUc−1. Let δ ∈ G(F̂ ). Then δUδ−1 is also open

in G(F̂ ), so we have two finite covering maps

π1 :M(U ∩ δ−1Uδ) −→M(U)

and

π2 :M(U ∩ δ−1Uδ) ∼=M(δUδ−1 ∩ U) −→M(U).

The Hecke operator Tδ = π2 ◦ π∗
1 defines a correspondence M(U) →

M(U) that only depends on the double coset UδU . The Hecke algebra

is the ring Z[U\G(F̂ )/U ] with a ring structure compatible with the
action of Hecke operators. The degree deg(Tδ) of the Hecke operator Tδ
is the degree of the covering π1. When p is a prime ideal of ZF such that
there is an isomorphism G(Fp) ∼= GLn(Fp), we write Tp for the Hecke
operator Tδ where δ has component 1 at every prime other than p
and δp is the diagonal matrix

δp =


π

1
. . .

1

 ,

where π is a uniformiser of Fp.

5. Can you hear the shape of a drum?

5.1. Original problem. In 1966, Kac [Kac66] popularised the
study of isospectrality problems by asking his famous question “Can
one hear the shape of a drum?”. The idea is that you should start with
a compact domain of the plane, and construct a drum with that shape.
If you hit the drum, it vibrates and produces sound: Kac’s question is
whether this sound determines the shape, i.e. whether it determines
the plane domain up to isometry. To simplify the analysis and make
the problem more mathematically natural, we only take into account
the vibrating frequencies of the drum, which are completely determined
by the eigenvalues of the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
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acting on the functions on the plane domain with boundary condi-
tions. We will actually replace plane domains by compact Riemann-
ian orbifolds of arbitrary dimension but without boundary. From the
Riemannian metric, such an orbifold M is equipped with a Laplace
operator ∆ acting on the space L2(M) of functions, and in fact for
every i ≥ 0 with a Hodge–Laplace operator ∆ on the space Ωi(M)
of differential i-forms, and this operator has a discrete spectrum. We
then say that two orbifolds M1 and M2 are i-isospectral if the spectra
of ∆ on Ωi(M1) and Ωi(M2) agree with multiplicity. We abbreviate
“0-isospectral” as “isospectral”. In this context, Kac’s question be-
comes: are isospectral orbifolds necessarily isometric? Then answer
is easily seen to be yes in dimension 1, but was already known to
be no in general by a construction of 16-dimensional flat tori by Mil-
nor [Mil64] in 1964. A breakthrough came from Vignéras [Vig80] who
gave a beautiful arithmetic construction showing that the answer is
again no in every dimension ≥ 2. Sunada [Sun85] then proposed a
flexible construction of isospectral manifolds from group theory, that
was since then applied to construct a plethora of examples. Finally,
Gordon, Webb and Wolpert [GWW92] managed to construct isospec-
tral, nonisometric plane domains, settling Kac’s original question. The
question is still open if one restricts to plane domains with smooth
boundary.

5.2. Refined questions. Despite the resolution of the initial ques-
tion, there are many interesting variants and refinements, and the area
has been very active since the 1980s. We present some of these ques-
tions.

First, the question has emerged of how general the constructions of
Sunada and Vignéras are. To be more precise, we give the statement
of Sunada’s theorem.

Theorem 5.1 (Sunada). Let G be a finite group, let M be a man-
ifold with a free G-action, and let U1, U2 be subgroups such that there
is an isomorphism of C[G]-modules

(5.1) C[G/U1] ∼= C[G/U2].

Then for all i ≥ 0, the manifolds M/U1 and M/U2 are i-isospectral.

If the condition (5.1) is satisfied, we say that (G,U1, U2) form a
Gassmann triple [Gaß26], a special case of Brauer relation (see Sec-
tion 2.2). We can generalise this condition to infinite groups as follows.

Definition 5.2. Let G be a Lie group acting on a Riemannian
manifold M by isometries, and let Γ1,Γ2 be discrete subgroups that
act properly discontinuously on M and such that Γi\M is compact
for i = 1, 2. We say that Γ1 and Γ2 are representation equivalent if
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there exists an isomorphism of unitary representations of G

L2(Γ1\G) ∼= L2(Γ2\G)

DeTurck and Gordon [DG89, Theorem 1.16 and Remark 1.18] proved
the following generalisation of Sunada’s criterion.

Theorem 5.3 (DeTurck–Gordon). If Γ1 and Γ2 are representation
equivalent, then for all i ≥ 0, the quotients Γ1\M and Γ2\M are i-
isospectral.

It turns out that the examples constructed by Vignéras are in
fact representation-equivalent (this makes sense as Vignéras’s mani-
folds are arithmetic manifolds, see Sections 4.2 and 12.1), which has
led Vignéras’s method to be sometimes considered as a special case of
Sunada’s. However, we should note that while it is very easy to check
whether a triple (G,U1, U2) is a Gassmann triple, it is often nontrivial
to prove representation equivalence.

Another perspective is that representation equivalence is a very
strong version of isospectrality, and from this point of view a natural
follow-up question is to compare these different versions. The following
question was raised by Pesce [Pes95] and Wolf [Wol01].

Question 5.4. Does i-isospectrality for all i ≥ 0 imply represen-
tation equivalence?

This open question seems especially interesting in the case of hy-
perbolic manifolds, being highlighted by Rajan [Raj10, § 4.1], Linowitz
and Voight [LV15, Remark 2.6], and [LL24, Question 8.11]. For hy-
perbolic manifolds of arbitrary dimension, Pesce [Pes95] proved that
a notion called strong isospectrality implies representation equivalence.
Conversely, Question 5.4 has a positive answer for hyperbolic surfaces,
and in fact Doyle and Rossetti [DR11] proved that it even holds for
hyperbolic 2-orbifolds. This has led them to conjecture [DR11, § 12]
that it holds for hyperbolic orbifolds of arbitrary dimension. Another
variant is as follows.

Question 5.5. Does i-isospectrality for some set of indices i imply
j-isospectrality for another j?

Gordon [Gor86] constructed pairs of manifolds that are isospec-
tral but not 1-isospectral. Lauret and Linowitz [LL24, Question 8.10]
recently asked whether hyperbolic examples exist. In fact, Lauret, Mi-
atello and Rossetti [LMR15] have constructed spherical examples; they
write that hyperbolic examples should also exist but that “their con-
struction seems much more difficult”.

In a different direction, it is natural to ask whether we can relate
the functions themselves instead of only the eigenvalues.



5. CAN YOU HEAR THE SHAPE OF A DRUM? 21

Question 5.6. When M1,M2 are i-isospectral, can we construct
explicit isomorphisms

T : Ωi(M1)∆=λ −→ Ωi(M2)∆=λ

that realise the isospectrality?

This is known to be possible in Sunada’s construction [Gor09, § 2.2]
(see also the proof of Proposition 7.10). Bérard [Bér92,Bér93] coined
the term transplantation operator for a map T as above, and gave
a general construction in the context of representation equivalence,
which therefore applies to Vignéras’s examples, but his maps are in
fact induced by an isomorphism

T : L2(Γ1\G) −→ L2(Γ2\G)

and are not explicit.
Another natural question is to determine, for various invariants of

Riemannian manifolds, whether they are isospectral invariants. The
following list is far from exhaustive.

• Dimension: yes.
• Volume: yes.
• Total scalar curvature, and generally heat invariants: yes.
• Betti numbers: yes from all-i-isospectrality (tautologically)
but no in general; related to Question 5.5.
• Real cohomology ring: no, see [LMR13] in dimensions ≥ 7
and [Ten21] in dimension 3.

The first two are obtained from Weyl’s law:∑
λ<X

dim(Ωi(M)∆=λ) ∼X→∞ C(d)

(
d

i

)
vol(M)Xd/2,

where d = dim(M) and C(d) is some function of the dimension.
In a different direction, we would like to measure the complexity

of isospectral pairs. For spaces of constant curvature, we can use the
volume as a measure of complexity. For spherical manifolds, we look
for the pair with the largest volume [ÁL24]. For Riemann surfaces, we
can equivalently look for the pair with the smallest genus; examples are
known in genus 4 and higher [BT87], and it is believed that genus 2
is not possible. Linowitz and Voight [LV15] prove some bounds on
the smallest possible genus that can be obtained from Vignéras’s con-
struction. For hyperbolic 3-manifolds, Maclachlan and Reid [MR03,
Section 12.4] lament (prior to the work of Linowitz and Voight) that
“we do not have any estimates on the smallest volume of a pair of
isospectral but non-isometric hyperbolic 3-manifolds”.

Question 5.7. What is the smallest volume of a pair of isospectral,
non isometric 3-orbifolds?
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There are of course natural variants, considering i-isospectrality
or manifolds. Linowitz and Voight [LV15] provide an orbifold pair of
volume 2.8340 . . . and a manifold pair of volume 51.024566 . . . and
prove some minimality results among a class of arithmetic examples.
This should be compared with the minimal volume of a hyperbolic
3-orbifold [CF86,GM09,MM12] namely 0.03905 . . . and that of a hy-
perbolic 3-manifold [CFJR01,GMM09,GMM11] namely 0.9427 . . . . In
particular, since the smallest index [G : Ui] in a Gassmann triple
is 7 (see for instance [Per77, Theorem 3]), the volume of an isospec-
tral pair of 3-orbifolds arising from Sunada’s construction must be at
least 7 · 0.03905 > 0.2733.

Another interesting question is how similar the spectra of non-
isospectral manifolds can be.

Question 5.8. Let d ≥ 1. What is the supremum of the expo-
nents α such that if M1,M2 are d-manifolds satisfying∑

λ<X

| dim(Ωi(M1)∆=λ)− dim(Ωi(M2)∆=λ)| = o(Xα)

then M1 and M2 are i-isospectral?

By Weyl’s law, this supremum belongs to [0, d/2]. It was proved by
Elstrodt, Grunewald and Mennicke [EGM98, Section 5.3 Theorem 3.3]
for hyperbolic 3-manifolds, and then by Bhagwat and Rajan [BR11] for
hyperbolic manifolds of any dimension, that if finitely many eigenvalues
differ then the manifolds are isospectral. Kelmer [Kel14] then proved
that α = 1/2 satisfies this property. He guesses that his exponent
is probably not optimal, and that the correct exponent might even
be α = d/2.

There are many other interesting problems and results in this area,
see [Sch94,Gor00,GPS05,Gor09,LL24,MR24] for surveys.

6. Post-quantum cryptography

6.1. Cryptography and quantum algorithms. Public-key cryp-
tography [DH76] relies on difficult mathematical problems to build
cryptographic protocols. More precisely, one needs a computational
problem that is easy to solve in one direction, and difficult in another,
or that is difficult in general but easy given extra information. Here
are some classical examples.

Problem 6.1 (Factor). Given an integer N , compute the prime
factors of N .

This problem underlies the security of the RSA cryptosystem [RSA78].

Problem 6.2 (DiscreteLogarithm). Given two elements g, h
of a finite abelian group G with the promise that h ∈ ⟨g⟩, compute an
integer a such that h = ga.
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This problem was originally considered in the multiplicative group
of a finite field [DH76]. We now have subexponential algorithms to
solve it in this case [JOP14]. Considered in the group points of an
elliptic curve over a finite field, it underlies the security of the ECDSA
cryptosystem.

Quantum computation is an abstract model of computation inspired
by the properties of quantum mechanics, that we are trying to realise by
concrete physical devices. This model has the same set of computable
functions as a Turing machine, but possibly not with the same time
complexity, depending on the problem. Concretely, this means that
quantum computers can be simulated by classical computers, although
with exponentially higher space and time complexity, but that quantum
computers may be able to solve some problems faster than classical
ones. Shor [Sho97] proved the following.

Theorem 6.3 (Shor). There exist polynomial time quantum al-
gorithms to solve Factor (Problem 6.1) and DiscreteLogarithm
(Problem 6.2).

This creates a threat on classical cryptography, and it is difficult to
estimate how far in the future this threat could materialise (if at all).
This motivated the emergence of post-quantum cryptography : the de-
sign of cryptographic protocols that can be run on a classical computer,
but that are believed to be difficult to break, even with a quantum com-
puter. Several families of computational problems have been proposed:

• lattices,
• isogenies,
• codes,
• multivariate polynomial systems,
• etc.

At least, the proposed problems should not be solved efficiently by
known quantum algorithms, but ideally we would like strong evidence
that they cannot be, and this is difficult: it is hard to prove that a
computational problem is hard. A first step in this direction is to
prove reductions between problems.

Definition 6.4. We say that Problem A reduces to Problem B
in polynomial time, written A ≤ B, if there exists a probabilistic
algorithm that, given access to an oracle solving Problem B, solves
Problem A in expected polynomial time. We say that Problem A is
equivalent to Problem B, written A ≍ B, if A ≤ B and B ≤ A.

Note that this is a weak notion of reduction: the algorithm is al-
lowed make several calls to the oracle on different inputs (not neces-
sarily a fixed number), the inputs of these calls can depend on the
results of the previous calls, and the algorithm can make any polyno-
mial amount of computation with the outputs of those calls. However,
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if A ≤ B and there is a polynomial time algorithm solving B, then
there exists a polynomial time algorithm to solve A.

6.2. Lattices. A lattice is a discrete subgroup of a Euclidean vec-
tor space V , equivalently the group generated by an independent sub-
set b1, . . . , bn of V ; in particular a lattice is a free Z-module of finite
rank n. The covolume covol(Λ) (also often called determinant or vol-
ume) of a lattice Λ is its covolume in the real vector space it spans.
There are several post-quantum cryptosystems based on lattice prob-
lems, see [dBvW25] for a recent survey.

The first fondamental computational problem on lattices is the
shortest vector problem.

Problem 6.5 (SVP). Given a lattice Λ, compute a shortest nonzero
vector v ∈ Λ.

We define the successive minima of a lattice.

Definition 6.6. Let Λ be a lattice of rank n. For each 1 ≤ i ≤ n
we define

λi(Λ) = min{λ : dimQ⟨v ∈ Λ | ∥v∥ ≤ λ⟩Q ≥ i}.

In particular λ1(Λ) is the length of a shortest nonzero vector in Λ.
A useful relaxation of SVP is its approximate version.

Problem 6.7 (γ-SVP). Given a lattice Λ, compute a nonzero vec-
tor v ∈ Λ such that ∥v∥ ≤ γλ1(Λ).

Thus SVP is the same as 1-SVP. We know several algorithms to
solve γ-SVP:

• The LLL algorithm [LLL82] solves exp(O(n))-SVP in polyno-
mial time.
• Sieving algorithms [ASD18] solveO(1)-SVP in time exp(O(n)).
• The BKZ algorithm [Sch87,LN25] is parametrised by a block
size β and solves exp(O(n/β))-SVP in dimension n by mak-
ing polynomially many calls to an O(1)-SVP oracle in dimen-
sion β.

For instance, setting β =
√
n we get an algorithm for exp(O(

√
n))-

SVP running in time exp(O(
√
n)); setting β = log(n) we get a poly-

nomial time algorithm for exp(O(n/ log(n)))-SVP, which is a better
approximation factor than LLL.

On the other hand, the problem γ-SVP:

• is NP-hard when γ = O(1) and slightly above;
• is in NP∩co-NP when γ =

√
n (and therefore probably not

NP-hard);
• underlies the security of cryptographic protocols for γ = nO(1).
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One problem for constructing reductions is that γ-SVP forces the
algorithm to see the difference between lattices that have a very short
vector from generic ones. Indeed, by Minkowski’s theorem we have

λ1(Λ) ≤
√
n covol(Λ)1/n,

and for random lattices we indeed have λ1(Λ) ≈
√
n/(2πe) covol(Λ)1/n

with high probability, but for fixed covolume the shortest vector can
be arbitrarily small. This motivates the following variant.

Problem 6.8 (γ-HSVP). Given a lattice Λ, compute a nonzero
vector v ∈ Λ such that ∥v∥ ≤ γ covol(Λ)1/n.

By Minkowski’s theorem, for all γ we have the obvious reduction

γ
√
n-HSVP ≤ γ-SVP.

In practice, cryptosystems use structured lattices to allow faster
computations, smaller sizes and additional cryptographic functionali-
ties. A common type of structure is that of a module lattice.

Definition 6.9. Let F be a number field. A ZF -module lattice
(or module lattice when F is implicit) is a lattice Λ equipped with an
action of ZF such that

⟨av, w⟩ = ⟨v, a∗w⟩
for all v, w ∈ Λ and a ∈ ZF , where a 7→ a∗ denotes the canonical
involution FR → FR. The rank of a module lattice is its rank as a
projective ZF -module.

This raises the following question.

Question 6.10. Are lattice problems significantly easier on module
lattices than on unstructured lattices?

There are indeed significantly better algorithms for rank 1 module
lattices [PMHS19,CDW21], but so far not in higher rank.

6.3. Isogenies. We are going to consider a class of problems con-
sisting in finding isogenies between given elliptic curves over finite
fields, subject to certain restrictions. However, it is easy to find such
isogenies if they have low degree, so we will need to be able to represent
isogenies of large degree. There are several possible representations (for
instance as a chain of isogenies of low degree) but for the purpose of
constructing reductions it is better not to specify a particular repre-
sentation.

Definition 6.11 (Efficient representation). Let A be an algorithm,
and let φ : E → E ′ be an isogeny over a finite field Fq. An efficient
representation of φ (with respect to A) is data Dφ ∈ {0, 1}∗ such that

• Dφ ∈ {0, 1}∗ has size polynomial in log(deg(φ)) and log q, and
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• on input Dφ and P ∈ E(Fqk), the algorithm A returns φ(P ),
and runs in polynomial time in log(deg(φ)), log q, and k.

The algorithm A will be left implicit. Now recall that there are two
types of elliptic curves over a finite field Fq of characteristic p: ordinary
and supersingular. For us, the most important difference is:

• If E/Fq is ordinary, then End(E) is an order in a quadratic
imaginary field.
• If E/Fq is supersingular, then End(E) is a maximal order in
the quaternion algebra Bp,∞ over Q ramified at p and ∞.

The first cryptosystem based on isogeny problems was proposed
by Couveignes [Cou97] and rediscovered later by Rostovtsev and Stol-
bunov [RS06], and is based on ordinary curves. It is inefficient but
served as inspiration to many other ones.

In the sequel we will mostly use supersingular curves. We will use
the notation SS(p) to denote the category with

• objects: supersingular elliptic curves over Fp;
• morphisms: algebraic group morphisms.

There are approximately p/12 supersingular elliptic curves over Fp up
to isomorphism.

The first cryptosystem based on supersingular isogenies is the Charles–
Lauter–Goren hash function [CLG09]. It uses a public E ∈ SS(p) and
a small prime ℓ; an input binary string s ∈ {0, 1}∗ is then converted
to a path of ℓ-isogenies where at each intermediate curve Ei, the bit si
determines (in a public way) which outgoing isogeny should be taken.
The hash of the string s is the j-invariant of the end curve E ′ of the
path E → E ′. Clearly, if one can find preimages of this hash function,
then one can solve the following problem.

Problem 6.12 (ℓ-isog). Given two supersingular curves E,E ′ ∈
SS(p), compute an isogeny E → E ′ of degree a power of ℓ.

Moreover, if one can find collisions for the CGL hash function, then
from the two paths φ : E → E ′ and ψ : E → E ′ one can create an
endomorphism ψ̂ ◦φ ∈ End(E). One can show that this creates a non-
scalar endomorphism. Therefore, if one can find collisions, then one
can solve the following problem.

Problem 6.13 (OneEnd). Given a supersingular curve E ∈ SS(p),
compute α ∈ End(E) \ Z.

We have the following easy reduction (by generating a random path
and computing a second path to the same endpoint).

OneEnd ≤ ℓ-isog.

The first cryptosystem that really got isogeny-based cryptography
off the ground was the key exchange protocal SIDH proposed by Jao
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and De Feo [JDF11,DFJP14]. Its underlying problem was to find an
ℓ-isogeny path as in ℓ-isog, but given the action of the secret isogeny
on a basis of N -torsion points for some integer N coprime to ℓ.

In light of the relation between supersingular isogenies and quater-
nion algebras (which can be made precise in the form of Deuring’s corre-
spondence, see Theorem 11.5), it is natural to study the problem anal-
ogous to ℓ-isog in quaternion algebras. This was done in [KLPT14],
in which Kohel, Lauter, Petit and Tignol described a heuristic poly-
nomial time algorithm (known as the KLPT algorithm) that, given a
maximal order O in the quaternion algebra Bp,∞ and a right O-ideal J ,
computes x ∈ Bp,∞ such that xJ has ℓ-power norm. This made it clear
that the following problem was important.

Problem 6.14 (EndRing). Given a supersingular curve E ∈ SS(p),
compute a basis α1, . . . , α4 of End(E).

Tautologically we have

OneEnd ≤ EndRing.

Using the KLPT algorithm, De Feo, Kohel, Leroux, Petit and
Wesolowski proposed a signature scheme called SQISign [DFKL+20].
They studied its security, and in particular its soundness naturally re-
duces to the OneEnd problem.

Theorem 6.15 (Theorem 1 in [DFKL+20]). If OneEnd is hard
then SQISign is sound.

In 2022, SIDH was broken by Castryck and Decru [CD23,MMP+23,
Rob23]. This made SQISign the new flagship of isogeny-based cryp-
tography, but also made it clear that a better understanding of the
relative security of the various isogeny problems was necessary. The
attack was using the torsion point information in a crucial way, and
people remained confident in the difficulty of EndRing and ℓ-isog.
But what about OneEnd, which is a priori weaker than each of them?

As a first step towards this better understanding, Wesolowski [Wes22]
provided a variant of the KLPT algorithm that he proved to be correct
under GRH, and deduced the following equivalence.

Theorem 6.16 ([Wes22]). We have EndRing ≍ ℓ-isog.

In parallel, many cryptosystem were proposed based on oriented
supersingular elliptic curves (i.e. given with the extra data of an
embedding of a fixed quadratic order R in its endomorphism ring).
They are closer in spirit to the original Couveignes cryptosystem: first
CSIDH [CLM+18], then CSI-Fish [BKV19], OSIDH [CK20] which was
partially broken [DDF22], SCALLOP [FFK+23] and others. One re-
curring problem with those constructions was the inability to efficiently
compute the isogeny action of Cl(R) on the corresponding set of elliptic
curves, for arbitrary input ideals (only smooth ideals could be handled).
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Together with Damien Robert, I designed Clapotis [P9] [P15], an al-
gorithm to compute this action in polynomial time for arbitrary input
ideals. I also took part in a proposed variant, PEARL-SCALLOP [P11],
which interpolates between CSI-Fish and SCALLOP. These works do
not fit in the theme of this manuscript, so I will not describe them in
detail.



Part 2

Hecke operators of finite groups



7. Can you hear torsion homology?

7.1. Number fields and 3-manifolds. Sunada was led to his dis-
covery of a construction of isospectral manifolds [Sun85] by an analogy
with a number-theoretic construction. In fact, as was first pointed out
by Mazur in his “knots and primes” philosophy, the analogy between
manifolds and number fields becomes especially strong in dimension 3
since rings of integers of number fields satisfy a 3-dimensional Poincaré
duality [Maz73]. The property of number fields analogous to isospec-
trality is arithmetic equivalence.

Definition 7.1. Two number fields F1 and F2 are arithmetically
equivalent if

ζ(F1, s) = ζ(F2, s).

Of course, this is equivalent to the property that almost all unrami-
fied primes split in the same way in the two fields. This analogy is most
visible when isospectrality is expressed using spectral zeta functions.

Definition 7.2. Let M be a closed manifold and let i ≥ 0. The
i-th spectral zeta function of M is defined by

ζi(M, s) =
∑
λ>0

λ−s,

where the sum is taken over the positive spectrum of the Laplace op-
erator acting on i-forms, taken with multiplicity.

This sum converges for Re(s) > dim(M)
2

and the spectral zeta func-
tion admits a meromorphic extension to C with finitely many poles,
all simple ([MP49,See67], see also [Ros97, Section 5.1]). If two mani-
folds M1 and M2 are i-isospectral then ζi(M1, s) = ζi(M2, s).

Similarly to the case of isospectral manifolds, it is natural to ask
which invariants of a number field F are determined by the Dedekind
zeta function. The following are:

• the degree, and more precisely the signature (r1, r2);
• the discriminant;
• the Galois closure;
• the largest subfield that is Galois over Q;
• the number of roots of unity;
• the product h(F ) · Reg(F ),

where the last statement follows from the analytic class number for-
mula (3.1). It is therefore natural to ask whether h(F ) and Reg(F ) are
separately determined by ζ(F, s). This turns out to be false.

Example 7.3 ([dSP94]). Let F1 = Q( 8
√
−15) and F2 = Q( 8

√
−240).

Then ζ(F1, s) = ζ(F2, s), but their class groups are

Cl(F1) ∼= C8 × C2 and Cl(F2) ∼= C8
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and their regulators are

Reg(F1) ≈ 66.316 and Reg(F2) ≈ 132.63.

One is therefore led to ask which primes can occur in h(F1)/h(F2) =
Reg(F2)/Reg(F1) for arithmetically equivalent number fields F1, F2.
The following is expected to hold [dS98].

Conjecture 7.4. For every prime number p, there exists arith-
metically equivalent number fields F1, F2 such that vp(h(F1)) ̸= vp(h(F2)).

This conjecture is known to be true for a finite number of primes p,
by finding examples, but is open in general. Spectral zeta functions
admit a special value formula analogous to the analytic class number
formula, the Cheeger–Müller formula [RS71,Che79,Mül78,Mül93] (see
also the expositions in [BV13, Section 2] and [Rai21, Section 1]). For
simplicity we only state its consequence for isospectral manifolds.

Theorem 7.5. Let M1,M2 be isospectral closed manifolds of di-
mension d. Then

d∏
i=0

(
Regi(M1)

#Hi(M1,Z)tors

)(−1)i

=
d∏

i=0

(
Regi(M2)

#Hi(M2,Z)tors

)(−1)i

.

When the dimension d is even, both products actually equal 1 and
we learn nothing. When d is odd, we obtain that the real number

d−1
2∏

i=0

Regi(M1)
2

Regi(M2)2

is in fact a rational number. This is interesting, especially considering
that the regulators are typically transcendental numbers! Any arith-
metician immediately wants to ask the following question.

Question 7.6. When M1,M2 are i-isospectral, does it follow that

the real number Regi(M1)2

Regi(M2)2
is rational?

We do not know the answer in general, but we have obtained re-
sults in the cases of the Sunada construction (Corollary 7.14) and the
Vignéras construction (Section 12.5). In dimension 3, Theorem 7.5
specialises as follows.

Corollary 7.7. LetM1,M2 be isospectral closed 3-manifolds. Then

#H1(M1,Z)tors
Reg1(M1)2

=
#H1(M2,Z)tors
Reg1(M2)2

.

This is reminiscent of the case of number fields, especially with the
terms written #H1(M,Z)tors ·Reg2(M)2, but notice the square, which
is an important difference. In analogy with Conjecture 7.4, we may ask
the following question.
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Question 7.8. Let p be a prime number. Does there exist isospec-
tral 3-manifolds M1,M2 such that

vp(#H1(M1,Z)tors) ̸= vp(#H1(M2,Z)tors)?

However, contrary to the open case of number fields, we answer this
question positively for all p as a special case of Theorem 7.19. In fact,
this was already known to be false in dimension 2 and true in every
dimension ≥ 4, so the 3-dimensional case is the most interesting one.

7.2. Brauer relations, torsion and regulators. It is conve-
nient to place Sunada’s construction in the setting of Brauer relations
(Section 2.2).

Definition 7.9. Let G be a finite group and M a closed manifold
equipped with a free G-action. Let X be a finite G-set, and write

X ∼=
n⊔

i=1

G/Ui

for some subgroups Ui of G. Define the possibly disconnected manifold

M/X =
n⊔

i=1

M/Ui.

We then have the following possibly possibly disconnected extension
of Sunada’s theorem, replacing Gassmann’s triples by Brauer relations.

Proposition 7.10. Let G be a finite group andM a closed manifold
equipped with a free G-action. Let Θ = X−Y be a Q[G]-relation. Then
the manifolds M/X and M/Y are i-isospectral for all i ≥ 0.

Proof. Let i ≥ 0. First note that for every finite G-set Z, we have

Ωi(M/Z) ∼= Ωi(M)Z ,

where the isomorphism commutes with the Laplace operator, so that
for every λ ∈ R, we have

Ωi(M/Z)∆=λ
∼= Ωi(M)Z∆=λ.

Let

T : C[X]→ C[Y ] and T ′ : C[Y ]→ C[X]

be inverse isomorphisms of C[G]-modules. They induce, for every i ≥ 0
and λ, Hecke operators that are inverse isomorphisms (cf. Section 2.1)

Ωi(M)X∆=λ
∼= Ωi(M)Y∆=λ.

The dimensions of Ωi(M/X)∆=λ and Ωi(M/Y )∆=λ are therefore the
same for every i and λ, i.e. M/X and M/Y are i-isospectral for all i.

□

We also introduce the following convenient notation.
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Notation 7.11. let G be a finite group. Let f be a function on
the set of isomorphism classes of finite G-sets, valued in an abelian
group, that respects disjoint unions in the sense that f(X ⊔ Y ) =
f(X)f(Y ) for every X, Y . Then we extend f to the Burnside group by
setting f(X − Y ) = f(X)/f(Y ).

For instance, for a Brauer relation Θ = X − Y , we will write

Regi(M/Θ) =
Regi(M/X)

Regi(M/Y )
, etc.

In this context, we easily obtain some control over the primes that
can appear in #Hi(M/Θ,Z)tors.

Proposition 7.12 (Theorem 3.5 in [P1]). Let M be a closed mani-
fold with a free G-action, and let Θ = X−Y be a Zp[G]-relation. Then
for all i ≥ 0 we have

Hi(M/X,Zp) ∼= Hi(M/Y,Zp).

In particular we have vp(#Hi(M/Θ,Z)tors) = 0.

Proof. Since they are short, we give two proofs.
First proof: for every subgroup U of G we have

Hi(M/U,Zp) ∼= Hi(M/G,Zp[G/U ]).

By additivity we get

Hi(M/X,Zp) ∼= Hi(M/G,Zp[X]) ∼= Hi(M/G,Zp[Y ]) ∼= Hi(M/X,Zp).

Second proof: by Lemma 2.2, Θ is a Z(p)[G]-relation. Therefore,
there exists Hecke operators

T : Z[X]→ Z[Y ] and T ′ : Z[Y ]→ Z[X]

whose compositions are homotheties d · Id with vp(d) = 0. Since U 7→
Hi(M/U,Zp) is a Mackey functor (a formalism allowing us to construct
actions of Hecke operators [Yos83] more generally than on fixed points),
we obtain induced maps

T : Hi(M/Y,Z)→ Hi(M/X,Z) and T ′ : Hi(M/X,Z)→ Hi(M/Y,Z)
that are isomorphisms over Zp.

□

The second proof is not really shorter than the first, especially if
one writes down all the details of “homology is a Mackey functor”, but
it gives an explicit isomorphism. Importantly, this point of view will
also be useful in the analysis of the Vignéras construction (see Sec-
tion 12.6). Proposition 7.12 is useful to exclude primes from appear-
ing in #H1(M/Θ,Z)tors, but we also want to force primes to appear.
This turns out to be easier to do by using regulators and applying
the Cheeger–Müller formula, via the theory of regulator constants (see
Section 2.3).
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Proposition 7.13 (Theorem 3.11 in [P1]). LetM be a closed man-
ifold with a free G-action, and let Θ be a Q[G]-relation. Then for
all i ≥ 0 we have

Regi(M/Θ)2 ≡ CΘ(Hi(M,Q)) mod (Q×)2.

As a corollary, we obtain a positive answer to Question 7.6 for i-
isospectral manifolds obtained from Sunada’s construction.

Corollary 7.14. Let M be a closed manifold with a free G-action,
and let Θ = X − Y be a Q[G]-relation. Then for all i ≥ 0 we have

Regi(M/X)2

Regi(M/Y )2
∈ Q×.

Proof. Apply Proposition 7.13 and Theorem 2.3. □

7.3. Equivariant surgery. In order to apply Proposition 7.13 to
Question 7.8, we need a supply of Brauer relations with interesting
regulator constants.

Example 7.15 (Proposition 4.2 in [P1]). Let p be an odd prime,
let G = GL2(Fp), and let U,U ′ ≤ B ≤ G be the following subgroups:

B =

(
F×
p Fp

0 F×
p

)
, U =

(
(F×

p )
2 Fp

0 F×
p

)
, U ′ =

(
F×
p Fp

0 (F×
p )

2

)
.

Then we have isomorphisms of Q[G]-modules

Q[G/U ] ∼= Q[G/B]⊕W ∼= Q[G/U ′],

whereW is a simple Q[G]-module (in factW remains simple over C: it
is a principal series representation attached to the nontrivial quadratic
character of F×

p ); in particular, the linear combination Θ = U −U ′ is a
Q[G]-relation. In addition, Θ is a Zq[G]-relation for every prime q ̸= p,
and we have

CΘ(W ) ≡ p mod (Q×)2.

Example 7.16. Let G = Z/8Z ⋊ (Z/8Z)×, and let U,U ′ ≤ B ≤ G
be the following subgroups:

B = 4Z/8Z ⋊ (Z/8Z)×, U = 0× (Z/8Z)×, U ′ = 4Z/8Z× ⟨−1⟩.

Then we have isomorphisms of Q[G]-modules

Q[G/U ] ∼= Q[G/B]⊕W ∼= Q[G/U ′],

where W is a simple Q[G]-module; in particular, the linear combina-
tion Θ = U − U ′ is a Q[G]-relation. In addition, Θ is a Zq[G]-relation
for every prime q ̸= 2, and we have

CΘ(W ) ≡ 2 mod (Q×)2.
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From these examples, we can solve Question 7.8 if we can exhibit,
for certain finite groups G and Q[G]-modules W , a closed 3-manifold
with a free G-action whose first homology is isomorphic to G. In [P2],
we prove that this is possible for every G and every W !

Theorem 7.17 (Theorem 3.8 in [P2]). Let G be a finite group, and
let W be a finitely generated Q[G]-module. Then there exists a closed
hyperbolic non-arithmetic 3-manifold M with a free G-action such that
the Q[G]-module H1(M,Q) is isomorphic to W .

Proof sketch. Our proof is inspired by the work of Cooper and
Long [CL00], in which they prove Theorem 7.17 for W = 0. The steps
are the following:

(1) construct a 3-manifold M with a free G action, without any
control on H1(M,Q);

(2) from any 3-manifoldM with a freeG-action, constructM ′ that
has an extra regular module in its homology, i.e. H1(M

′,Q) ∼=
H1(M,Q)⊕Q[G];

(3) from any 3-manifold M with a free G-action with a decom-
position H1(M,Q) ∼= Q[G] ⊕ V and a Q[G]-submodule P
of Q[G], construct M ′ that replaces the regular summand
by P , i.e. H1(M

′,Q) ∼= P ⊕ V ;
(4) from any 3-manifold M with a free G-action, construct M ′

with H1(M
′,Q) ∼= H1(M,Q) such that M ′ is hyperbolic and

non-arithmetic.

It is clear that by repeated application of those steps, we obtain
Theorem 7.17.

Step 1 is simple: start with a 3-manifold M ′ whose fundamental
group surjects onto the free group Free2 on two generators, for in-
stance the connected sum M ′ = (S1 × S2)#(S1 × S2). Let r be such
that G can be generated by r elements. Let M ′′ be a finite cover-
ing of M ′ such that π1(M

′′) surjects onto Freer. Then there exists a
surjection π1(M

′′) → G; the corresponding covering M → M ′′ is a
G-covering, so that G acts freely on M .

We accomplish steps 2, 3 and 4 by performing G-equivariant Dehn
surgery on the manifolds. However, step 2 can be explained simply:
the G-equivariant connected sum

M ′ =M#(G× S1 × S2)

is suitable since H1(G × S1 × S2,Q) ∼= Q[G]. Dehn surgery is the
following process:

• Drilling: choose a simple closed curve γ and a tubular neigh-
borhood T of γ, which is a solid torus S1 × D2. Remove the
interior of T to obtain a manifold with torus boundary.
• Filling: glue back a solid torus to the torus boundary by a
diffeomorphism of ∂T .
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In our application, we perform drilling and filling G-equivariantly, so
as to preserve the G-action. The effect of G-equivariant Dehn surgery
on the first homology is as follows (see [2, Lemma 3.2]):

• Drilling: this adds a quotient of Q[G] to the first homology,
corresponding to the fact that the class of ∂D2 might no longer
be trivial once the disk is removed, and similarly for its G-
orbit.
• Filling: this kills a quotient of Q[G], as the curve on which the
disk D2 gets glued becomes trivial in homology, and similarly
for its G-orbit.

The precise modules that are created and killed by Dehn surgery can
be controlled by prescribing the surgery coefficients from the coefficients
of some idempotent e ∈ Q[G]; this is the step where our work is more
precise than that of Cooper and Long. In this process, the image e∗

of e under the canonical involution x =
∑

g xgg 7→ x∗ =
∑

g xgg
−1

of Q[G] appears naturally, along with the following algebraic property:
for every idempotent e ∈ Q[G], we have Q[G] = Q[G]e+Q[G](1− e∗)
[2, Proposition 1.5].

Finally, step 4 is an application of Thurston’s hyperbolic Dehn
surgery theorem [Thu22, Theorem 5.8.2]. The non-arithmeticity is not
stated in [P2], but it can be imposed using the fact that there are only
finitely many arithmetic hyperbolic 3-manifolds of volume bounded
above [Bor81, Theorem 8.2]. □

In Theorem 7.17 we have determined all the Q[G]-modules that can
occur as the first homology of a 3-manifold with free G-action. The
following question seems harder (recall that a Z[G]-lattice is a Z[G]-
module that is finite free over Z).

Question 7.18. Which Z[G]-lattices can be realised asH1(M,Z)free
for some closed hyperbolic 3-manifold M with a free G-action?

We finally return to spectral geometry, settling Question 7.8.

Theorem 7.19 (Theorem 5.14 in [P2]). Let S be a finite set of
prime numbers. Then there exists closed connected non-arithmetic
manifolds M1 and M2 that are 0- and 1-isospectral with respect to hy-
perbolic metrics and such that

(1) for all p ∈ S we have

#H1(M1,Z)[p∞] ̸= #H1(M2,Z)[p∞];

(2) for all primes q /∈ S we have an isomorphism of abelian groups

H1(M1,Z)[q∞] ∼= H1(M2,Z)[q∞].

It is clear that Theorem 7.19 for S = {p} follows from the combina-
tion of Theorem 7.17, Proposition 7.12, the Cheeger–Müller formula,



8. COMPUTING CLASS GROUPS 37

Proposition 7.13 and Examples 7.15 and 7.16. The general case is ob-
tained by taking suitable products of the groups from these examples.

In light of this success, it is natural to ask whether the techniques
can be adapted to the case of number fields (Conjecture 7.4). Unfor-
tunately, this seems difficult for several reasons. First, number fields
are much more rigid than manifolds, and we do not currently have an
analogue of Dehn surgery for number fields. One way this manifests
is that there is very little flexibility for the Q[G]-module analogous
to H1(M,Q), namely Z×

F ⊗Q for a Galois extension F/Q with Galois
group G: it is isomorphic to Q[G/⟨c⟩] ⊖ Q where c ∈ G is a com-
plex conjugation. In addition, while the ratio of torsion homology sizes
is related to the regulator constant, the ratio of class numbers is re-
lated to the square of the regulator constant, but regulator constants
of Q[G]-modules are only well-defined up to squares, so this gives no
information; to obtain useful information with this method, one would
have to control the Z[G]-module structure of the units (or at least
the Zp[G]-module structure for some primes p), which is much harder.

8. Computing class groups

8.1. From Brauer relations to norm relations. We have al-
gorithms to compute class groups, but it often happens, especially in
large degree number fields, that those algorithms do not terminate in
reasonable time. A natural idea is then to extract partial information
with other techniques. Brauer relations can provide this kind of infor-

mation. For instance, let F be a number field with Galois closure F̃
having Galois group G, let Θ =

∑
i niUi be a Q[G]-relation with ni ̸= 0,

and let Fi = F̃Ui for all i. Then we have∏
i

ζ(Fi, s)
ni = 1,

and by the analytic class number formula we get∏
i

(
h(Fi) Reg(Fi)

w(Fi)

)ni

= 1,

which was the motivation for Brauer’s work [Bra51]. If we can find such
a relation Θ where F appears as one of the Fi and all the other Fi are
easier than F (for instance, in this situation the degree is often a good
proxy for the difficulty of the class group and unit computation), then
we can obtain the product h(F ) Reg(F ). We can sometimes obtain
more precise information about the class groups.

Theorem 8.1 (Corollary 1.4 and Proposition 2.2 in [Bol97]). Let p
be a prime number and assume that Θ is a Zp[G]-relation. Then we
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have an isomorphism of abelian groups⊕
ni>0

Cl(Fi)[p
∞]ni ∼=

⊕
ni<0

Cl(Fi)[p
∞]−ni .

However, even when we have a useful Brauer relation, there is of-
ten one or more primes p for which one cannot apply Theorem 8.1. A
solution appeared for the special case of multiquadratic fields (composi-
tums of quadratic extensions) in the work of Biasse and van Vreden-
daal [BVV19], generalising work [BBdV+17] on the related problem of
recovering a short generator of an ideal. These papers used subfields,
saturation techniques, as well as a seemingly ad hoc identity coming
from the work of Wada [Wad66]: in the group ring of G = C2 × C2 =
⟨σ, τ⟩ we have

(8.1) 2 = (1 + σ) + (1 + τ)− σ(1 + στ) = N⟨σ⟩ +N⟨τ⟩ − σN⟨στ⟩,

where we recall the notation NH =
∑

h∈H h ∈ Q[G]. Note that the
group C2 × C2 also has a Brauer relation, namely

Θ = 1 + 2G− ⟨σ⟩ − ⟨τ⟩ − ⟨στ⟩,
i.e. we have an isomorphism

Q[G]⊕Q[G/G]2 ∼= Q[G/⟨σ⟩]⊕Q[G/⟨τ⟩]⊕Q[G/⟨στ⟩],
but the identity (8.1) seems to be of a different nature, as it has coeffi-
cients from the group ring Z[G] rather than only scalars. This motivates
the following definition.

Definition 8.2 (Definition 2.1 (2) in [P5]). Let G be a finite group,
and let U be a set of nontrivial subgroups of G. A norm relation with
respect to U is an identity of the form

(8.2) d =
n∑

i=1

aiNUi
bi,

for some integer d > 0, subgroups Ui ∈ U and coefficients ai, bi ∈ Z[G].
We omit the mention of U when it is the set of all nontrivial subgroups
of G.

Remark 8.3. We allow repetitions in the Ui, so the definition is
less restrictive than identities of the form

d =
∑
U∈U

aUNUbU .

Of course, we designed the definition so that the identity (8.1) is a
norm relation. There are many other examples.

Example 8.4. Let G = C3 × C3 = ⟨u, v⟩. We have the norm
relation

3 = N⟨u⟩ +N⟨v⟩ +N⟨uv⟩ − (u+ uv)N⟨u2v⟩.

This relation was introduced by Parry [Par77] and was used in [LPS20].
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Example 8.5. Let p be a prime number, and let G = Cp × Cp.
Then we have the norm relation

p = −NG +
∑

C≤G,#C=p

NC .

Indeed, every nontrivial element of G has order p, there are p + 1
subgroups of order p, and every nontrivial element of G is contained in
exactly one of them.

Example 8.6. Let p be a prime number and q a prime number
dividing p − 1. Let G = Cp ⋊ Cq be a nonabelian semidirect product.
Then we have the norm relation

p = −NG +NCp +
∑

C≤G,#C=q

NC .

Indeed, every nontrivial element of G has order p or q, there is a unique
subgroup of order p, there are p subgroups of order q, and every non-
trivial element is contained in exactly one subgroup of prime order.

The usefulness of norm relations is demonstrated by the following
simple lemma.

Lemma 8.7 (Proposition 3.1 in [P5]). Let G be a finite group and
letW be a Z[G]-module. Assume G admits a norm relation (8.2). Then
the exponent of the quotient W/

∑n
i=1 aiW

Ui is finite and divides d.

Proof. Let w ∈ W . Then

d · w =
( n∑

i=1

aiNUi
bi

)
w =

n∑
i=1

ai(NUi
biw) ∈

n∑
i=1

aiW
Ui .

□

Applied to an S-unit group W , this means that we can recover W
from theWUi , which are S-unit groups of the corresponding fixed fields,
and extractions of d-th roots. Following [P12], we will generalise this
fact before the actual algorithmic applications, and Lemma 8.7 is given
here for the purpose of illustration and comparison.

At this point, it is not clear whether the existence of norm rela-
tions is a coincidence or something systematic. To make progress, we
reformulate this existence in representation-theoretic language.

Proposition 8.8 (Proposition 2.10 in [P5]). Let G be a finite group
and U a set of nontrivial subgroups of G. The following are equivalent:

(1) there exists a norm relation with respect to U ;
(2) in Q[G], the two-sided ideal generated by the NU for U ∈ U

equals Q[G];
(3) for every simple Q[G]-module W , there exists U ∈ U such

that WU ̸= 0;
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(4) for every simple C[G]-module W , there exists U ∈ U such
that WU ̸= 0.

Proof sketch. Use the fact that for every U ≤ G, the idempo-
tent 1

#U
NU acts on every Q[G]-module W as a projector onto WU . □

First, using Proposition 8.8, we can easily test the existence of norm
relations by character theory. Second, because of the existence of an
invariant Hermitian product on every complex representation of a finite
group, this relates the existence of norm relations to the well-studied
problem of fixed-point free actions on spheres. Using this relation and
in particular the work of Wolf [Wol67] we obtain a necessary and suf-
ficient condition for the existence of norm relations.

Theorem 8.9 (Theorem 2.11 in [P5]). Let G be a finite group. The
group G admits a norm relation if and only if it contains

• a non-cyclic subgroup of order pq where p and q are (not nec-
essarily distinct) primes, or

• a subgroup isomorphic to SL2(Fp) where p = 22
k
+1 is a Fermat

prime with k > 1.

This theorem says that many groups have norm relations: infor-
mally, every group that is “far from cyclic” admits norm relations.
More precisely, the groups that do not admit norm relations are also
known as freely representable groups ; such groups are very constrained
and are classified, see [Wal13,Ait21]. It is instructive to compare The-
orem 8.9 with the following theorem of Funakura.

Theorem 8.10 (Funakura, Theorem 9 in [Fun78]). Let G be a
finite group. The group G admits a Brauer relation with a nonzero
coefficients of Q[G] if and only if G contains a non-cyclic subgroup of
order pq where p and q are (not necessarily distinct) primes.

In light of these theorems, we see that

• G = SL2(F5) does not admit a norm relation.
• G = SL2(F17) admits a norm relation, but no Brauer relation
involving Q[G].

8.2. Generalising further. In [P5], we develop algorithms based
on the above notion of norm relations. However, this notion is only use-
ful in Galois extensions, and only takes advantage of subfields (in fact,
intermediate fields in the Galois extension). There are many interesting
number fields that do not have automorphisms, and one may naturally
wonder whether auxiliary fields that are not subfields could also be
used. This was fully resolved by Étienne in [P12], so we first present
his generalisation before explaining the resulting algorithms. For this
purpose, we will apply some more representation-theoretic massage.
The following terminology is convenient.
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Definition 8.11. Let G be a finite group and let V,W be Q[G]-
modules. We say that V covers W , written V ≻ W , if

V · HomQ[G](V,W ) = W,

where the left hand side means
∑

f∈HomQ[G](V,W ) f(V ).

The relation ≻ is transitive, and we have the following easy char-
acterisation (see also [CR81, Lemma 37.10]).

Proposition 8.12. Let G be a finite group and let V,W be finitely
generated Q[G]-modules. The following are equivalent.

(1) V ≻ W ;
(2) there exists n ≥ 0 and a surjection of Q[G]-modules V n → W ;
(3) for every simple Q[G]-module π, we have

HomQ[G](π,W ) ̸= 0 =⇒ HomQ[G](π, V ) ̸= 0.

From Proposition 8.8 we obtain another characterisation of the ex-
istence of norm relations.

Corollary 8.13. Let G be a finite group and U a set of nontrivial
subgroups of G. Define the G-set X =

⊔
U∈U G/U . Then there exists a

norm relation with respect to U if and only if Q[X] ≻ Q[G].

This motivates the following definition.

Definition 8.14. Let G be a finite group, H ≤ G a subgroup
and U a set of subgroups of G. Define the G-set X =

⊔
U∈U G/U . We

say that G admits a norm relation with respect to (U , H) if

Q[X] ≻ Q[G/H].

In [P12], Étienne proves an analogue of Proposition 8.8 in this set-
ting, and gives an equivalent definition with norm elements. However,
in my opinion, his work shows that this is really the correct definition
(and maybe that the “norm relation” terminology should be replaced).

It would be very nice to have an analogue of Theorem 8.9 for this
generalised setting. However, the extra dependence on H makes the
existence a simple criterion unlikely, in addition to the fact that such
relations are mostly useful when the index of all subgroups U ∈ U
is smaller than that of H. On the other hand, Brauer relations are
completely classified [BD15,BD14], so maybe we should instead hope
for a general classification.

Question 8.15. Can one classify (in a sense to be defined) norm
relations in the sense of Definition 8.14?

The integer d in (8.2) controls which d-th roots will be needed, and
more generally how much information is lost by using a norm relation
and needs to be recovered. It is therefore important to give bounds on
this number. In the original setting, we proved that one can always
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take d | (#G)3 [P5, Theorem 2.20]. In the general setting, we have the
following result.

Theorem 8.16 (Theorem 2.16 in [P12]). Let G be a finite group,
H ≤ G a subgroup and U a set of subgroups of G, and assume that G
admits a norm relation with respect to (U , H). Then there exists n ≥ 0
and Hecke operators

T : Z[X]n → Z[G/H] and T ′ : Z[G/H]→ Z[X]n

such that T ◦ T ′ = d Id where d ∈ Z divides (#G)2.

Proof sketch. The existence of d without the divisibility prop-
erty follows from the fact that Q[G]-modules are semisimple, so that
one can construct a right inverse of T . The divisibility property is lo-
cal, so we can work with Zp[G]-modules. Since maximal orders over Zp

behave almost like semisimple algebras, we would get a right inverse
for lattices over such an order. Taking into account the discrepancy
between Zp[G] and a maximal order yields the (#G)2 factor. □

Now we can generalise Lemma 8.7.

Lemma 8.17. Let G be a finite group and W a Z[G]-module, and
let X, Y be G-sets. Assume that there exists Hecke operators

T : Z[X]→ Z[Y ] and T ′ : Z[Y ]→ Z[X]

such that T ◦ T ′ = d Id where d ∈ Z>0. Then the exponent of the
quotient W Y /T (WX) is finite and divides d.

Proof. Let w ∈ W Y . Then

d · w = T (T ′(w)) ∈ T (WX).

□

8.3. Algorithms. In order to make use of this tool in the context
of class groups, we need to be able to detect d-th powers efficiently.
There is a standard method for doing this (known as Adleman’s char-
acters [Adl91] in the context of the number field sieve), namely reducing
modulo prime ideals p and using explicit maps F×

p /(F×
p )

d → Z/dZ: if an
element is a d-th power then it must be in the kernel of all those maps.
A common heuristic is that if you use enough prime ideals, then d-th
powers will be correctly detected. Whether this is the case when you
use all prime ideals is the topic of the Grunwald–Wang theorem [AT09,
Chapter X]. In order to obtain a fully proven algorithm, we proved an
effective version of the Grunwald–Wang theorem.

Theorem 8.18 (Theorem 4.11 in [P5]). Assume GRH.
Let d = pr with p prime number and r ≥ 1. Let F be a number field

of degree n, and L = F (ζd). Let S be a finite set of prime ideals of F ,
let MS =

∏
p∈S N(p), and let Sp = S ∪ {p | p}. Let

c0 = 18d2 (2 log |∆F |+ 6n log d+ logMS)
2 .
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Let T be the set of prime ideals p of F such that

• p /∈ Sp,
• p has residue degree 1,
• N(p) ≡ 1 mod p, and
• N(p) ≤ c0.

Let α ∈ F× be such that all the valuations of α at prime ideals p /∈
Sp are divisible by d and such that for every p ∈ T , the image of α
in F×

p is a d-th power. Then α ∈ (L×)d. If in addition L/F is cyclic,

then α ∈ (F×)d.

Proof sketch. In L, studying whether α is a d-th power amounts
to studying the behaviour of the abelian extension L(α1/d)/L. After
bounding the conductor of this extension, the first part of the result
is reduced to bounding the first prime ideal P such that χ(P) ̸= 1 for
ray class group characters χ, for which we use [Bac90].

In the second part one needs to descend from L to F . Since L/F
is also abelian, the usual proof of the Grunwald–Wang theorem can be
made effective in the same way. This step is rather subtle: it is the
step where the original version of our theorem was incorrect, so that
we had to publish an erratum. □

The final ingredient we need for the algorithm is an efficient way
to compute the action of Hecke operators. This was not necessary
in [P5] since we only used subfields, in other words the only Hecke
operators that appeared were the inclusion maps and the action of
automorphisms, but it is necessary in the general case. Étienne solved
this by working out a beautiful interpretation of Hecke operators in
terms of compositums (see also Section 2.4).

Proposition 8.19 (Proposition 1.13 and Theorem 1.18 in [P12]).

Let F,L be subfields of a Galois field F̃ with Galois group G, respectively
fixed by subgroups H,U of G. There is a natural bijection

U\G/H ←→ {compositums C of F and L}

such that for every HgU ∈ U\G/H with corresponding compositum C,
the action of the Hecke operator

T = TUgH : L× = (F̃×)U −→ F× = (F̃×)H

is given by

T (x) = NC/F (ι(x))

where ι : L ↪→ C is the structural inclusion map.

We will write TC the Hecke operator corresponding to the com-
positum C. The point of this interpretation is that since every com-
positum of F and L is a quotient of F ⊗ L, it has degree bounded
by [F : Q][L : Q], which is small enough to allow for polynomial time
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algorithms. We can finally describe the main algorithm of this work;
it is a generalisation of [P5, Algorithm 4.16].

Algorithm 8.20 (Algorithm 4.3 in [P12]). Assume that the finite
group G admits a norm relation with respect to a pair (U , H).

• Input: a number field F , a finite set of prime numbers S, and
for each U ∈ U , the field L = F̃U and a Z-basis BL of Z×

L,S .

• Output: a Z-basis of Z×
F,S .

(1) Let B =
⋃

L

⋃
C TC(BL) where C ranges over compositums

of F and L.
(2) Let Λ ⊂ Z×

F,S be the subgroup generated by B.
(3) For prime p = 2 to n:

(a) v ← 2 · ⌊ n
p−1
⌋

(b) Λp ← Λ.
(c) Repeat v times: Λp ← Λp · (Λp ∩ (F×)p)1/p.

(4) Λ←
∏

2≤p≤n Λp (product in Z×
F,S).

(5) Return a basis of Λ.

The results collected above (Lemma 8.17, Theorem 8.18, and Propo-
sition 8.19) allowed us to prove that this algorithm runs in polynomial
time.

Theorem 8.21 (Theorem 4.4 in [P12], generalising Theorem 4.18
in [P5]). Assume GRH. Let G be a finite group, H ⊂ G a subgroup,
and U a set of subgroups of G. Assume that the group G admits a
norm relation with respect to a pair (U , H). Then Algorithm 8.20 is a
deterministic polynomial time algorithm that, on input of

• a number field F whose Galois closure has Galois group G,
• a finite set of prime numbers S,
• for each U ∈ U , the field L = F̃U and a Z-basis BL of Z×

L,S ,

returns a Z-basis of Z×
F,S .

This gives a satisfactory answer to Problem 3.2 and Question 3.4
when the method applies. In most applications, we know the auxiliary
fields L because of the structure of the original problem. However, from
a theoretical point of view, it is frustrating that we do not know how
to compute these fields efficiently (recall that we do not know how to
compute the Galois group of the Galois closure in polynomial time).

Question 8.22. Can one determine the existence of a norm rela-
tion and compute the auxiliary fields L from the data of F only in
polynomial time?

From the group of S-units where S is taken large enough to gener-
ate the class group, we can obtain Cl(F ). We have implemented this
algorithm and it beats Buchmann’s algorithm in many cases, but we
can do even better: we can take shortcuts as long as we can certify the
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result in the end. This is what I did in my GP implementation [P6];
which is restricted to the abelian case, enabling a more detailed analy-
sis and in particular the determination of optimal relations to be used
[P5, Theorem 2.28]. The algorithm is described in detail in [P5, Algo-
rithm 4.23] and also allows for unconditional computations using [P5,
Proposition 4.28]. Before giving examples of computations performed
with this implementation, let us examine the gain in time complexity
that we can hope for with these techniques. The complexity of usual
techniques (for fixed root discriminant) in terms of the degree n is
approximately

exp(c · nα)

where c is constant, 0 < α < 1 for computations under GRH, and α = 1
for unconditional computations.

For the sake of comparison, implementations of Buchmann’s algo-
rithm conditional on GRH are currently able to compute class groups
of number fields of degree slightly above 100.

Example 8.23. Let F = Q(ζ6552) which has Galois group over Q
isomorphic to C12×C2

6 ×C2
2 , degree 1728 and discriminant 23456 ·32592 ·

71440 · 131584 ≈ 105258. Our GP implementation computes in 4.2 hours
on a laptop that, assuming GRH, the class group of F is isomorphic to

Ce × C123903346647650690244963498417984355147621683400320

×C5827775875747592369293192320 × C2098524198141572423040

×C33847164486154393920 × C7383876252480 × C2
101148989760

×C2
50574494880 × C5

276363360 × C2
7469280 × C8

3734640 × C2
196560

×C98280 × C4
32760 × C26

6552 × C2
3276 × C252 × C3

84 × C29
12 × C8

6 × C11
2

where

e = 34938002970673705910424822356531969288389754863839285

66416278426628917323182867998123296210771899955941657

44361859090214550165734555558870589729949013150675968

232635365760,

and that h+6552 = 70695077806080 = 224 · 33 · 5 · 74 · 13. Our algorithm
uses a relation with d = 1 involving 62 subfields of degree at most 192.
The computations in those subfields recursively uses relations with d
supported at a single prime (2 or 3), involving a total of 672 subfields
of degree at most 12.

Finally, we certified some new values of class numbers of cyclotomic
fields.

Theorem 8.24 (Theorem 4.29 in [P5]). The class numbers and
class groups in Table 1 are correct.
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Table 1. Class numbers of cyclotomic fields Q(ζf )

f conductor, φ(f) degree, h+ plus part of class number, r2 2-rank of
class group, r3 3-rank of class group, T1 time for the conditional
computation, T2 time to unconditionally certify the computation.

f φ(f) h+ r2 r3 T1 T2 f φ(f) h+ r2 r3 T1 T2
255 128 1 1 1 1 min 3 h 624 192 1 3 4 2.5 min 28 min
272 128 2 4 2 1 min 8 h 720 192 1 3 4 2.5 min 24 min
320 128 1 0 2 25 s 13 h 780 192 1 18 1 6.5 min 6.5 min
340 128 1 3 0 1 min 8 h 840 192 1 6 4 6 min 2 min
408 128 2 5 2 3 min 21 min 455 288 1 14 3 4 min 9 h
480 128 1 3 4 43 s 4 s 585 288 1 7 4 4 min 10.5 h
273 144 1 9 2 34 s 5.5 min 728 288 20 17 14 3 min 2 h
315 144 1 4 2 20 s 4.5 min 936 288 16 11 11 2.5 min 2.5 h
364 144 1 6 5 25 s 11 min 1008 288 16 13 10 2.5 min 5.5 h
456 144 1 1 3 1.5 min 8 h 1092 288 1 24 7 3 min 1 h
468 144 1 3 6 25 s 12 min 1260 288 1 14 7 2.5 min 2 h
504 144 4 9 6 16 s 2 s 1560 384 8 40 5 2 h 3.5 h
520 192 4 18 3 6.5 min 16 min 1680 384 1 12 8 1 h 8 h
560 192 1 3 5 2.5 min 18 min 2520 576 208 38 15 40 min 43 h

In order to keep the table small, we did not include fields for which
the class number was already known unconditionally. According to
Miller [Mil14], the largest conductor for which the class number of a
cyclotomic field has been computed unconditionally was 420 prior to
our work; we raise this record to 2520. Note that our methods are
not restricted to cyclotomic fields, but these number fields provide a
family of examples to which they often apply and that are of general
interest. Our proof of Theorem 8.24 does not use special properties of
cyclotomic fields other than their Galois group; it would be interesting
to combine them with special cyclotomic techniques.

9. Computing Selmer groups

Let G be a commutative algebraic group over a field F of charac-
teristic 0. We also denote G the GF -module G(F̄ ). Let n ∈ Z≥2, and
assume that multiplication by n is surjective on G. The short exact
sequence of GF -modules

1 −→ G[n] −→ G [n]−→ G −→ 1

induces the Kummer exact sequence

(9.1) 1 −→ G(F )/[n]G(F ) −→ H1(F,G[n])→ H1(F,G).

There are two important families of connected such G:

• tori, which are affine, and
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• abelian varieties, which are projective.

There are important differences in the behaviour of (9.1) in these two
cases. For instance, consider the case of a quasi-split torus, i.e. G =
ResL/F Gm for some finite extension L/F . Then

H1(F,G) = H1(F,ResL/F Gm) = H1(L,Gm) = 1

by Hilbert’s Theorem 90, and G(F ) = L×. The Kummer sequence
therefore becomes an isomorphism

H1(F,G[n]) ∼= L×/(L×)n.

Algorithmically, this manifests itself by the fact that we can use the
rational points G(F ) to get a grasp on H1(F,G[n]).

On the other hand, consider the case where G is an abelian variety
and F a number field. Then the Kummer map is not surjective, and
one adds further local restrictions to get instead an embedding into a
Selmer group

1 −→ G(F )/[n]G(F ) −→ H1
F(F,G[n]).

Algorithmically, we now use the Selmer group H1
F(F,G[n]) to get a

grasp on the group G(F ) of rational points. The reason we are able
to compute H1

F(F,G[n]) is that since G[n] is finite, we can relate it to
the easier case of tori. The general idea of the present work is to apply
this strategy to Selmer groups of arbitrary finite GF -modules.

In the rest of this section, F will be a number field and W a fi-
nite GF -module. There are various notions of duality for Galois mod-
ules; we need the following one.

Definition 9.1. The dual V ∗ of a GF -module V is 5

V ∗ = Hom(V, F̄×).

Example 9.2. Let n ≥ 1 be such that W = W [n]. Then

W ∗ = Hom(W, F̄×) = Hom(W,µn),

so W ∗ is the usual linear dual Hom(W,Z/nZ) with the Galois action
twisted by the mod n cyclotomic character.

Example 9.3. Let L/F be a finite extension and let P = Z[GF/GL]
be the corresponding permutation module. Then

(P ∗)GF = HomZ[GF ](Z[GF/GL], F̄×) = (F̄×)GL = L×.

More generally, let X be a finite GF -set and let P = Z[X] be the
corresponding permutation module. Then

(P ∗)GF = HomZ[GF ](Z[X], F̄×) = (F̄×)X = (F̄X)×,

and P ∗ is the quasi-split torus corresponding to X.

5From the point of view of group schemes, this is the Cartier dual.
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The textbook way of defining group cohomology is to take a free
resolution, then fixed points, and finally the homology of the resulting
complex. Free modules over an absolute Galois group are not compu-
tationally tractable, but as we will see, a resolution by quasi-split tori
is sufficient. Assume that we have a resolution of W ∗ by permutation
modules, i.e. an exact sequence

· · · −→ P2 −→ P1 −→ P0 −→ W ∗ −→ 1

where Pi = Z[Xi] is the permutation module associated with a finite
GF -set Xi. Taking duals, we obtain a resolution

1 −→ W −→ I0 −→ I1 −→ I2 −→ · · ·
where Ii = P ∗

i is the quasi-split torus corresponding toXi. Denote Li =
F̄Xi the corresponding étale algebra. The vanishing ofH1(F, I0) implies
the following.

Proposition 9.4 (Proposition 2.4 in [P13]). We have

H1(F,W ) ∼=
ker(L×

1 → L×
2 )

im(L×
0 → L×

1 )
.

In other words, H1(F,W ) is the H1 of the complex

1 −→ L×
0 −→ L×

1 −→ L×
2 −→ · · ·

Example 9.5. Let W = µn. Then W ∗ = Z/nZ. We have the
resolution

1 −→ Z [n]−→ Z −→ W ∗ −→ 1

by the permutation modules with X0 = X1 = {·} and X2 = ∅. The
isomorphism of Proposition 9.4 becomes

H1(F, µn) ∼=
ker(F× → 1)

im(F× [n]→ F×)
= F×/(F×)n,

which is the usual description of this cohomology group.

A resolution by permutation modules always exists and can be com-
puted easily as follows (see [P13, Algorithm 4.2]). Let V be an arbitrary
finitely generated discrete Z[GF ]-module and let B ⊂ V be a finite sub-
set. Then the orbit X = GF ·B is a finite GF -set and we have a natural
morphism of Z[GF ]-modules

Z[X]→ V

extending the inclusion X ⊂ V . If we take B to be a generating set
of V , then the resulting morphism Z[X] → V is surjective. Applying
this to V = W ∗ we get X = X0, then to V = ker(Z[X0] → W ∗) we
get X = X1, etc. In addition, the maps appearing in Proposition 9.4
are Hecke operators that can be computed via compositums by Propo-
sition 8.19.
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Now that we have a nice representation of the full cohomology
group H1(F,W ), we want to find Selmer groups inside. This is done
by replacing the full multiplicative groups by S-units.

Definition 9.6 (Definition 3.1 in [P13]). Let S be a finite set of
prime numbers. Define

H1
S(F,W ) =

ker(Z×
L1,S → Z×

L2,S)

im(Z×
L0,S → Z×

L1,S)
.

The isomorphism of Proposition 9.4 is compatible with restriction
maps: if L/F is an extension, we get an induced morphism GL → GF
and a corresponding restriction map

H1(F,W )→ H1(L,W ),

and the isomorphism is compatible with the natural maps

L×
i → (Li ⊗F L)

×.

This compatibility in the special cases Fv/F and F ur
v /Fv, and the ram-

ification properties of Kummer extensions allowed Étienne to prove the
following result.

Proposition 9.7 (Propositions 3.7 and 3.8 in [P13]). Assume that
the set S contains all prime divisors of #W and that Cl(L0) is gen-
erated by the set of prime ideals of L0 above primes in S. Define a
Selmer structure F by

• Fv = H1(Fv,W ) for v above a prime in S, and
• Fv = H1

ur(Fv,W ) otherwise.

Then we have an isomorphism

H1
F(F,W ) ∼= H1

S(F,W ).

This immediately yields the following algorithm to compute arbi-
trary Selmer groups.

Algorithm 9.8.

• Input: étale algebras L0, L1, L2 and Hecke operators giving the
initial segment L×

0 → L×
1 → L×

2 from a resolution ofW , a finite
set of primes S satisfying the hypotheses of Proposition 9.7,
for each v above a prime of S, a subgroup Fv ⊂ H1(Fv,W ),
and a basis of each Z×

Li,S .

• Output: the structure and a basis of the Selmer groupH1
F(F,W )

in H1(F,W ).

(1) Compute H1
S(F,W ) by linear algebra.

(2) Compute the kernel H of the map

H1
S(F,W )→

⊕
v|p∈S

H1(Fv,W )

Fv

by linear algebra.
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(3) Return H.

This reduces the computation of arbitrary Selmer groups to the
problem of computing units and class groups in the number fields ap-
pearing in the resolution. In fact, with a bit of care we can avoid
computing them in L2.

Selmer groups are so important that I think an implementation of
such a general algorithm would be very useful. Due to lack of time, we
have not implemented our algorithms yet. However, I think it could
be worth trying to improve the algorithms before implementing them.
Indeed, let us think about the algebras Li for W = F2

p and where
the Galois image is the full GL2(Fp). Then L0 will be a field of de-
gree p2− 1 ≈ p2 over F , and L1 will be the full Galois closure of L0/F ,
of degree ≈ p4. We can use norm relations to ease the computation
of the class group and units of this field: this reduces the problem to
fields of degree ≈ p3, but it would be better if L0 were sufficient. I be-
lieve that this should be possible, by using a resolution by permutation
modules over Z/nZ instead of Z (where W has exponent n); the dual
resolution will then have pieces of the form ResL/F µn. Tracking the
exact sequences becomes more complicated, but apart from parasite
terms, it relates H1(F,W ) to L×

0 /(L
×
0 )

n, and hopefully a Selmer group
can be extracted from S-units in L0.



Part 3

Hecke operators and isogenies



10. Reconstructing isogenies

A landmark in the algorithmic theory of elliptic curves over finite
fields was Schoof’s polynomial time point counting algorithm [Sch85,
Sch95]: his idea was to compute the trace of the Frobenius endomor-
phism π ∈ End(E) by computing its action on E[ℓ] for many small
primes ℓ. The algorithm was improved by Elkies and Atkin, lead-
ing to a practical algorithm known as the SEA algorithm. Elkies’s
improvement [Elk98] decreases the asymptotic complexity as follows:
if ℓ is chosen such that E admits a rational ℓ-isogeny φ, then we can
compute the action of π on the kernel E[φ] instead, decreasing the de-
gree of the polynomials involved. However, while it is easy to detect
whether E admits an ℓ-isogeny with modular polynomials, it is a non-
trivial task to compute the kernel E[φ], or equivalently to compute the
isogeny φ : E → E ′: this is Elkies’s isogeny reconstruction algorithm, at
the heart of Elkies’s improvement. Schoof’s algorithm was generalised
to genus 2 curves [GS12,GKS11,BGLG+17], but not Elkies’s improve-
ment, due to the lack of an isogeny reconstruction algorithm. The goal
of our work [P4] is to describe such an algorithm.

10.1. Elkies’s algorithm. We first recall Elkies’s isogeny recon-
struction algorithm [Elk98, Section 3] (see also [Sch95, Section 7]).
For simplicity we assume that we are working over a field of large
enough characteristic. We are given an integer ℓ ≥ 2 and two elliptic
curves E,E ′ such that there exists an ℓ-isogeny φ : E → E ′. The first
remark is that the curves are given by Weierstrass equations

E : y2 = x3 + Ax+B

and similarly for E ′. However, such equations are not unique; we can
make a change of variables (x, y) 7→ (x/u2, y/u3), which changes (A,B)
to (u4A, u6B). In order to reconstruct the map E → E ′, we would like
to fix a particular equation. Note that a choice of equation determines
a basis of the 1-forms on E, namely ω = dx

y
and similarly ω′ on E ′.

The isogeny φ induces a linear map between the 1-dimensional spaces
of 1-forms, so there exists a constant c such that φ∗ω′ = cω. Elkies
calls the isogeny normalised if c = 1, i.e. if φ∗ω′ = ω. There is always
a Weierstrass equation for E ′ making the isogeny normalised, and we
would like to find this equation. Elkies’s idea is to use derivatives of
modular functions. First note that for τ ∈ H2, the standard elliptic
curve E(τ) = C/(Zτ + Z) has equation

y2 = x3 − E4(τ)

48
x+

E6(τ)

864
.

Define, for τ ∈ H2,

j′(τ) =
1

2πi

∂

∂τ
j(τ) = q

∂

∂q
j(q).
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Then j′ is a weakly modular function of weight 2, and we have

j′(τ)

j(τ)
= −E6(τ)

E4(τ)
.

Algebraically, j depends only on E but j′ depends on a pair (E,ω), i.e.
on a curve equation; we will write j(E) and j′(E,ω). We have

j′(E,ω)

j(E)
= −E6(E,ω)

E4(E,ω)
.

From this identity, we see that if we know j(E) and j′(E,ω), then we
can write a Weierstrass equation for (E,ω), and conversely. Now enter
the modular polynomial. We have

Φℓ(j(τ), j(ℓτ)) = 0,

and by differentiating we obtain

j′(τ)
∂

∂X
Φℓ(j(τ), j(ℓτ)) + ℓj′(ℓτ)

∂

∂Y
Φℓ(j(τ), j(ℓτ)) = 0.

Since the standard isogeny E(τ) → E(ℓτ) is normalised, and by a
lifting argument, we also have algebraically
(10.1)

j′(E,ω)
∂

∂X
Φℓ(j(E), j(E

′)) + ℓj′(E ′, ω′)
∂

∂Y
Φℓ(j(E), j(E

′)) = 0,

whenever the ℓ-isogeny φ : (E,ω) → (E ′, ω′) is normalised. Now, if
we fix a Weierstrass equation for E, this determines (E,ω) and there-
fore j′(E,ω), and from Equation (10.1) we obtain j′(E ′, ω′) (unless the
partial derivative vanishes, which is generically not the case) and from
there we obtain a normalised equation for E ′.

Finally, the normalisation identity φ∗ω′ = ω gives a differential
equation satisfied by the expression of φ in terms of a local parameter
at 0 on E; solving this differential equation yields a power series that
may be reconstructed into a rational expression for the isogeny φ.

10.2. Isogeny reconstruction and Hecke correspondences.
We propose the following reformulation of Elkies’s algorithm. Consider
the moduli space Ag of principally polarised abelian varieties A of di-
mension g, and Ag(ℓ) be the corresponding moduli space with level
structure given by a kernel C of an ℓ-isogeny from A (they are both
arithmetic orbifolds for Sp2g as in Section 4.2). We have a map

Φℓ = (Φℓ,1,Φℓ,2) : Ag(ℓ)→ Ag ×Ag

given by (A,C) 7→ (A,A/C). The image of Φℓ is the Hecke cor-
respondence, the algebraic incarnation of the Hecke operator. Now
let φ : A → A′ be an ℓ-isogeny, so that there is a corresponding point
on Ag(ℓ), and (A,A′) ∈ Ag × Ag lies on the Hecke correspondence.
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The problem of finding a normalised form of the isogeny amounts to
understanding the tangent map

dφ : T0(A)→ T0(A
′)

of the isogeny φ : A → A′. For instance, we would like to know its
matrix on fixed bases of T0(A) and T0(A

′). On the other hand, we have
a more direct access to the deformation map

D(φ) : TA(Ag) −→ TA′(Ag)

defined by dΦℓ,2 ◦ dΦ−1
ℓ,1 (in other words, the derivative of the Hecke

operator Ag → Ag locally around A 7→ A′). The crucial point is that
there is a close relationship between dφ and D(φ).

Before giving the general identity, let us rewrite the dimension 1
case from this point of view. Let φ : E → E ′ be an ℓ-isogeny. Picking
bases of the tangent spaces at hand, we have

dφ = c−1 where φ∗ω′ = cω

and

D(φ) =
∂
∂Y

Φℓ(j(E), j(E
′))

∂
∂X

Φℓ(j(E), j(E ′))
.

Now Equation (10.1) in the case of normalised isogenies becomes, in
the general case,

ℓD(φ) = − j′(E,ω)

j′(E ′, ω′)
(dφ)2.

This can be generalised using theKodaira–Spencer isomorphism ([KS58],
see also [And17, §1.3]), which is a canonical isomorphism

TA(Ag) ∼= Sym2 T0(A).

The dimensions nicely match up: dimA = g and dimAg =
(
g
2

)
! We

prove, when we choose the right bases for this isomorphism, the follow-
ing identity.

Proposition 10.1 (Propositions 3.19 and 4.19 in [P4]). We have

Sym2(dφ) = ℓD(φ).

As in dimension 1, this is first proved over C, which in turn implies
that this is true algebraically; Damien replaced the lifting argument by
a nice stacky argument.

This leads to the following Elkies-type meta-algorithm:

(1) Compute the deformation map D(φ) by differentiating modu-
lar equations.

(2) Compute the tangent map dφ from an explicit version of the
Kodaira–Spencer isomorphism.

(3) Compute a power series expansion of φ by solving a differential
system in the formal group of A.

(4) Reconstuct φ as a tuple of rational functions.
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10.3. Algorithm in genus 2. We turned this meta-algorithm
into an actual algorithm (this was Kieffer’s work at the beginning of
his PhD). The ingredients are as follows.

• A generic abelian surface A is represented as the Jacobian of a
genus 2 hyperelliptic curve. A curve equation corresponds to
a choice of basis of the 1-forms on A (see [P4, Corollary 3.3]).
• The j-invariant is replaced by Igusa invariants (with Mestre’s
algorithm [Mes91] to construct a curve from its invariants),
and the modular polynomial by 3 modular equations in 4 vari-
ables (see [P4, Section 2.6]).
• The explicit Kodaira–Spencer isomorphism is obtained by re-
lating covariants of the curve equation to vector-valued Siegel
modular forms; more precisely, Kieffer identified the deriva-
tives of the Igusa invariants as explicit covariants (therefore
having an explicit expression in terms of the coefficients of the
curve equation): this is [P4, Theorem 3.14].
• The reconstruction via power series is done by restriction to
the curve, so that the differential system is still univariate
(see [P4, Section 5]). Similar methods appear, also in genus 2,
in [CE15] and [CMSV19]. The differential system is solved
efficiently by Newton iteration as in [BMSS08].

Theorem 10.2 (Theorem 1.1 in [P4]). Let A,A′ be generic ℓ-
isogenous abelian surfaces over a field of characteristic large enough.
Our algorithm [P4, Algorithm 6.1] computes an isogeny φ : A→ A′ as
a rational map, using Õ(ℓ) elementary operations, O(1) square roots in
an extension of the base field of degree O(1), and O(1) evaluations of
the derivatives of the modular equations of level ℓ.

Returning to the point-counting problem, the current algorithms
to evaluate modular polynomials are not good enough for the Elkies-
type method to yield faster point-counting on generic genus 2 curves.
However, our work also covers the case of Hilbert modular surfaces, and
the approach should lead to concrete speedups in the case of genus 2
curves with real multiplication. This is the subject of recent work by
Kieffer [Kie20,Kie22].

11. Hardness of isogeny problems

In the context of isogeny based cryptography (see Section 6.3), the
isogeny we are looking for have very large degree, which changes the na-
ture of the problem. The relative difficulty of various isogeny problems
was studied from a heuristic point of view in [EHL+18]; in particular
the relation between OneEnd (Problem 6.13) and EndRing (Prob-
lem 6.14). The basic naive idea to reduce EndRing to OneEnd is
to call the oracle repeatedly.
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Algorithm 11.1. Relative to an oracle OOneEnd.

• Input: E ∈ SS(p)
• Output: End(E)

(1) Λ← Z
(2) While Λ ̸= End(E) do Λ← Λ + Z ·OOneEnd(E)
(3) Return Λ.

Remark 11.2. We can actually test whether Λ equals End(E):
this ring is equipped with a positive definite quadratic form (φ, ψ) 7→
Tr(φ̂ψ) whose discriminant is known; since at every step we have Λ ⊂
End(E) we have equality if and only if the discriminant is correct.

An immediately visible problem with Algorithm 11.1 is that the
output of OOneEnd could be constant on E! There is therefore no
guarantee that the algorithm will terminate. An simple attempt to fix
this problem is to randomise the curve on which the oracle is called,
using the property proved by Pizer [Piz90] that the the endpoints of
long ℓ-isogeny paths in SS(p) are almost equidistributed.

Algorithm 11.3. Relative to an oracle OOneEnd.

• Input: E ∈ SS(p)
• Output: End(E)

(1) Λ← Z
(2) While Λ ̸= End(E) do

(a) Let φ : E → E ′ be a long random ℓ-isogeny path.
(b) α← OOneEnd(E

′)
(c) Λ← Λ + Z · φ̂αφ

(3) Return Λ.

At least Algorithm 11.3 has a chance of producing distinct endo-
morphisms. In [EHL+18] it was proposed as a heuristic that Algo-
rithm 11.3 quickly terminates. This is however not true: for instance
there could exist and integer N ≥ 2 such that for every E ′ ∈ SS(p),
the endomorphism OOneEnd(E

′) belongs to Z+N End(E ′). This would
force Λ ⊂ Z + N End(E), so that Algorithm 11.3 would never termi-
nate. We could hope instead (but we would have to prove it!) that Λ
always quickly stabilises to some suborder of the form Z+N End(E);
but one can also see that such termination can be made exponentially
slow if the oracle uses several different congruences with varying prob-
abilities. In this type of study, one should think of the oracle as being
adversarial, forced to give a valid output but doing its best to make
our intended use fail!

In order to fix Algorithm 11.3, we have to understand the distribu-
tion of the generated endomorphisms.

Question 11.4. What is the distribution of φ̂αφ ∈ End(E), where
the φ are random long ℓ-isogeny paths from E to various endpoints E ′,
and α ∈ End(E ′) are drawn from a fixed distribution?
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This question seems much too general to have a nice answer. We
were however able to obtain sufficient information for our desired ap-
plication. This required a powerful generalisation of Pizer’s theorem,
which we developed in [P8], using Deuring’s correspondence and relat-
ing isogeny walks to properties of Hecke operators on spaces of quater-
nionic automorphic forms.

Fix a base curve E0 ∈ SS(p), and let O = End(E0) and B = O⊗Q.
Let Mod(O) be the category with

• objects: projective right O-modules of rank 1;
• morphisms: right O-module homomorphisms.

We then have the classical Deuring correspondence, formulated cat-
egorically (see [Koh96, Theorem 45] and [Voi21, Theorem 42.3.2]).

Theorem 11.5 (Deuring correspondence). The associations E 7→
Hom(E0, E) and (φ : E → E ′) 7→ (ψ 7→ φψ) define an equivalence of
categories

SS(p) −→ Mod(O).

Our approach of Question 11.4 consists in seeing each step of the
ℓ-isogeny random walk as an operator on the space of distributions
on pairs (E ′, α) with α ∈ End(E ′), modifying the distribution at each
step. We found that it was convenient to use the following (simple and
classical) categorical construction.

Definition 11.6. Let C be a category and F : C → Sets be a
functor. The category of elements El(F) is the category with

• objects: pairs (c, x) where c ∈ C and x ∈ F(c);
• morphisms (c, x) → (c′, x′): morphisms f ∈ HomC(c, c

′) such
that F(f)(x) = x′.

This captures exactly the intuitive notion of “objects in C with
extra data”, where the morphisms from C can be used to transport
this data. However, in most cases not every isogeny can transport the
type of data we want, so it is useful to restrict the degrees of isogenies
that can appear.

Definition 11.7. Let S be a set of prime numbers. Let SSS(p)
denote the category with

• objects: supersingular elliptic curves over Fp;
• morphisms HomS(E,E

′): isogenies with degree a product of
the primes in S.

Another important insight is that the sets End(E ′) are too large for
the relevant distributions to converge (for instance, the degrees of the
endomorphisms grow as we transport them). It is however sufficient
to collect information about endomorphisms modulo N for various N ,
leading to the following crucial example.



58

Example 11.8. Let N ≥ 1 be an integer and let S be the set of
primes not dividing N . Let End /N denote the functor SSS(p)→ Sets
defined by

• (End /N)(E) = End(E)/N End(E);
• for φ : E → E ′, the map (End /N)(φ) is α 7→ φαφ̂.

Our results are expressed in terms of isogeny graphs of elliptic
curves with extra structure. Such graphs have been studied a lot
in the context of supersingular isogenies, including with extra struc-
ture [Arp24]. However, the graphs were typically considered only had
edges corresponding to isogenies of a single degree ℓ. Our graphs in-
clude all isogenies together, only keeping the degree as a label; this
leads to better structural properties.

Definition 11.9 (Definition 3.4 in [P8]). Let F : SSS(p) → Sets
be a functor with F(E) finite for all E. We define the graph GF with:

• vertices: isomorphism classes of objects in El(F);
• edges: let (E, x) ∈ El(F); edges from (E, x) are isogenies φ ∈
HomS(E,E

′) modulo automorphisms of (E ′,F(φ)(x)).
Let L2(GF) be the space of complex-valued functions on the set of
vertices of GF , and define

⟨F,G⟩ =
∑

(E,x)∈GF

F (E, x)G(E, x)

#Aut(E, x)
for F,G ∈ L2(GF).

For every prime ℓ, we define the adjacency operator Aℓ on L
2(GF) by

AℓF (E, x) =
∑

(E,x)→(E′,x′)

F (E ′, x′),

where the sum runs over edges of degree ℓ leaving (E, x).

In order to relate these graphs to Hecke operators, we introduced
the corresponding quaternionic categories, using an adélic formulation.
Let Ô = O ⊗ Ẑ be the profinite completion of O and B̂ = Ô ⊗Q. For
every open subgroup U ≤ Ô× we defined a category CosetsS(U) [P8,
Definition 3.22] in such a way that the associated graph has vertex set
the adélic double quotient (see Section 4.2)

B×\B̂×/U,

and so that the adjacency operator Aℓ becomes a Hecke operator. For
simplicity of the exposition we do not give the full definition here, but
we simply remark that the main difficulty of this part of the work was
to find the correct definition of the category CosetsS(U).

Not every functor F : SSS(p)→ Sets is related to these adélic cat-
egories; we need the following kind of N -adic continuity property.
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Definition 11.10 (Definition 3.7 in [P8]). Let F : SSS(p) → Sets
be a functor and N ≥ 1 an integer. We say that F satisfies the
(mod N)-congruence property if for every E ∈ SS(p) and every φ, ψ ∈
EndS(E) such that φ− ψ ∈ N End(E), we have F(φ) = F(ψ).

For instance, it is easy to see that the functor End /N from Ex-
ample 11.8 has the (mod N)-congruence property. In every example
we considered, this property was easy to check. Using this notion, we
obtain the following augmented Deuring correspondence.

Theorem 11.11 (Theorem 3.27 and Proposition 3.24 in [P8]). Let p
be a prime number and let N ≥ 1 be an integer. Let S be a set of
primes that do not divide N , such that S contains at least one prime
different from p and generates (Z/NZ)×. Let F : SSS(p) → Sets be a
functor satisfying the (mod N)-congruence property and such that all

sets F(E) are finite. Then there exist open subgroups Ui of Ô× and an
equivalence of categories

El(F) −→
⊔
i

CosetsS(Ui).

Proof sketch. In order to prove this theorem, we first use the
classical Deuring correspondence (Theorem 11.5) to replace F by a

functor defined on CosetsS(Ô×). We then construct, for each open

subgroup U ≤ Ô×, other such functors FU in such a way that El(FU) ∼=
CosetsS(U). This reduces the theorem to proving an isomorphism of
functors F ∼=

⊔
iFUi

.

(1) We prove that the congruence property implies that for every
morphism f , the map F(f) is a bijection.

(2) We extend the congruence property to all morphisms (as op-
posed to only endomorphisms).

(3) We use strong approximation to construct an action of B̂×

on the disjoint union of all targets of F ; the stabilisers of
the various orbits under Ô× on one set F(x) then yield open

subgroups Ui ≤ Ô×.
(4) From this action and careful adélic manipulations, we extend

this orbit decomposition to the desired isomorphism of func-
tors.

□

Our augmented Deuring correspondence provides a direct relation-
ship between isogeny graphs with extra structure and quaternionic au-
tomorphic forms. From the Jacquet–Langlands correspondence [JL70,
Theorem 14.4] and Deligne’s bounds on the coefficients of classical mod-
ular forms [Del73, Theorem 8.2], we obtained the following general
equidistribution theorem.
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Theorem 11.12 (Theorem 3.10 in [P8]). Let p be a prime number
and let N ≥ 1 be an integer. Let S be a set of primes that do not
divide N , such that S generates (Z/NZ)×. Let F : SSS(p)→ Sets be a
functor satisfying the (mod N)-congruence property and such that all
sets F(E) are finite.

Then, for every ℓ ∈ S different from p, the adjacency operator Aℓ is
a normal operator on L2(GF) which stabilises the following subspaces:

• L2
deg(GF), the subspace of functions that are constant on every

connected component of the graph G1
F obtained from GF by

keeping only the edges of degree 1 mod N . The operator norm
of Aℓ on L

2
deg(GF) is ℓ+ 1.

• L2
0(GF), the orthogonal complement of L2

deg(GF). The opera-

tor norm of Aℓ on L
2
0(GF) is at most 2

√
ℓ.

In other words, the averaging operator A′
ℓ =

1
ℓ+1

Aℓ makes functions

rapidly converge to the subspace L2
deg(GF), a space that is easy to

understand (see [P8, Proposition 3.11]). To see why this is an equidis-
tribution result, one should think of a probability distribution over the
vertices of GF as being represented by its density function in L2(GF):
assuming for simplicity that L2

deg(GF) only contains constant functions,
Theorem 11.12 says that random walks in the graph make any initial
distribution converge to the uniform distribution. A similar equidistri-
bution theorem was proved in [CL23], but ours is more flexible.

Applying Theorem 11.12 in the special case of F = End /N , we
obtain the following partial answer to Question 11.4.

Corollary 11.13 (Theorem 4.2 in [P8]). Let N ≥ 1 be an integer.
With the notation of Question 11.4, the distribution of φ̂αφ is almost
(with a quantifiable statistical distance) invariant by conjugation under
the degree 1 subgroup of (End(E)/N End(E))×.

One can even be more precise (see [P8, Sections A.4 and A.5]),
but this is sufficient for our application. Note the following additional
properties

• The only subgroups of M2(Z/NZ) containing Z that are in-
variant under conjugation by SL2(Z/NZ) are those of the
form Z+M M2(Z/NZ) for some integer M : this follows from
the irreducibility of the adjoint representation of SL2 over fi-
nite fields, together with Nakayama’s lemma.
• The fact that Corollary 11.13 holds for all integers contains a
statement of independence between the prime factors.

This allowed us to design a version of Algorithm 11.3 that provably
works.

Algorithm 11.14 (Algorithm 5 in [P8]). Relative to an oracleOOneEnd.

• Input: E ∈ SS(p)
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• Output: End(E)

(1) Λ← Z
(2) While Λ ̸= End(E) do

(a) Let φ : E → E ′ be a long random 2-isogeny path.
(b) α← OOneEnd(E

′)
(c) α← 2α− Tr(α)
(d) Divide α as much as possible by 2 and by known factors

of disc(Λ).
(e) Λ← Λ + Z · φ̂αφ
(f) The first time Λ has rank 4, replace it with its 2-saturation,

i.e. the largest Λ ⊂ Λ′ ⊂ End(E) such that [Λ′ : Λ] is a
power of 2.

(g) Update a partial factorisation of disc(Λ).
(3) Return Λ.

Note that Step 2d is nontrivial. The fact that such divisions can be
performed efficiently is a byproduct of the attacks on SIDH (see [Rob22]).
Our preparatory work yields the following final result.

Theorem 11.15 (Theorem 7.2 of [P8]). Algorithm 11.14 gives a
reduction EndRing ≤ OneEnd.

This result greatly cleaned up the landscape of supersingular isogeny
problems. Complemented with variants of the Clapoti algorithm [P9],
this lead to a better understanding of many of the problems underly-
ing supersingular isogeny based cryptography; see [MW25] for the most
recent such results. A concrete consequence is the following.

Corollary 11.16 (Theorems 8.1 and 8.2 of [P8]). If EndRing is
hard, then:

• the CGL hash function is collision resistant, and
• the SQISign identification protocol is sound.

Another nice consequence is a new unconditional algorithm for solv-
ing EndRing, by using a simple birthday paradox algorithm for solv-
ing OneEnd.

Corollary 11.17 (Theorem 8.7 of [P8]). There exists a probabilis-
tic algorithm solving EndRing in time Õ(

√
p).

Before our work, the best unconditional algorithm was due to Ko-
hel [Koh96, Theorem 75] and was running in time Õ(p); algorithms
with complexity Õ(

√
p) were known heuristically first, and then under

GRH [FIK+25, Theorem 5.5].





Part 4

Hecke operators of arithmetic
manifolds



12. Can you hear representation equivalence?

12.1. Vignéras’s construction and Hecke operators. Despite
the success of Sunada’s construction of isospectral manifolds for its
flexibility, Vignéras’s construction remains of great interest, especially
to number theorists. Her construction goes as follows.

Let F be a number field and D a division quaternion division alge-
bra over F . We assume that at least one infinite place of F is unramified
in D. Let O1 be a maximal order in D. The reduced norm induces
a bijection between the classes of right O1-ideals and the ray class
group C = Cl(M∞) where M∞ is the set of real places of F that ram-
ify inD. This induces a bijection between conjugacy classes of maximal
orders and the quotient Ciso of C by the classes of squares and of the
prime ideals of ZF that ramify in D. For each c ∈ Ciso, we choose
a maximal order Oc in the corresponding class and let Γc = O×

c /Z×
F .

Let X ∼= (H2)s × (H3)r2 and G = PGL2(R)s × PGL2(C)r2 , where s is
the number of real places of F that split in D. Finally, for c ∈ Ciso,
define the closed orbifold Mc = Γc\X . Vignéras’s theorem 6 is the
following.

Theorem 12.1 (Theorem 7 and Application in [Vig80]). Assume
that at least one prime ideal of ZF ramifies in D. Then all the sub-
groups Γc of G are representation equivalent, and all the orbifolds Mc

are isospectral.

There is a visible subtlety: an extra condition is used to ensure
the isospectrality of the orbifolds Mc. This condition arises as fol-
lows: Vignéras uses the trace formula to relate conjugacy classes in Γc

to the representation L2(Γc\G), and controls the conjugacy classes by
studying which quadratic orders R/ZF embed in Oc. Vignéras’s extra
condition ensures that every quadratic order that embeds in some Oc

automatically embeds in all of them. The trace formula has been
the main method to study the isospectrality of Vignéras’s orbifolds,
and this embedding phenomenon was coined selectivity (see for in-
stance [CF99,LV15,Lin15] and [Voi21, Chapter 31]). An alternative
method was described by Rajan [Raj07], using the Labesse–Langlands
multiplicity formula [LL79]. All of these methods either prove repre-
sentation equivalence or nothing at all, therefore providing no insight
into Questions 5.4 and 5.5; and only relate the spectra but not the
functions (see Question 5.6).

In [P10], we propose a new perspective on Vignéras’s construc-
tion, based on Hecke operators. Our isospectrality criteria distinguish
between isospectrality, i-isospectrality and representation equivalence.
Moreover, our technique also applies to the study of integral homology,

6Technically she works with the subgroups of reduced norm 1 instead of the
full unit groups.
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which was our original motivation. In order to present our method, we
restrict to the case C ∼= Ciso

∼= C2 for simplicity; by class field the-
ory this class group corresponds to a quadratic extension L/F . Con-
sider some finitely generated groups or vector spaces F(Γc) attached
to the components, which we would like to be isomorphic: Ωi(Mc)∆=λ

or H i(Mc,W ) or some isotypical piece of L2(Γc\G). Let C = {1, c}.
We would like to exhibit an isomorphism

F(Γ1) ∼= F(Γc).

Our idea is to use the Hecke operators acting on the full arithmetic
manifold

M =M1 ⊔Mc.

These Hecke operators are indexed by prime ideals p of ZF , and their
action is compatible with the classes in C: if the class of p in C is
trivial, then Tp stabilises both components and therefore acts on F(Γ1)
and F(Γc) separately; if the class of p in C is nontrivial, then Tp induces
maps

Tp : F(Γ1) −→ F(Γc) and Tp : F(Γc) −→ F(Γ1).

We therefore have a large supply of candidates for isomorphisms.
How could these maps all fail to be invertible? One possibility is that
there is a single element v ∈ F(Γ1) that is annihilated by Tp for all p
that swap the components. A priori invertibility could fail in more
complicated ways, but we actually show that this is the only possible
obstruction. Writing χ : C → {±1} the nontrivial character, this means
that the corresponding system (ap) of eigenvalues of Hecke operators
satisfies

ap = apχ(p) for all p.

This is reminiscent of CM elliptic curves or modular forms. In the
cases of interest for isospectrality, the theory of automorphic induction
([Lan80], see also [GH24, Theorem 13.4.2]) implies that there exists a
Hecke character Ψ of L giving rise to the eigenvalues (ap). We examine
precisely the conditions that must be satisfied by Ψ depending on the
particular choice of F to arrive at our isospectrality criteria. Since the
existence of the character Ψ does not necessarily prevent isospectrality
but only prevents our method from proving isospectrality, we do not
call them “obstruction characters” or “bad characters” but shady char-
acters. Our criteria have the following form, for various instanciations
of ∗.

Theorem⟨∗⟩ 12.2 (Theorem D in [P10]). At least one of the fol-
lowing holds:

(1) There exists a ∗-shady character of L;
(2) Γ1 and Γc are ∗-isospectral.
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There are notions of i-shady character for each i ≥ 0, and a notion
of L2-shady character, where L2-isospectrality means representation
equivalence. Existence or absence of shady characters can be checked
by computation using the algorithms of [P7] that Pascal Molin and I
designed and implemented in Pari/GP [The23]. This allowed us to
construct interesting examples, which we present in the next sections,
by testing many number fields enumerated by Voight for [LV15] and
which can be found in the LMFDB [LMF25]. In addition, our Hecke
operators realising isospectrality can be seen as transplantation maps,
providing another answer to Question 5.6 for Vignéras orbifolds. Our
method can be seen as being dual to the trace formula and selectivity
method:

• we study the spectrum and identify certain eigenvalues, com-
ing from shady characters, whose absence implies isospectral-
ity;
• with the trace formula, one studies the length spectrum and
identifies certain conjugacy classes, coming from selective or-
ders, whose absence implies isospectrality.

It would be interesting to see whether our refined criteria have an
equivalent in the language of selectivity.

12.2. Isospectrality and representation equivalence. We ap-
ply our criteria to a first example. Let F = Q(α) where α4 − α3 +

α2 + 4α − 4 = 0, which is also the field Q(
√
−10− 14

√
5). The

field F is the unique number field of discriminant −1375 and signa-
ture (2, 1) (LMFDB 4.2.1375.1). Let D be the unique quaternion
division algebra ramified at every real place and no finite place of F .
We have C ∼= Ciso

∼= C2, which therefore has a single non-trivial
character χ, corresponding to the quadratic extension L = F (ζ10).
Let C = {1, c}. We have

vol(M1) = vol(Mc) =
13753/2ζF (2)

28π6
= 0.2510654 . . . .

The maximal cyclic subgroups of Γ1 have order 2, 3 or 5, the max-
imal cyclic subgroups of Γc have order 2, 3 or 10, and we have

H1(Γ1,Z) ∼= (Z/2Z)2 and H1(Γc,Z) ∼= (Z/2Z)2.

By [LV15, Theorem C], the groups Γ1 and Γc are not representation
equivalent. We prove by computation (see [P10, Example 7.4]) that
there is no i-shady character of L for any i ≥ 0. This implies that the
orbifolds M1 and Mc are i-isospectral for all i ≥ 0.

Theorem 12.3 (Theorem A in [P10]). There exists a pair of closed
hyperbolic 3-orbifolds with volume 0.251 . . . that are i-isospectral for all
i, but not representation equivalent.

http://www.lmfdb.org/NumberField/4.2.1375.1
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Figure 1. Isospectral and 1-isospectral but not repre-
sentation equivalent 3-orbifolds (volume ≈ 0.251)

This answers Question 5.4 negatively for hyperbolic 3-orbifolds,
contrary to the expectation of Doyle and Rossetti. In addition, the
volume of this pair is very small, making it a good candidate for Ques-
tion 5.7 in the case of i-isospectrality for all i. Indeed, as explained
in the discussion following this question, the Sunada construction can
achieve volume 0.2733 at best. In addition, by [Ada91], the first accu-
mulation point of volumes of hyperbolic 3-orbifolds is 0.30521 . . . , so
there are finitely many hyperbolic 3-orbifolds of volume less than 0.251.
Another measure of the low complexity of this example is that the un-
derlying topological space of bothM1 andMc is the 3-sphere S3, which
is the simplest 3-manifold.

12.3. Isospectrality and 1-isospectrality. Consider the num-
ber field F = Q(α) where α4 − 3α2 − 2α + 1 = 0. This is the unique
field of discriminant −1328 and signature (2, 1) (LMFDB 4.2.1328.1).
Let D be the unique quaternion division algebra ramified at every real
place and no finite place of F . We have C ∼= Ciso

∼= C2, which there-
fore has a single non-trivial character χ, corresponding to the quadratic
extension L = F (ζ4). Let C = {1, c}. We have

vol(M1) = vol(Mc) =
13283/2ζF (2)

28π6
= 0.2461808 . . . .

The maximal cyclic subgroups of both Γ1 and Γc have order 2, 3
or 4, and we have

H1(Γ1,Z) ∼= H1(Γc,Z) ∼= (Z/2Z)2.
We prove by computation (see [P10, Example 7.6]) that there is

no 0-shady character of L. This implies that the orbifolds M1 and Mc

are isospectral. On the other hand, there exist 1-shady characters
of L, and we prove that there there is a Laplace eigenvalue approxi-
mately 30.2167 . . . on Ω1(M1⊔Mc) that appears with odd multiplicity,
forcing M1 and Mc to be non-1-isospectral.

http://www.lmfdb.org/NumberField/4.2.1328.1
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Figure 2. Isospectral but not 1-isospectral 3-orbifolds
(volume ≈ 0.246)

Theorem 12.4 (Theorem B in [P10]). There exists a pair of closed
hyperbolic 3-orbifolds with volume 0.246 . . . that are isospectral, but not
1-isospectral.

This partially answers Question 5.5 in the case of hyperbolic 3-
orbifolds, leaving open the possibility that 1-isospectrality implies 0-
isospectrality. The same remarks on the small volume as for the pre-
vious example apply to this one, again making it a good candidate for
Question 5.7.

12.4. Density of bad eigenvalues. A byproduct of our method
is that since Hecke characters are easy to count, it provides an upper
bound on the number of eigenvalues whose multiplicity in M1 and Mc

can differ. We prove the following bound.

Theorem 12.5 (Theorem C in [P10]). Consider the 3-dimensional
case, where X = H3 i.e. (s, r2) = (0, 1). There exists a constant a > 0
such that for all i ≥ 0 and for all X > 0 we have∑

λ<X

| dim(Ωi(M1)∆=λ)− dim(Ωi(Mc)∆=λ)| ≤ aX1/2.

In other words, Vignéras’s pairs of orbifolds, even when they are
not isospectral, are always “almost isospectral”, in the sense that there
is a vanishing proportion of eigenvalues whose multiplicities differ. In
particular, since there exist Vignéras pairs that are not isospectral, we
have α ≤ 1/2 in Question 5.8 for hyperbolic 3-manifolds. Combined
with Kelmer’s theorem [Kel14, Theorem 1], this answers Question 5.8
completely for hyperbolic 3-manifolds: the supremum is 1/2, contrary
to Kelmer’s expectation. It would be interesting to examine the sharp-
ness of Kelmer’s threshold for the length spectrum from the point of
view of selectivity.
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12.5. Regulators. Our Hecke operators method also applies to
the integral homology. Indeed, by Hodge’s theorem and Matsushima’s
formula ([Mat67], see also [BC05, §1.2]), automorphic forms allow us
to detect the existence of an invertible Hecke operator

T : Hi(M1,R) −→ Hi(Mc,R)

This operator has an adjoint

T ∗ : Hi(Mc,R) −→ Hi(M1,R)

for the inner product induced by the Riemannian metric. However,
the adjoint T ∗ is also a Hecke operator, so both these Hecke operators
preserve the integral homology: we get adjoint maps

T : Hi(M1,Z) −→ Hi(Mc,Z) and T ∗ : Hi(Mc,Z) −→ Hi(M1,Z).

As in our proof of Theorem 2.3 (see (2.1)), we obtain that

Regi(M1)
2

Regi(Mc)2
=

detT ∗

detT
.

Inspired by the theory of regulator constants (see [DD09] and Sec-
tion 2.3), we develop an abstract theory of regulator constants for
graded modules [P10, Sections 3.2 and 3.3] from identities of this form,
although it is maybe not as complete as the one for finite groups. We
obtain a version of Theorem 12.2 for ∗ = H• where the meaning of
H•-isospectrality is:

• M1 and Mc have the same Betti numbers, and
• for all i ≥ 0 the ratio Regi(M1)

2/Regi(Mc)
2 is rational.

This provides a partial answer to Question 7.6 in the setting of the
Vignéras construction. Interestingly, H•-shady characters are much
more restricted than i-shady characters; for instance they are algebraic
Hecke characters, whereas general i-shady characters are transcenden-
tal. This means that we can prove rationality of regulator ratios even
when the orbifolds are not isospectral!

Consider the following example. Let F = Q(α) where α4 − 2α3 +
7α2−6α−3 = 0. The field F is a number field of discriminant −10224
and signature (2, 1) (LMFDB 4.2.10224.2). Let D be the unique
quaternion division algebra ramified at every real place and no finite
place of F . We have C ∼= Ciso

∼= C2, which therefore has a single
non-trivial character χ, corresponding to the quadratic extension L =
F (ζ12). Let C = {1, c}. We have

vol(M1) = vol(Mc) =
102243/2ζF (2)

28π6
= 5.902455 . . . .

The maximal cyclic subgroups of Γ1 have order 2, 3, 4 or 12, and
the maximal cyclic subgroups of Γc have order 2 or 3.

http://www.lmfdb.org/NumberField/4.2.10224.2
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Figure 3. Non-isospectral 3-orbifolds with both Betti
numbers 1 and with rational regulator square quotient
(volume ≈ 5.902)

By the same odd multiplicity argument as before, we prove thatM1

and Mc are neither isospectral not 1-isospectral. However, there is no
H•-shady character of L, so we have

Reg1(M1)
2

Reg1(Mc)2
∈ Q×,

and the Betti numbers of M1 and Mc are equal. In fact, we have

H1(Γ1,Z) ∼= (Z/2Z)2 ⊕ Z and H1(Γc,Z) ∼= (Z/2Z)2 ⊕ Z,
and in particular both first Betti numbers are 1, so the rationality of
the ratio of regulators is a non-trivial statement. Moreover, since the
orbifolds are not isospectral, the Cheeger–Müller theorem does not say
anything about this rationality.

Theorem 12.6 (Theorem E in [P10]). There exists a pair of closed
hyperbolic 3-orbifoldsM1, Mc with volume 5.902. . . that are not isospec-
tral, nor 1-isospectral, and for which dimH1(M1,Q) = dimH1(Mc,Q) =
1, yet Reg1(M1)

2/Reg1(Mc)
2 is rational.

12.6. Torsion homology and Galois representations. Finally,
our method even applies to torsion homology. However, this is con-
ditional to a plausible conjecture ([P10, Conjecture 6.5], a variant
of [Ash92], [CG18, Conjecture B], and [CV19, Conjecture 2.2.5]) on the
existence of mod p Galois representations attached to torsion classes
in the homology of the arithmetic orbifolds we are considering. Fix a
prime number p > 2, and suppose we want to compare the p-power
torsion homology of the two orbifolds. Following our method, we look
for a Hecke operator

T : Hi(M1,Zp) −→ Hi(Mc,Zp)

that is invertible over Zp. By dévissage, if this fails to exist then there
exists a mod p system of eigenvalues (ap) for the Hecke operators such
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that such that

ap = apχ(p) for all p.

But now, torsion homology is not directly related to automorphic forms,
so we cannot use automorphic induction. Instead, we assume that there
exists a semisimple Galois representation

ρ : GF −→ GL2(F̄p)

such that Tr ρ(Frobp) = ap for almost all p, and satisfying other ex-
pected local properties. The self-twist condition implies

ρ⊗ χ ∼= ρ,

and this is well-known to imply (since p ̸= 2) the existence of a char-
acter ψ : GL → F̄×

p such that

ρ ∼= IndGF /GL
ψ.

By class field theory, the Galois character ψ corresponds to a mod p
character Ψ of a ray class group, and again one can analyse the prop-
erties that Ψ should satisfy. We obtain a version of Theorem 12.2
for ∗ = Zp, where the meaning of Zp-isospectrality is:

• for all i ≥ 0, Hi(M1,Zp) ∼= Hi(Mc,Zp), and
• for all i ≥ 0, we have Regi(M1)

2/Regi(Mc)
2 ∈ Z×

(p).

Note that Zp-isospectrality is stronger than H•-isospectrality; corre-
spondingly, every H•-shady character gives rise to a Zp-shady charac-
ter for all p. Conversely, if there is no H•-shady character, then there
is a computable finite set of primes S such that there is no Zp-shady
character for p /∈ S (see [P10, Theorem H]). This set of primes plays,
in the context of the Vignéras construction, the role of the set of prime
divisors of #G in the context of the Sunada construction with a finite
group G.

Although the conjecture that we use has been proved in some cases
(see [Sch15] for the first such result and [CN23] for the most recent
developments), it would be nice to be able to bypass Galois representa-
tions to get an unconditional result. This would require the following
special case of torsion functoriality, which could be very hard.

Question 12.7. Can we prove the existence of mod p automorphic
induction? Can we characterise it in terms of self-twists?

Torsion analogues of phenomena from the Langlands programme
have recently been of great interest, for instance the Jacquet–Langlands
correspondence [CV19] or cyclic base-change [TV16]. Our results can
also be interpreted as a such a phenomenon, namely a torsion analogue
of the Labesse–Langlands multiplicity formula [LL79]. The Langlands
programme postulates the existence of a compact group LF , which is
an extension of GF , and conjectures that to each cuspidal automorphic
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representation Π of D×, one should be able to attach a continuous
irreducible representation, called a Langlands parameter,

ρ = ρΠ : LF −→ GL2(C),
such that ρΠ ∼= ρΠ′ if and only if Π ∼= Π′. Concretely, each such Π
contributes to the spectrum of

M =
⊔
c∈C

Mc,

i.e. of one or several of the components. In contrast, to each cuspi-
dal automorphic representation Π of the kernel SL1(D) of the reduced
norm, one should be able to attach an irreducible Langlands parameter

ρ : LF −→ PGL2(C),
but several non-isomorphic Π can have isomorphic parameters ρ: they
form an L-packet. The difference between the several Π manifests
itself by the fact that they may not have fixed points under the same
subgroups, and they may not all have the same multiplicity in the space
of automorphic forms for SL1(D). Concretely, each such Π contributes
to the spectrum of a connected orbifold SL1(Oc)\X , which is closely
related to the component Mc = O×

c \X . However, the following result
of Labesse and Langlands [LL79, Proposition 7.2] implies that most ρ
contribute equally to the spectrum of all of these orbifolds.

Theorem 12.8 (Labesse–Langlands). Suppose ρ : LF → PGL2(C)
is not induced from a character of an index 2 subgroup. Then the
automorphic multiplicity of every Π in the L-packet of ρ is the same.

The relation with isospectrality was noticed by Rajan [Raj07] who
used it to reprove isospectrality results generalising Vignéras’s. Return-
ing to torsion homology, let T denote the algebra generated by all Hecke
operators Tp and T1 the subalgebra generated by the operators Tp that
stabilise the components, corresponding to primes p with trivial class
in C. To each system of eigenvalues (ap) of the Hecke algebra T occur-
ring in H1(M,Fp) should correspond a continuous semisimple Galois
representation

ρ : GF −→ GL2(F̄p)

such that Tr ρ(Frobp) = ap for almost all p. The restriction of the eigen-
value system to T1 does not completely determine ρ, but it completely
determines its projectivisation

Pρ : GF −→ PGL2(F̄p).

Our result is that if Pρ is not induced from GL, then we have an
isomorphism of T1-modules

Hi(M1,Zp)m ∼= Hi(Mc,Zp)m

where m is the maximal ideal of T1 generated by p and the Tp − ap.
This is analogous to Theorem 12.8. However, more generally Labesse
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and Langlands give, in terms of the Langlands parameter, a formula for
the multiplicity of Π. This leads to the following interesting question.

Question 12.9. Can one formulate a torsion analogue of the full
Labesse–Langlands multiplicity formula? More precisely, from the
properties of the Galois representations ρ, can one predict the ratio

#Hi(M1,Zp)tors
#Hi(Mc,Zp)tors

or the p-adic valuation of the ratio

Regi(M1)
2

Regi(Mc)2
?

Can one prove it?

13. Hardness of lattice problems

When studying the hardness of a computational problem A, we
usually mean “does there exist an efficient algorithm that solves A
on all instances?”; this is the worst-case complexity of the problem:
a problem is hard in this sense if there exists some instance that is
hard. However, for cryptographic applications, what we really need is a
problem that is hard when instances are picked at random with respect
to a certain distribution (think about the instance as a secret key, which
needs to be generated at random from a large set). Therefore, one needs
to consider the question “does there exist and algorithm that solves A
efficiently most of the time on random instances?”; this is the average-
case complexity of the problem (see [BT06] for a survey with precise
definitions). A priori, it may happen that a problem is hard in the worst
case (there exists hard instances) but easy on average (most instances
are easy). Again, as for worst-case complexity, it is hard to prove that a
computational problem is hard on average, but we can prove reductions.
More precisely, assume we can design an algorithm that uses an oracle
for A that works on most random inputs, and uses calls to that oracle
to solve A in an arbitrary instance. Then A is no easier on average than
in the worst case: this is a worst-case to average-case reduction. The
goal of our work [P14] is to prove such a result for certain short vector
problems for module lattices (Definition 6.9) of fixed rank r. Such a
result was obtained by de Boer, Ducas, Pellet-Mary and Wesolowski
in the rank 1 case [dBDPMW20]. It was suggested in [DK22] that
a generalisation might be possible. In the exposition of our results,
we assume that r is fixed and |∆F | ≤ [F : Q]O([F :Q]), to simplify the
statements.

13.1. Geometry of the space of module lattices. We gave an
abstract definition of module lattices (Definition 6.9) but it turns out
that all such lattices of rank r can be embedded in F r

R. By choosing a
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pseudo-basis (see [Coh00, Section 1.4.1]), we obtain that the space of
module lattices is the adélic double quotient (see Section 4.2)

M = GLr(F )\GLr(AF )/
∏
p

GLr(Zp)× Un(FR)R>0 =
⊔

a∈Cl(F )

Γa\X

where
X = GLr(FR)/Un(FR)R>0

and
Γa = AutZF

(Zr−1
F ⊕ a).

In particular, there is a natural measure onM coming from the Haar
measure on GLr(FR); since the total measure of M is finite, we nor-
malise it to be a probability measure. This gives a meaning to the
notion of a “uniformly random module lattice”, but this is not quite
suitable for notions of average-case complexity: computers cannot rep-
resent arbitrary real numbers, so we need to discretise this probability
distribution and prove that we can efficiently sample from it. The
discretisation is a technical part of [P14] that we omit here, but the
samplability will follow from the techniques presented below.

The spaceM has finite volume, but when r > 1 it is not compact.
Its large scale geometry is related to the shape of the corresponding
lattices: the largest, compact part (“the bulk”) consists of lattices that
are balanced in the sense that they do not have very short vectors
compared to their covolume; there are thin parts attached to the bulk,
consisting of lattices that are imbalanced; as λ1(Λ)/ covol(Λ)

1/n → 0,
the lattice Λ goes to infinity (“the cusps”).

Our general strategy is to use the well-known equidistribution of
Hecke orbits [GM03,COU01] in M. The basic idea is the following:
from a lattice Λ, take a random sublattice Λ′ of fixed index. If v ∈ Λ′

is a solution to γ-HSVP in Λ′, then it is a solution of [Λ : Λ′]1/nγ-
HSVP in Λ. Moreover, as the index grows, there are more and more
possible sublattices, which therefore have a chance of being equidis-
tributed in M. If this happens for moderately large index, then we
obtain a worst-case to average-case reduction for HSVP with a mod-
erately large blowup in the approximation factor γ. In fact, this oper-
ation is precisely reflected by the action of Hecke operators (see Sec-
tion 4.2): the Hecke operator Tp sends a lattice Λ to the formal sum of
its sublattices Λ′ such that Λ/Λ′ ∼= Fp.

However, we cannot hope the equidistribution to happen for a small
index [Λ : Λ′] if Λ is very imbalanced: indeed, if v ∈ Λ is a vector that
is very short compared to covol(Λ)1/n, then the sublattice Λ′ contains
the vector [Λ : Λ′]v whereas its covolume is larger than that of Λ,
so Λ′ is still imbalanced if the index is moderately large, preventing
equidistribution. Concretely, this means that we are not able to prove a
worst-case to average-case reduction for HSVP in the entire spaceM.
However, a slightly different problem is better behaved for imbalanced
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lattices: the Short Independent Vectors Problem (recall Definition 6.6
of the successive minima λi(Λ)).

Problem 13.1 (γ-SIVP). Given a lattice Λ, compute independent
vectors v1, . . . , vn ∈ Λ such that ∥vi∥ ≤ γλn(Λ).

We will need to treat lattices differently depending on their bal-
ancedness. We use the following measure.

Definition 13.2. Let Λ be a module lattice of rank r. For each
integer 1 ≤ i ≤ r we define

λFi (Λ) = min{λ : dimF ⟨v ∈ Λ | ∥v∥ ≤ λ⟩F ≥ i}.
We define the imbalance factor

αF (Λ) =
λFr (Λ)

λF1 (Λ)
≥ 1.

Our technique will distinguish three regions of M. We carefully
choose bounds

• αbf ∈ nO(1), and
• αfc ∈ 2O(n),

and we define

• the bulk ofM to be the set of Λ such that

αF (Λ) ≤ αbf ;

• the flares ofM to be the set of Λ such that

αbf < αF (Λ) ≤ αfc;

• the cuspidal region ofM (sometimes abbreviated as the cusps,
although technically the cusps are at infinity) to be the set of Λ
such that

αfc < αF (Λ).

Figure 4. Regions of the spaceM
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13.2. Self-reduction in the bulk. We now give more details
about our technique. Let fΛ : M → R≥0 be a bounded, compactly
supported function such that

∫
M fΛ = 1, which we see as the den-

sity of a probability distribution. In our application fΛ will need to
be tightly concentrated around the input lattice Λ, so that drawing
a random lattice according to fΛ yields lattices that are close to Λ.
Let T̄ = 1

deg(Tp)
Tp denote the Hecke operator normalised to be an aver-

aging operator, so that T̄1 = 1. We would like T̄ fΛ to be very close to
the uniform distribution, which has density function the constant func-
tion 1, in other words we would like to make the L1 norm ∥T̄ fΛ − 1∥1
(also known as the statistical distance) very small. The Hecke oper-
ator is self-adjoint, so it stabilises the orthogonal complement L2

0(M)
of C · 1. Let λ be the operator norm of T̄ acting on L2

0(M). Then we
have

∥T̄ fΛ−1∥1 ≤ ∥T̄ fΛ−1∥2 = ∥T̄ (fΛ−1)∥2 ≤ λ∥fΛ∥2 since ⟨fΛ−1,1⟩ = 0.

If we can estimate the norm ∥fΛ∥2 and if we can make λ very small
by using a prime ideal p of large norm, then we can indeed make the
distance ∥T̄ fΛ − 1∥1. Unfortunately, we always have λ = 1! This is
due to the determinant map

M det−→M1

to the space M1 of rank 1 module lattices. Let L2
det(M) ⊂ L2(M)

denote the subspace of functions that are pulled back from L2(M1).
Because GL1 is commutative, M1 is in fact a group (also known as
the Arakelov class group) and its spectral decomposition comes from
Hecke characters, so that every eigenvalue of T̄ on L2

det(M) has abso-
lute value 1. However, this is the only obstruction: by inspecting the
spectral decomposition of L2(M) (see [GH24, Section 10]) and known
bounds towards the generalised Ramanujan conjecture (see [BB13] for
a survey), we have the following bound.

Proposition 13.3. The operator norm of Tp acting on the orthog-
onal complement of L2

det(M) is at most O(N(p)−3/8).

In addition, the bad eigenvalues of L2
det(M) can be dealt with by

the techniques of [dBDPMW20]: by averaging over all primes with
norm up to some bound B (assuming GRH for L-functions of Hecke
characters) and using a smooth function fΛ.

The next ingredient is a bound on ∥fΛ∥2. We construct our func-
tion fΛ as follows: start from a function

f : X −→ R≥0

and project it via

X −→ Γa\X
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to a component, centering it around Λ, to yield fΛ. The norm bound
uses the following ingredients. First we need some integral formulas and
bounds from [P3]. Then we need to take into account the blowup in L2

norm incurred by the possible overlap between f and its Γa-translates;
this amounts to counting almost-automorphisms of Λ, which we reduce
to counting vectors in Λ in various balls. The more imbalanced Λ is, the
more almost-automorphisms it has. Putting these ingredients together
yields the following bound.

Proposition 13.4 ([P14]). We have

∥fΛ∥2 ≤ (nαF (Λ))
O(n).

To use this fΛ in the reduction, we explain in [P14] how to sample
from the distribution with density fΛ. This leads to the following
algorithm.

Algorithm 13.5. Relative to an oracle OavgHSVP.

• Input: a lattice Λ in the bulk ofM.
• Output: a vector v ∈ Λ.

(1) Draw a random metric on Λ according to fΛ, yielding a new
lattice Λ′.

(2) Draw a random prime p of norm ≤ B and a random sublat-
tice Λ′′ ⊂ Λ′ with Λ′/Λ′′ ∼= Fp.

(3) v ← OavgHSVP(Λ
′′)

(4) Return v.

We obtain the following worst-case average-case reduction forHSVP,
that applies to balanced lattices.

Theorem 13.6 ([P14]). Assume GRH. Algorithm 13.5 gives a poly-
nomial time reduction from nO(1)γ-HSVP restricted to the bulk ofM
to average γ-HSVP.

However, for imbalanced lattices our technique cannot yield a good
reduction for HSVP, so we need an analogue of this result for SIVP.
For that purpose we prove that random lattices in M are balanced
with high probability. We use the notion of semistable and unstable
lattices due to Grayson [Gra84], which is a notion of balanceness based
on volume of sublattices instead of length of vectors. We prove that:

• semistable lattices belong to the bulk ofM (i.e. are balanced
in our sense); and
• the volume of the set of unstable lattices is very close to 0
(we adapt computations of Thunder [Thu98] and Shapira and
Weiss [SW14]).

We can therefore consider the obvious analogue of Algorithm 13.5
for SIVP.

Algorithm 13.7. Relative to an oracle OavgSIVP.
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• Input: a lattice Λ in the bulk ofM.
• Output: independent vectors v1, . . . , vn ∈ Λ.

(1) Draw a random metric on Λ according to fΛ, yielding a new
lattice Λ′.

(2) Draw a random prime p of norm ≤ B and a random sublat-
tice Λ′′ ⊂ Λ′ with Λ′/Λ′′ ∼= Fp.

(3) v1, . . . , vn ← OavgSIVP(Λ
′′)

(4) Return v1, . . . , vn.

We obtain the following analogue of Theorem 13.6 for SIVP.

Theorem 13.8 ([P14]). Assume GRH. Algorithm 13.7 gives a poly-
nomial time reduction from nO(1)γ-SIVP restricted to the bulk of M
to average γ-SIVP.

13.3. Rebalancing lattices: from the flares to the bulk. In
the flares, the lattices are imbalanced, but not sufficiently to be able
to find the gaps in polynomial time. Our reduction instead guesses the
size of the gaps, and uses specially crafted Hecke operators to rebalance
those gaps.

Algorithm 13.9. Relative to an oracle OavgSIVP.

• Input: a lattice Λ in the bulk or the flares ofM.
• Output: independent vectors v1, . . . , vn ∈ Λ.

(1) v1, . . . , vn ← an LLL-reduced basis of Λ
(2) For all integer tuples (t1, . . . , tr−1) such that 1 ≤ 2ti ≤ αfc:

(a) Λ′ ← Λ
(b) For i = 1 to r − 1:

• Let p be a prime number such that p ≈ 2ti .
• Let Λ′′ ⊂ Λ′ be a random sublattice such that
Λ′/Λ′′ ∼= (ZF/pZF )

i

• Λ′ ← Λ′′

(c) v′1, . . . , v
′
n ← output of Algorithm 13.7 on Λ′

(d) If maxi ∥v′i∥ < maxi ∥vi∥ then: v1, . . . , vn ← v′1, . . . , v
′
n

(3) Return v1, . . . , vn.

We are able to prove that at least one of the lattices Λ′ belongs to the
bulk ofM, namely the one where the 2ti are closest to λFi+1(Λ)/λ

F
i (Λ),

and that λn(Λ
′) is not too much larger than λn(Λ). Note the use of the

Hecke operator Tp,...,p (i times), where pZF is not necessarily a prime
ideal, to rebalance the i-th gap. This gives the following reduction.

Theorem 13.10 ([P14]). Assume GRH. Algorithm 13.9 gives a
polynomial time reduction from nO(1)γ-SIVP restricted to the union
of the bulk and the flares ofM to average γ-SIVP.

13.4. Cutting cusps: from cuspidal regions to flares. Our
definition of the cuspidal region is designed so that the gaps of lattices
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in such regions are so large that they can be detected by the LLL
algorithm, and can therefore be broken into lower rank pieces. In order
to obtain a self-reduction in rank r, we complement these lower rank
lattices while being careful not to create a new large gap.

Algorithm 13.11. Relative to an oracle OavgSIVP.

• Input: a lattice Λ inM.
• Output: independent vectors v1, . . . , vn ∈ Λ.

(1) d← [F : Q]
(2) v1, . . . , vn ← an LLL-reduced basis of Λ
(3) Let r1 + · · · + rt = r be the partition of r corresponding to

gaps in the (vi) that are larger than 2O(n).
(4) Λprev ← 0
(5) For j = 1 to t:

(a) Rj ← r1 + · · ·+ rj
(b) Λ1 ← Λ ∩ ⟨v1, . . . , vdRj

⟩F (Λ1 has rank Rj)
(c) Λ2 ← Λ1/Λprev (Λ2 has rank rj)
(d) Λ3 ← Λ2 ⊕ (covol(Λ2)

1/(drj)ZF )
r−rj (Λ3 has rank r)

(e) w1, . . . , wn ← output of Algorithm 13.9 on Λ3

(f) Project w1, . . . , wn ∈ Λ3 orthogonally onto Λ2, and ex-
tract independent vectors w′

1, . . . w
′
drj
∈ Λ2.

(g) Lift w′
1, . . . w

′
drj

to vdRj−1+1, . . . , vdRj
∈ Λ.

(h) Λprev ← Λ1

(6) Return v1, . . . , vn.

The careful design of the lattices Λ3 forces them to belong to the
flares or bulk ofM, finally giving our main result.

Theorem 13.12 ([P14]). Assume GRH. Algorithm 13.11 gives a
polynomial time reduction from nO(1)γ-SIVP to average γ-SIVP for
module lattices.

In this exposition we hid the dependence on r in the big O notation;
in [P14] we make this dependence explicit although our intended appli-
cation is for fixed r. The outcome is that the bounds in the reduction
are exponential in r, making them very weak as r → ∞. It would be
very interesting to strengthen the method so that it gives good bounds
even when r → ∞, for instance in the case F = Q (unstructured
lattices). At present this seems quite difficult.
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1988-89, Prog. Math. 91, 27-41 (1990)., 1990.

[BV13] Nicolas Bergeron and Akshay Venkatesh, The asymp-
totic growth of torsion homology for arithmetic groups,
J. Inst. Math. Jussieu 12 (2013), no. 2, 391–447 (Eng-
lish).

[BVV19] Jean-François Biasse and Christine Van Vredendaal,
Fast multiquadratic S-unit computation and application
to the calculation of class groups, ANTS XIII. Proceed-
ings of the thirteenth algorithmic number theory sym-
posium, University of Wisconsin-Madison, WI, USA,
July 16–20, 2018, Berkeley, CA: Mathematical Sciences
Publishers (MSP), 2019, pp. 103–118 (English).

[Car19] Francisco C. Caramello, Introduction to orbifolds,
Preprint, arXiv:1909.08699 [math.DG] (2019), 2019.



86 Bibliography

[CD23] Wouter Castryck and Thomas Decru, An efficient key
recovery attack on SIDH, Advances in cryptology – EU-
ROCRYPT 2023. 42nd annual international conference
on the theory and applications of cryptographic tech-
niques, Lyon, France, April 23–27, 2023. Proceedings.
Part V, Cham: Springer, 2023, pp. 423–447 (English).
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dans la théorie des nombres., J. Reine Angew. Math.
41 (1851), 191–216 (French).

[Iwa64] Nagayoshi Iwahori, On the structure of a Hecke ring of
a Chevalley group over a finite field, J. Fac. Sci., Univ.
Tokyo, Sect. I 10 (1964), 215–236 (English).

[JDF11] David Jao and Luca De Feo, Towards quantum-resistant
cryptosystems from supersingular elliptic curve iso-
genies, Post-quantum cryptography. 4th international
workshop, PQCrypto 2011, Taipei, Taiwan, November
29–December 2, 2011. Proceedings, Berlin: Springer,
2011, pp. 19–34 (English).

[JL70] H. Jacquet and R. P. Langlands, Automorphic forms on
GL(2), Lect. Notes Math., vol. 114, Springer, Cham,
1970 (English).

[JOP14] Antoine Joux, Andrew Odlyzko, and Cécile Pierrot, The
past, evolving present, and future of the discrete log-
arithm, Open problems in mathematics and computa-
tional science. Based on the presentations at the confer-
ence, Istanbul, Turkey, September 18–20, 2013, Cham:
Springer, 2014, pp. 5–36 (English).

[Kac66] Mark Kac, Can one hear the shape of a drum?, Am.
Math. Mon. 73 (1966), 1–23 (English).

[Kel14] Dubi Kelmer, A refinement of strong multiplicity one
for spectra of hyperbolic manifolds, Trans. Am. Math.
Soc. 366 (2014), no. 11, 5925–5961 (English).

[Kie20] Jean Kieffer, Evaluating modular equations for abelian
surfaces, Preprint, arXiv:2010.10094 [math.NT] (2020),
2020.

[Kie22] , Counting points on abelian surfaces over finite
fields with Elkies’s method, Preprint, arXiv:2203.02009
[math.NT] (2022), 2022.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and
Jean-Pierre Tignol, On the quaternion ℓ-isogeny path
problem, LMS J. Comput. Math. 17A (2014), 418–432
(English).



92 Bibliography

[Koh96] David Kohel, Endomorphism rings of elliptic curves
over finite fields, Ph.D. thesis, University of California,
Berkeley, 1996.

[Kol89] V. A. Kolyvagin, Finiteness of E(Q) and Sha(E,Q) for
a subclass of Weil curves, Math. USSR, Izv. 32 (1989),
no. 3, 523–541 (English).

[Kol90] , Euler systems, The Grothendieck Festschrift,
Collect. Artic. in Honor of the 60th Birthday of A.
Grothendieck. Vol. II, Prog. Math. 87, 435-483 (1990).,
1990.

[KS58] Kunihiko Kodaira and D. C. Spencer, On deformations
of complex analytic structures. I, Ann. Math. (2) 67
(1958), 328–401 (English).

[Lan80] Robert P. Langlands, Base change for GL(2), Ann.
Math. Stud., vol. 96, Princeton University Press,
Princeton, NJ, 1980 (English).

[Lin15] Benjamin Linowitz, Selective orders in central simple al-
gebras and isospectral families of arithmetic manifolds,
Manuscr. Math. 147 (2015), no. 3-4, 399–413 (English).

[LL79] J.-P. Labesse and R. P. Langlands, L-
indistinguishability for SL(2), Can. J. Math. 31
(1979), 726–785 (English).

[LL24] Emilio A. Lauret and Benjamin Linowitz, The spectral
geometry of hyperbolic and spherical manifolds: analo-
gies and open problems, New York J. Math. 30 (2024),
682–721 (English).

[LLL82] A. K. Lenstra, H. W. jun. Lenstra, and László Lovász,
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Birkhäuser/Springer, 2013, pp. 381–413 (English).

[Wes22] Benjamin Wesolowski, The supersingular isogeny path
and endomorphism ring problems are equivalent, FOCS
2021-62nd Annual IEEE Symposium on Foundations of
Computer Science, 2022.

[Wol67] J. A. Wolf, Spaces of constant curvature, New
York-St. Louis-San Francisco-Toronto-London-Sydney:
McGraw-Hill Book Comp. XV, 408 p. (1967)., 1967.

[Wol01] Joseph A. Wolf, Isospectrality for spherical space forms,
Result. Math. 40 (2001), no. 1-4, 321–338 (English).

[Yos83] Tomoyuki Yoshida, On G-functors. II: Hecke operators
and G-functors, J. Math. Soc. Japan 35 (1983), 179–
190 (English).

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Foreword
	Acknowledgements
	Part 1.  Introduction
	Notations and conventions
	1. A short history of Hecke operators
	2. Finite groups
	3. Algebraic number theory
	4. Arithmetic manifolds
	5. Can you hear the shape of a drum?
	6. Post-quantum cryptography


	Part 2.  Hecke operators of finite groups
	7. Can you hear torsion homology?
	8. Computing class groups
	9. Computing Selmer groups


	Part 3.  Hecke operators and isogenies
	10. Reconstructing isogenies
	11. Hardness of isogeny problems


	Part 4.  Hecke operators of arithmetic manifolds
	12. Can you hear representation equivalence?
	13. Hardness of lattice problems

	List of presented works
	Bibliography


