Computing Kleinian modular forms

Aurel Page

June 4, 2014

Warwick, LMFDB workshop

Aurel Page Computing Kleinian modular forms

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ.

2 Arithmetic Kleinian groups

Aurel Page Computing Kleinian modular forms

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field F?

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

э

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field *F*? Start with GL₂ automorphic forms!

Where do you find automorphic forms?

< ロ > < 同 > < 回 > < 回 > < □ > <

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field *F*? Start with GL₂ automorphic forms!

Where do you find automorphic forms? In the cohomology of arithmetic groups!

Matsushima's formula: Γ discrete cocompact subgroup of connected Lie group *G*, *E* representation of *G*.

$$H^i(\Gamma, E) \cong igoplus_{\pi \in \widehat{G}} \operatorname{Hom}(\pi, L^2(\Gamma ackslash G)) \otimes H^i(\mathfrak{g}, K; \pi \otimes E)$$

< ロ > < 同 > < 回 > < 回 > .

Automorphic forms for GL₂

Where do you find GL₂ automorphic forms?

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

æ.

Automorphic forms for GL₂

Where do you find GL₂ automorphic forms?

• $H^*(\operatorname{GL}_2(\mathbb{Z}_F), E)$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Automorphic forms for GL₂

Where do you find GL₂ automorphic forms?

- $H^*(\operatorname{GL}_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

ヘロト 人間 ト イヨト イヨト

Automorphic forms for GL₂

Where do you find GL₂ automorphic forms?

- $H^*(\operatorname{GL}_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

Kleinian case: $\mathcal{O}^{\times} \subset GL_2(\mathbb{C}), H^1(\mathcal{O}^{\times}, E)$

ヘロト 人間 ト イヨト イヨト

э

Automorphic forms for GL₂

Where do you find GL₂ automorphic forms?

- $H^*(\operatorname{GL}_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

Kleinian case: $\mathcal{O}^{\times} \subset GL_2(\mathbb{C})$, $H^1(\mathcal{O}^{\times}, E)$ Call $H^i(\mathcal{O}^{\times}, E)$ a space of Kleinian modular forms.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Motivation for the Kleinian case

• Elliptic curves, Abelian varieties of GL₂ type over number fields.

◆ロ▶★攝▶★注▶★注▶ 注: のなぐ

Motivation for the Kleinian case

- Elliptic curves, Abelian varieties of GL₂ type over number fields.
- Torsion phenomenon.

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

Motivation for the Kleinian case

- Elliptic curves, Abelian varieties of GL₂ type over number fields.
- Torsion phenomenon.
- Attached Galois representations: open case.

ヘロト 人間 ト イヨト イヨト

Arithmetic Kleinian groups

Aurel Page Computing Kleinian modular forms

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Kleinian groups

$$\begin{split} \mathbb{H} &:= \mathbb{C} + \mathbb{C}j \text{ where } j^2 = -1 \text{ and } jz = \bar{z}j \text{ for all } z \in \mathbb{C}. \\ \text{The upper half-space } \mathcal{H}^3 &:= \mathbb{C} + \mathbb{R}_{>0}j. \\ \text{Metric } ds^2 = \frac{|dz|^2 + dt^2}{t^2}, \text{ volume } dV = \frac{dx \, dy \, dt}{t^3}. \end{split}$$

ヘロト 人間 ト イヨト イヨト

э

Kleinian groups

$$\begin{split} \mathbb{H} &:= \mathbb{C} + \mathbb{C}j \text{ where } j^2 = -1 \text{ and } jz = \bar{z}j \text{ for all } z \in \mathbb{C}. \\ \text{The upper half-space } \mathcal{H}^3 &:= \mathbb{C} + \mathbb{R}_{>0}j. \\ \text{Metric } ds^2 &= \frac{|dz|^2 + dt^2}{t^2}, \text{ volume } dV = \frac{dx \, dy \, dt}{t^3}. \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot w &:= (aw + b)(cw + d)^{-1} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C}). \end{split}$$

ヘロト 人間 ト イヨト イヨト

Kleinian groups

$$\begin{split} \mathbb{H} &:= \mathbb{C} + \mathbb{C}j \text{ where } j^2 = -1 \text{ and } jz = \bar{z}j \text{ for all } z \in \mathbb{C}. \\ \text{The upper half-space } \mathcal{H}^3 &:= \mathbb{C} + \mathbb{R}_{>0}j. \\ \text{Metric } ds^2 &= \frac{|dz|^2 + dt^2}{t^2}, \text{ volume } dV = \frac{dx \, dy \, dt}{t^3}. \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot w &:= (aw + b)(cw + d)^{-1} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C}). \end{split}$$

Kleinian group: discrete subgroup of $SL_2(\mathbb{C})$. Cofinite if it has finite covolume.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ.

Quaternion algebras

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Quaternion algebras

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $\operatorname{nrd}(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

ヘロト 人間 ト イヨト イヨト

Quaternion algebras

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $\operatorname{nrd}(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

 \mathbb{Z}_F integers of *F* number field.

Order $\mathcal{O} \subset B$: subring, finitely generated \mathbb{Z}_F -module, $\mathcal{O}F = B$.

ヘロト 人間 ト イヨト イヨト

Quaternion algebras

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $\operatorname{nrd}(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

 \mathbb{Z}_F integers of *F* number field.

Order $\mathcal{O} \subset B$: subring, finitely generated \mathbb{Z}_F -module, $\mathcal{O}F = B$.

A place *v* of *F* is split or ramified according as whether $B \otimes_F F_v$ is $\mathcal{M}_2(F_v)$ or a division algebra.

< 日 > < 同 > < 回 > < 回 > < □ > <

Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Covolume formula

F almost totally real number field: exactly one complex place. *B*/*F* Kleinian quaternion algebra: ramified at every real place. \mathcal{O} order in *B*, Γ image of reduced norm one group \mathcal{O}^1 in SL₂(\mathbb{C}).

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

 \mathcal{O} order in B, Γ image of reduced norm one group \mathcal{O}^1 in $SL_2(\mathbb{C})$.

Theorem

Γ is a cofinite Kleinian group.
 It is cocompact iff B is a division algebra.
 If O is maximal then

$$\operatorname{Covol}(\Gamma) = \frac{|\Delta_{F}|^{3/2} \zeta_{F}(2) \prod_{\mathfrak{p} \text{ ram.}} (N(\mathfrak{p}) - 1)}{(4\pi^{2})^{[F:\mathbb{Q}] - 1}} \cdot$$

< □ > < 同 > < 回 > < 回 > < 回 >

Algorithms

Aurel Page Computing Kleinian modular forms

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

Sketch of algorithm



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Sketch of algorithm

- Compute B and O
- **2** Compute \mathcal{O}^1

Aurel Page Computing Kleinian modular forms

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Sketch of algorithm

- **O** Compute B and O
- **2** Compute \mathcal{O}^1
- Sompute $H^1(\mathcal{O}^1)$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Sketch of algorithm

- Compute B and O
- 2 Compute \mathcal{O}^1
- Sompute $H^1(\mathcal{O}^1)$
- Compute generator δ of ideal of norm \mathfrak{p}

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Sketch of algorithm

- Compute B and O
- Compute O¹
- Sompute $H^1(\mathcal{O}^1)$
- **Output** Sequence of the sequ
- Sompute Hecke operator T_{δ} on $H^1(\mathcal{O}^1)$

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Fundamental domains

 Γ a Kleinian group. An open subset $\mathcal{F}\subset\mathcal{H}^3$ is a fundamental domain if

•
$$\Gamma \cdot \overline{\mathcal{F}} = \mathcal{H}^3$$

•
$$\mathcal{F} \cap \gamma \mathcal{F} = \emptyset$$
 for all $1 \neq \gamma \in \Gamma$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nac

Dirichlet domains

Aurel Page Computing Kleinian modular forms

ヘロト 人間 とくほ とくほ とう

∃ 990

Dirichlet domains

Let $p \in \mathcal{H}^3$ with trivial stabilizer in Γ . The Dirichlet domain

$$D_{\rho}(\Gamma) := \{ x \in X \mid d(x, p) < d(\gamma \cdot x, p) \forall \gamma \in \Gamma \setminus \{1\} \} \\ = \{ x \in X \mid d(x, p) < d(x, \gamma^{-1} \cdot p) \forall \gamma \in \Gamma \setminus \{1\} \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dirichlet domains

Let $\rho \in \mathcal{H}^3$ with trivial stabilizer in Γ . The Dirichlet domain

$$D_{p}(\Gamma) := \{x \in X \mid d(x,p) < d(\gamma \cdot x,p) \forall \gamma \in \Gamma \setminus \{1\}\} \\ = \{x \in X \mid d(x,p) < d(x,\gamma^{-1} \cdot p) \forall \gamma \in \Gamma \setminus \{1\}\}.$$

is a fundamental domain for Γ that is a hyperbolic polyhedron. If Γ is cofinite, $D_p(\Gamma)$ has finitely many faces.

ヘロト 人間 ト イヨト イヨト

э

Example

Structure of the Dirichlet domain

Aurel Page Computing Kleinian modular forms

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Structure of the Dirichlet domain

 Faces of the Dirichlet domain are grouped into pairs, corresponding to elements g, g⁻¹ ∈ Γ;

ヘロト 人間 ト イヨト イヨト

Structure of the Dirichlet domain

- Faces of the Dirichlet domain are grouped into pairs, corresponding to elements g, g⁻¹ ∈ Γ;
- Edges of the domain are grouped into cycles, product of corresponding elements in Γ has finite order.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Poincaré's theorem

Theorem (Poincaré)

 The elements corresponding to the faces are generators of Γ. The relations corresponding to the edge cycles generate all the relations among the generators.

э

Poincaré's theorem

Theorem (Poincaré)

- The elements corresponding to the faces are generators of Γ. The relations corresponding to the edge cycles generate all the relations among the generators.
- If a partial Dirichlet domain D_p(S) has a face-pairing and cycles of edges, then it is a fundamental domain for the group generated by S.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Reduction algorithm

 $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Reduction algorithm

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Reduction algorithm

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases
 - repeat

Aurel Page Computing Kleinian modular forms

ヘロト 人間 ト イヨト イヨト

Reduction algorithm

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases
 - repeat
- \rightarrow point $x' = g_k \cdots g_1 x$ s.t. $x' \in D_p(\Gamma)$.

ヘロト 人間 ト イヨト イヨト

Reduction algorithm

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases

repeat

 \rightarrow point $x' = g_k \cdots g_1 x$ s.t. $x' \in D_p(\Gamma)$.

In particular for $\gamma \in \Gamma$, take $x = \gamma^{-1}p$, which will reduce to x' = p, to write γ as a product of the generators.

(日)

Example

Computation in hyperbolic space

Aurel Page Computing Kleinian modular forms

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Computation in hyperbolic space

We have :

• an explicit formula for the hyperbolic distance;

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

э

Computation in hyperbolic space

We have :

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;

э

Computation in hyperbolic space

We have :

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;
- an algorithm for computing intersections of half-spaces;

< ロ > < 同 > < 回 > < 回 > .

Computation in hyperbolic space

We have :

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;
- an algorithm for computing intersections of half-spaces;
- an algorithm for computing the volume of a polyhedron.

Suppose \mathcal{O} maximal.

Aurel Page Computing Kleinian modular forms

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Suppose \mathcal{O} maximal.

• Enumerate elements of \mathcal{O}^1 in a finite set S

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Suppose ${\mathcal O}$ maximal.

- Enumerate elements of \mathcal{O}^1 in a finite set S
- Compute $D = D_p(S)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Suppose ${\mathcal O}$ maximal.

- Enumerate elements of \mathcal{O}^1 in a finite set S
- Compute $D = D_p(S)$
- Repeat until D has a face-pairing and Vol(D) < 2 Covol(Γ)

ヘロト 人間 ト イヨト イヨト

Why would you care about the complexity?

ヘロト 人間 とくほ とくほ とう

Why would you care about the complexity? Bound on the size of the Dirichlet domain:

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Why would you care about the complexity? Bound on the size of the Dirichlet domain: $SL_2(\mathbb{C})$ action on $L^2_0(\Gamma \setminus SL_2(\mathbb{C}))$ mixes things fast.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

 $SL_2(\mathbb{C})$ action on $L_0^2(\Gamma \setminus SL_2(\mathbb{C}))$ mixes things fast. $\Rightarrow \operatorname{diam}(D_p(\Gamma)) \ll \log \text{Covol}(\Gamma)$

< 日 > < 同 > < 回 > < 回 > < □ > <

∃ \0<</p> \0

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

 $SL_2(\mathbb{C})$ action on $L_0^2(\Gamma \setminus SL_2(\mathbb{C}))$ mixes things fast. $\Rightarrow \operatorname{diam}(D_p(\Gamma)) \ll \log \operatorname{Covol}(\Gamma)$

- Proved complexity: Covol(Γ)^{O(1)}
- Observed complexity: Covol(Γ)²
- Lower bound: Covol(Γ)

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Group cohomology

Aurel Page Computing Kleinian modular forms

ヘロト 人間 とくほ とくほ とう

Group cohomology

Cocycles :

$$Z^1(\Gamma, E) := \{ \phi: \Gamma o E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \; orall g, h \in \Gamma \}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Group cohomology

Cocycles :

$$Z^1(\Gamma, E) := \{ \phi: \Gamma o E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \; orall g, h \in \Gamma \}$$

Coboundaries :

$$B^{1}(\Gamma, E) := \{\phi_{x} : g \mapsto x - g \cdot x : x \in E\} \subset Z^{1}(\Gamma, E)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Group cohomology

Cocycles :

$$Z^1(\Gamma, E) := \{ \phi: \Gamma o E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \; orall g, h \in \Gamma \}$$

Coboundaries :

$$B^{1}(\Gamma, E) := \{\phi_{x} : g \mapsto x - g \cdot x : x \in E\} \subset Z^{1}(\Gamma, E)$$

Cohomology :

$$H^1(\Gamma, E) := Z^1(\Gamma, E)/B^1(\Gamma, E)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Hecke operators

Let $\delta \in \text{Comm}(\Gamma)$.

 $H^i(\Gamma, M)$

Aurel Page Computing Kleinian modular forms

ヘロト 人間 とくほ とくほ とう

Hecke operators

```
Let \delta \in \mathsf{Comm}(\Gamma).
H^i(\Gamma, M)
Res
```

 $H^{i}(\Gamma \cap \delta \Gamma \delta^{-1}, M)$

Aurel Page Computing Kleinian modular forms

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ.

Hecke operators

```
Let \delta \in \text{Comm}(\Gamma).
```

```
 \begin{array}{c} H^{i}(\Gamma, M) \\ Res \\ \\ H^{i}(\Gamma \cap \delta \Gamma \delta^{-1}, M) \xrightarrow{\tilde{\delta}} H^{i}(\delta^{-1} \Gamma \delta \cap \Gamma, M) \end{array}
```

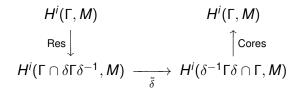
Aurel Page Computing Kleinian modular forms

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ.

Hecke operators

Let $\delta \in \text{Comm}(\Gamma)$.

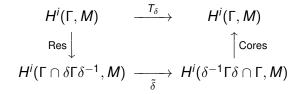


ヘロア 人間 アメヨア 人間 アー

æ

Hecke operators

Let $\delta \in \text{Comm}(\Gamma)$.



æ

Principal ideal problem

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

Principal ideal problem

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$. Search in $\mathcal{O}^1 \setminus \{ \operatorname{nrd} = \pi \}$: complexity $\Delta_B^{\mathcal{O}(1)}$.

ヘロト 人間 ト イヨト イヨト

э

Principal ideal problem

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Search in
$$\mathcal{O}^1 \setminus \{ nrd = \pi \}$$
: complexity $\Delta_B^{\mathcal{O}(1)}$.

Buchmann's algorithm over number fields: subexponential under GRH.

ヘロト 人間 ト イヨト イヨト

Principal ideal problem

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Search in
$$\mathcal{O}^1 \setminus \{ nrd = \pi \}$$
: complexity $\Delta_B^{\mathcal{O}(1)}$.

Buchmann's algorithm over number fields: subexponential under GRH.

Adapt Buchmann's algorithm over a quaternion algebra: heuristically subexponential.

ヘロト 人間 ト イヨト イヨト

э

Examples

Aurel Page Computing Kleinian modular forms

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

A quartic example

Let *F* the unique quartic field of signature (2, 1) and discriminant -275. Let *B* be the unique quaternion algebra with discriminant $11\mathbb{Z}_F$, ramified at every real place of *F*. Let \mathcal{O} be a maximal order in *B* (it is unique up to conjugation). Then \mathcal{O}^1 is a Kleinian group with covolume 93.72... The fundamental domain I have computed has 310 faces and 924 edges.

< ロ > < 同 > < 回 > < 回 > < □ > <

A quartic example

Let *F* the unique quartic field of signature (2, 1) and discriminant -275. Let *B* be the unique quaternion algebra with discriminant $11\mathbb{Z}_F$, ramified at every real place of *F*. Let \mathcal{O} be a maximal order in *B* (it is unique up to conjugation). Then \mathcal{O}^1 is a Kleinian group with covolume 93.72... The fundamental domain I have computed has 310 faces and 924 edges.

Have a look at the fundamental domain!

< ロ > < 同 > < 回 > < 回 > < □ > <

A quartic example

$N(\mathfrak{p})$	$T_{\mathfrak{p}}$	characteristic polynomial
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x+5)(x^2-5x-2)$
9	same	$(x+5)(x^2-5x-2)$
16	$\begin{pmatrix} 1 & 4 & -11 \\ 2 & 0 & -6 \\ 0 & 0 & -8 \end{pmatrix}$	$(x+8)(x^2-x-8)$
19	$\begin{pmatrix} -4 & 0 & 4 \\ 0 & -4 & 2 \\ 0 & 0 & 0 \end{pmatrix}$	$x(x+4)^{2}$
19	same	$x(x+4)^{2}$
25	—	$(x+9)(x^2-x-74)$
29		$x(x^2+6x-24)$
29		$x(x^2 + 6x - 24)$
Aurel Page Computing Kleinian modular forms		

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with F quadratic imaginary.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with *F* quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes.

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with *F* quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with *F* quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

< ロ > < 同 > < 回 > < 回 > < □ > <

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with *F* quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

Experiment : always dimension 2 space, except (d, k) = (-199, 2): dimension 4.

Non base-change classes

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with *F* quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

Experiment : always dimension 2 space, except (d, k) = (-199, 2): dimension 4. Two twin Galois orbits with coefficients in $\mathbb{Q}(\sqrt{13})$, swapped by $\operatorname{Gal}(F/\mathbb{Q})$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Everywhere good reduction abelian surfaces

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$.

・ロン ・聞 と ・ ヨ と ・ ヨ と

3

Everywhere good reduction abelian surfaces

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain!

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Everywhere good reduction abelian surfaces

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain! Cuspidal subspace in $H^1(\Gamma, \mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Everywhere good reduction abelian surfaces

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain! Cuspidal subspace in $H^1(\Gamma, \mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Şengün, Dembélé : the Jacobian J of the hyperelliptic curve

$$\begin{array}{rl} y^2 &= 33x^6 + 110\sqrt{-223}x^5 + 36187x^4 - 28402\sqrt{-223}x^3 \\ &- 2788739x^2 + 652936\sqrt{-223}x + 14157596 \end{array}$$

has good reduction everywhere, $End(J) \otimes \mathbb{Q} \cong \mathbb{Q}(\sqrt{5})$ and matches the Hecke eigenvalues.

ヘロト ヘ戸ト ヘヨト ヘヨト

Everywhere good reduction abelian surfaces

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain! Cuspidal subspace in $H^1(\Gamma, \mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Şengün, Dembélé : the Jacobian J of the hyperelliptic curve

$$y^2 = 33x^6 + 110\sqrt{-223}x^5 + 36187x^4 - 28402\sqrt{-223}x^3 - 2788739x^2 + 652936\sqrt{-223}x + 14157596}$$

has good reduction everywhere, $End(J) \otimes \mathbb{Q} \cong \mathbb{Q}(\sqrt{5})$ and matches the Hecke eigenvalues.

Looking for more examples in $\mathbb{Q}(\sqrt{-455})$ and $\mathbb{Q}(\sqrt{-571})$.

・ コ マ チ (雪 マ チ (雪 マ ー)

Torsion Jacquet-Langlands

Can also look at $H_1(\Gamma, \mathbb{Z})_{tor}$ and $H_1(\Gamma, \mathbb{F}_p)$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Torsion Jacquet-Langlands

Can also look at $H_1(\Gamma, \mathbb{Z})_{tor}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Torsion Jacquet-Langlands

Can also look at $H_1(\Gamma, \mathbb{Z})_{tor}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

Calegari, Venkatesh: numerical torsion Jacquet-Langlands correspondence.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Torsion Jacquet-Langlands

Can also look at $H_1(\Gamma, \mathbb{Z})_{tor}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

Calegari, Venkatesh: numerical torsion Jacquet-Langlands correspondence.

Joint with H. Şengün: experimental verification with Hecke operators (still in progress).

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Thank you for your attention !

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶