Torsion homology of arithmetic Kleinian groups

Aurel Page joint works with Alex Bartel and Haluk Şengün University of Warwick

November 17, 2015

Five College Number Theory Seminar

イロト イポト イヨト イヨト

- Arithmetic Kleinian groups
- Torsion Jacquet–Langlands conjecture
- Isospectrality and torsion homology

イロト イポト イヨト イヨト

æ

Arithmetic Kleinian Groups

Aurel Page Torsion homology of arithmetic Kleinian groups

ヘロト ヘワト ヘビト ヘビト

Arithmetic groups

Arithmetic group $\approx \mathbb{G}(\mathbb{Z})$ for \mathbb{G} linear algebraic group over \mathbb{Q} . Examples: $SL_n(\mathbb{Z}_F)$, $O(q_{\mathbb{Z}})$.

Motivation:

- Classical reduction theories: Gauss, Minkowski, Siegel.
- Interesting class of lattices in Lie groups.
- Automorphisms of natural objects: quadratic forms, abelian varieties.
- Modular forms / Automorphic forms.
- Parametrize structures: Shimura varieties, Bhargava's constructions.

ヘロン 人間 とくほ とくほ とう

Arithmetic Kleinian groups

Arithmetic Kleinian group = arithmetic subgroup of $PSL_2(\mathbb{C})$. Why this case?

- small dimension: easier geometry but still rich arithmetic.
- 3-dimensional hyperbolic manifolds.
- related to units in quaternion algebras.

ヘロト ヘ戸ト ヘヨト ヘヨト

Arithmetic Kleinian groups

F number field with $r_2 = 1$. Example: $F = \mathbb{Q}(\sqrt{-d})$.

B quaternion algebra over *F*: B = F + Fi + Fj + Fij with $i^2 = a, j^2 = b, ij = -ij$. Ramified at the real places: $a, b \ll 0$ Example: $B = \mathcal{M}_2(F)$ (a = b = 1).

Reduced norm:

nrd : $B \rightarrow F$ multiplicative nrd $(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$. Example: nrd = det

 \mathcal{O} order in *B*: subring, f.g. \mathbb{Z} -module, $\mathcal{O}F = B$. Example: $\mathcal{O} = \mathcal{M}_2(\mathbb{Z}_F)$.

 $\Gamma=\mathcal{O}^1/\{\pm 1\}\subset PSL_2(\mathbb{C})$

イロト 不得 とくほと くほとう

Dirichlet domains

 $PSL_2(\mathbb{C})$ acts on the hyperbolic 3-space \mathcal{H}^3 .

イロト 不得 とくほ とくほとう

3

Dirichlet domains

 $PSL_2(\mathbb{C})$ acts on the hyperbolic 3-space \mathcal{H}^3 .

$$D_{\rho}(\Gamma) = \{x \in \mathcal{H}^3 \mid d(x, \rho) \leq d(\gamma x, \rho) \text{ for all } \gamma \in \Gamma\}$$

is a fundamental domain, finite volume, finite-sided, provides a presentation of Γ .

Example:

 $D_{2i}(\mathsf{PSL}_2(\mathbb{Z})) =$ usual fundamental domain.

イロト イポト イヨト イヨト

1

Algorithms

Basic algorithm:

- Enumerate elements of Γ and compute partial Dirichlet domain.
- Stop when the domain cannot get smaller.

イロン 不得 とくほ とくほとう

æ

Algorithms

Basic algorithm:

- Enumerate elements of Γ and compute partial Dirichlet domain.
- Stop when the domain cannot get smaller.

Efficient algorithm:

- Efficient enumeration of Γ.
- Enough to find any generators.
- Stopping criterion using volume formula and combinatorial structure of Dirichlet domain.

ヘロト 人間 ト ヘヨト ヘヨト

Torsion Jacquet–Langlands

Aurel Page Torsion homology of arithmetic Kleinian groups

ヘロト ヘ戸ト ヘヨト ヘヨト

Torsion Jacquet–Langlands

- Cohomology and Galois representations
- The torsion Jacquet–Langlands conjecture
- Examples

Aurel Page Torsion homology of arithmetic Kleinian groups

イロト イポト イヨト イヨト

Cohomology and automorphic forms

Matsushima's formula: Γ discrete cocompact subgroup of connected Lie group *G*, *E* representation of *G*.

$$H^{i}(\Gamma, E) \cong \bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}(\pi, L^{2}(\Gamma \setminus G)) \otimes H^{i}(\mathfrak{g}, K; \pi \otimes E)$$

The cohomology has an action of Hecke operators, corresponding to the one on the automorphic forms.

→ Hecke eigenclasses should have attached Galois representations.

ヘロト ヘ戸ト ヘヨト ヘヨト

Torsion and Galois representations

Theorem (Scholze, conjecture of Ash)

Let Γ be a congruence subgroup of $\operatorname{GL}_n(\mathbb{Z}_F)$ with F a CM field. Then for any system of Hecke eigenvalues in $H^i(\Gamma, \mathbb{F}_p)$, there exists a continuous semisimple representation $\operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ such that Frobenius and Hecke eigenvalues match.

くロト (過) (目) (日)

Classical Jacquet–Langlands

 $F = \mathbb{Q}(\sqrt{-d}).$

B quaternion algebra over *F* with discriminant \mathfrak{D} (ideal: set of bad primes). \mathfrak{N} ideal coprime to \mathfrak{D} .

Get two arithmetic Kleinian groups:

- $\Gamma_0(\mathfrak{ND}) \subset \mathsf{PSL}_2(\mathbb{Z}_F)$
- $\Gamma_0^{\mathfrak{D}}(\mathfrak{N}) \subset B^1/\{\pm 1\}$

くロト (過) (目) (日)

Classical Jacquet–Langlands

 $F = \mathbb{Q}(\sqrt{-d}).$

B quaternion algebra over *F* with discriminant \mathfrak{D} (ideal: set of bad primes). \mathfrak{N} ideal coprime to \mathfrak{D} .

Get two arithmetic Kleinian groups:

- $\Gamma_0(\mathfrak{ND}) \subset \mathsf{PSL}_2(\mathbb{Z}_F)$
- $\Gamma_0^{\mathfrak{D}}(\mathfrak{N}) \subset B^1/\{\pm 1\}$

Theorem (Jacquet–Langlands)

There exists a Hecke-equivariant isomorphism

 $H_1(\Gamma_0^{\mathfrak{D}}(\mathfrak{N}),\mathbb{C}) \to H_{1,\textit{cusp}}(\Gamma_0(\mathfrak{N}\mathfrak{D}),\mathbb{C})^{\mathfrak{D}-\textit{new}}$

ヘロト 人間 ト ヘヨト ヘヨト

Torsion Jacquet–Langlands

 \mathfrak{m} maximal ideal of the Hecke algebra = system of Hecke eigenvalues modulo some prime p.

Conjecture (Calegari–Venkatesh)

If m is not Eisenstein, then

 $|H_1(\Gamma_0^{\mathfrak{D}}(\mathfrak{N}),\mathbb{Z})_{\mathfrak{m}}| = |H_{1,\mathit{cusp}}(\Gamma_0(\mathfrak{N}\mathfrak{D}),\mathbb{Z})_{\mathfrak{m}}^{\mathfrak{D}-\mathit{new}}|$

ヘロト 人間 ト ヘヨト ヘヨト

Torsion Jacquet–Langlands

 \mathfrak{m} maximal ideal of the Hecke algebra = system of Hecke eigenvalues modulo some prime p.

Conjecture (Calegari–Venkatesh)

If m is not Eisenstein, then

 $|H_1(\Gamma_0^{\mathfrak{D}}(\mathfrak{N}),\mathbb{Z})_{\mathfrak{m}}| = |H_{1,\mathit{cusp}}(\Gamma_0(\mathfrak{N}\mathfrak{D}),\mathbb{Z})_{\mathfrak{m}}^{\mathfrak{D}-\mathit{new}}|$

Theorem (Calegari–Venkatesh): numerical version (without Hecke operators) in some cases.

ヘロア 人間 アメヨア 人口 ア

Torsion Jacquet–Langlands, subtleties

- Eisenstein: eigenvalue of *T*_p is χ₁(p) + χ₂(p)*N*(p) for characters χ₁, χ₂ of ray class groups.
- Congruence classes, such as $\Gamma_0(\mathfrak{N})/\Gamma_1(\mathfrak{N}) \to (\mathbb{Z}_F/\mathfrak{N})^{\times}$
- "new" is the **quotient** by the oldforms ~> level-raising.
- Cannot expect an isomorphism of Hecke-modules, multiplicity one can fail.

ヘロト ヘアト ヘビト ヘビト

(on the blackboard)

イロン イロン イヨン イヨン

æ

Isospectral manifolds and torsion homology

Aurel Page Torsion homology of arithmetic Kleinian groups

ヘロト 人間 ト ヘヨト ヘヨト

Isospectral manifolds and torsion homology

- Isospectral manifolds
- Tools to study their torsion homology
- Computations and examples

・ 同 ト ・ ヨ ト ・ ヨ ト

Can you hear the shape of a drum?

Aurel Page Torsion homology of arithmetic Kleinian groups

イロト 不得 とくほ とくほとう

ъ

Can you hear the shape of a drum?

Mathematical question (Kac 1966):

M, M' same spectrum for Laplace operator (**isospectral**) $\Rightarrow M, M'$ isometric?

Discrete spectrum: $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots$

ヘロト ヘ戸ト ヘヨト ヘヨト

Can you hear the shape of a drum?

Mathematical question (Kac 1966): M, M' same spectrum for Laplace operator (**isospectral**) $\Rightarrow M, M'$ isometric?

Discrete spectrum: $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots$

Answer:

Milnor 1964: No! (dimension 16) Sunada 1985: No! (dimension *d*) Gordon, Webb, Wolpert 1992: No! (domains of the plane)

くロト (過) (目) (日)

What properties of drums can you hear?

Aurel Page Torsion homology of arithmetic Kleinian groups

イロン 不同 とくほう イヨン

ъ

What properties of drums can you hear?

Volume: Weyl's law

Betti numbers (if strongly isospectral)

Torsion in the homology?

ヘロト ヘ戸ト ヘヨト ヘヨト

What properties of drums can you hear?

Volume: Weyl's law

Betti numbers (if strongly isospectral)

Torsion in the homology?

Sunada: No! (dimension 4)

Tighter question: small dimension, special classes of manifolds Dimension 2 orientable \Rightarrow torsion-free homology

Dimension 3 orientable \Rightarrow torsion-free H_0 , H_2 and H_3

ヘロト 人間 ト ヘヨト ヘヨト

What properties of drums can you hear?

Volume: Weyl's law

Betti numbers (if strongly isospectral)

Torsion in the homology?

Sunada: No! (dimension 4)

Tighter question: small dimension, special classes of manifolds

Dimension 2 orientable \Rightarrow torsion-free homology

Dimension 3 orientable \Rightarrow torsion-free H_0 , H_2 and H_3

Theorem (P., Bartel)

For all primes $p \le 37$, there exist pairs of compact hyperbolic 3-manifolds M, M' that are strongly isospectral and cover a common manifold, but such that $|H_1(M, \mathbb{Z})[p^{\infty}]| \ne |H_1(M', \mathbb{Z})[p^{\infty}]|$

Number fields K, K' are **arithmetically equivalent**, or **isospectral** if $\zeta_K = \zeta_{K'}$ but $K \ncong K'$.

イロト イポト イヨト イヨト

æ

Number fields K, K' are **arithmetically equivalent**, or **isospectral** if $\zeta_K = \zeta_{K'}$ but $K \ncong K'$.

Same degree, same signature.

Same discriminant.

Same roots of unity.

Same product class number \times regulator.

Same class number?

ヘロト ヘアト ヘビト ヘビト

Number fields K, K' are **arithmetically equivalent**, or **isospectral** if $\zeta_K = \zeta_{K'}$ but $K \ncong K'$.

Same degree, same signature.

Same discriminant.

Same largest subfield that is Galois over $\ensuremath{\mathbb{Q}}$

Same roots of unity.

Same product class number \times regulator.

Same class number?

ヘロト ヘアト ヘビト ヘビト

Number fields K, K' are **arithmetically equivalent**, or **isospectral** if $\zeta_K = \zeta_{K'}$ but $K \ncong K'$.

Same degree, same signature.

Same discriminant.

Same largest subfield that is Galois over $\ensuremath{\mathbb{Q}}$

Same roots of unity.

Same product class number \times regulator.

Same class number?

Dyer 1999: No!

Existing examples where $v_p(h_{K_1}) \neq v_p(h_{K_2})$: p = 2, 3, 5.

・ロト ・ 理 ト ・ ヨ ト ・

Special value formulas

Analytic class number formula:

$$\lim_{s \to 1} (s-1)\zeta_{\mathcal{K}}(s) = \frac{2^{r_1}(2\pi)^{r_2}h_{\mathcal{K}}R_{\mathcal{K}}}{w_{\mathcal{K}}|D_{\mathcal{K}}|^{1/2}}$$

イロト 不得 とくほ とくほとう

3

Special value formulas

Analytic class number formula:

$$\lim_{s \to 1} (s-1)\zeta_{K}(s) = \frac{2^{r_{1}}(2\pi)^{r_{2}}h_{K}R_{K}}{w_{K}|D_{K}|^{1/2}}$$

Spectrum of Δ on *i*-forms: $\zeta_{M,i}(s) = \sum \lambda^{-s}$.

イロト 不得 とくほ とくほとう

ъ

Special value formulas

Analytic class number formula:

$$\lim_{s \to 1} (s-1)\zeta_{K}(s) = \frac{2^{r_{1}}(2\pi)^{r_{2}}h_{K}R_{K}}{w_{K}|D_{K}|^{1/2}}$$

Spectrum of Δ on *i*-forms: $\zeta_{M,i}(s) = \sum \lambda^{-s}$. Cheeger–Müller theorem (conjectured by Ray–Singer):

$$\prod_{i} \left(\mathsf{R}_{i}(\mathsf{M}) \cdot |\mathsf{H}_{i}(\mathsf{M},\mathbb{Z})_{\mathit{tors}}| \right)^{(-1)^{i}} = \prod_{i} \exp(\frac{1}{2}\zeta'_{\mathsf{M},i}(\mathbf{0}))^{(-1)^{i}}$$

 $R_i(M)$ regulator of $H_i(M,\mathbb{Z})/H_i(M,\mathbb{Z})_{tors}$.

ヘロト ヘアト ヘビト ヘビト

Examples of regulators

$$R_0(M) = \operatorname{Vol}(M)^{-1/2}$$

$$R_d(M) = \operatorname{Vol}(M)^{1/2}$$

Aurel Page Torsion homology of arithmetic Kleinian groups

ヘロト 人間 とくほとくほとう

æ

Construction of isospectral objects

Gassmann triple (1925): G finite group and H, H' subgroups such that

 $\mathbb{C}[G/H] \cong \mathbb{C}[G/H'].$

Equivalently, for every conjugacy class C, $|C \cap H| = |C \cap H'|$.

イロト イポト イヨト イヨト

1

Construction of isospectral objects

Gassmann triple (1925): *G* finite group and H, H' subgroups such that

 $\mathbb{C}[G/H] \cong \mathbb{C}[G/H'].$

Equivalently, for every conjugacy class C, $|C \cap H| = |C \cap H'|$.

If K Galois number field with Galois group G

$$\Rightarrow \zeta_{\mathcal{K}^{\mathcal{H}}}(\boldsymbol{s}) = L(\mathbb{C}[\boldsymbol{G}/\boldsymbol{H}], \boldsymbol{s}).$$

イロト イポト イヨト イヨト

Construction of isospectral objects

Gassmann triple (1925): *G* finite group and H, H' subgroups such that

 $\mathbb{C}[G/H] \cong \mathbb{C}[G/H'].$

Equivalently, for every conjugacy class C, $|C \cap H| = |C \cap H'|$.

If K Galois number field with Galois group G

$$\Rightarrow \zeta_{\mathcal{K}^{\mathcal{H}}}(\boldsymbol{s}) = L(\mathbb{C}[\boldsymbol{G}/\boldsymbol{H}], \boldsymbol{s}).$$

Sunada: if $X \rightarrow Y$ is a Galois covering with Galois group $G \Rightarrow X/H$ and X/H' are strongly isospectral.

ヘロン 人間 とくほ とくほ とう

Example of a Gassmann triple

- $G = SL_3(\mathbb{F}_2)$ acting on $\mathbb{P}^2(\mathbb{F}_2)$.
- H = stabilizer of a point
- H' = stabilizer of a line

ヘロア 人間 アメヨア 人口 ア

æ

Representation theory

 $\mathbb{C}[G/H] \cong \mathbb{C}[G/H']$ $\iff \mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ $\iff \mathbb{Q}_p[G/H] \cong \mathbb{Q}_p[G/H']$ $\iff \mathbb{Z}_p[G/H] \cong \mathbb{Z}_p[G/H']$ and \iff if $p \nmid |G|$.

ヘロン ヘアン ヘビン ヘビン

3

Cohomological Mackey functors

Aurel Page Torsion homology of arithmetic Kleinian groups

イロン 不同 とくほう イヨン

ъ

Cohomological Mackey functors

Map: $\mathcal{F} : { subgroups of } G } \longrightarrow R$ -modules, and R-linear maps

- $c_H^g : \mathcal{F}(H) \to \mathcal{F}(H^g)$ conjugation
- $r_{K}^{H} : \mathcal{F}(H) \to \mathcal{F}(K)$ restriction
- $t_{K}^{H}: \mathcal{F}(K) \to \mathcal{F}(H)$ transfer

with natural axioms, among which

$$r_L^H \circ t_K^H = \sum_{g \in L \setminus H/K}$$
 "usual formula"

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cohomological Mackey functors

Map: $\mathcal{F} : {$ subgroups of $G } \longrightarrow R$ -modules, and R-linear maps

- $c_H^g : \mathcal{F}(H) \to \mathcal{F}(H^g)$ conjugation
- $r_{K}^{H}: \mathcal{F}(H) \to \mathcal{F}(K)$ restriction
- $t_{\mathcal{K}}^{\mathcal{H}}: \mathcal{F}(\mathcal{K}) \to \mathcal{F}(\mathcal{H})$ transfer

with natural axioms, among which

$$r_L^H \circ t_K^H = \sum_{g \in L ackslash H/K}$$
 "usual formula"

Proposition (P., Bartel)

 $H \mapsto H_i(X/H, \mathbb{Z})$ is a cohomological Mackey functor. In particular, if $\mathbb{Z}_p[G/H] \cong \mathbb{Z}_p[G/H']$ then

 $H_i(X/H,\mathbb{Z})\otimes\mathbb{Z}_p\cong H_i(X/H',\mathbb{Z})\otimes\mathbb{Z}_p.$

Smallest Gassmann triple

Theorem (de Smit)

Let p be an odd prime. If G, H, H' is a Gassmann triple such that

 $\mathbb{Z}_p[G/H] \ncong \mathbb{Z}_p[G/H']$

and $[G: H] \leq 2p + 2$, then there is an isomorphism

 $G \cong \mathrm{GL}_2(\mathbb{F}_p)/(\mathbb{F}_p^{ imes})^2$

sending H, H' to

$$\begin{pmatrix} \square & * \\ 0 & * \end{pmatrix}$$
 and $\begin{pmatrix} * & * \\ 0 & \square \end{pmatrix}$

くロト (過) (目) (日)

Regulator constants

Regulators: transcendental, arithmetic, hard.

Regulator constants: rational, representation-theoretic, easy.

ヘロト ヘ戸ト ヘヨト ヘヨト

Regulator constants

Regulators: transcendental, arithmetic, hard.

Regulator constants: rational, representation-theoretic, easy.

G, H, H' Gassmann triple, ρ representation of G over $R = \mathbb{Z}$ or \mathbb{Q} . $\langle \cdot, \cdot \rangle$ *G*-invariant nondegenerate pairing on $\rho \otimes \mathbb{C}$.

$$\mathcal{C}(
ho) = rac{\det(\langle\cdot,\cdot
angle|
ho^H/(
ho^H)_{\mathit{tors}})}{\det(\langle\cdot,\cdot
angle|
ho^{H'}/(
ho^{H'})_{\mathit{tors}})} \in \mathbb{C}/(R^{ imes})^2.$$

Theorem (Dokchitser, Dokchitser)

 $C(\rho)$ is independent of the pairing.

イロト イポト イヨト イヨト

Regulator constants

Regulators: transcendental, arithmetic, hard.

Regulator constants: rational, representation-theoretic, easy.

G, H, H' Gassmann triple, ρ representation of G over $R = \mathbb{Z}$ or \mathbb{Q} . $\langle \cdot, \cdot \rangle$ *G*-invariant nondegenerate pairing on $\rho \otimes \mathbb{C}$.

$$\mathcal{C}(
ho) = rac{\det(\langle\cdot,\cdot
angle|
ho^H/(
ho^H)_{\mathit{tors}})}{\det(\langle\cdot,\cdot
angle|
ho^{H'}/(
ho^{H'})_{\mathit{tors}})} \in R/(R^{ imes})^2.$$

Theorem (Dokchitser, Dokchitser)

 $C(\rho)$ is independent of the pairing.

イロト イポト イヨト イヨト

Example of units

 K/\mathbb{Q} Galois with group *G*. Let G, H_1, H_2 Gassmann triple. Let $\rho = \mathbb{Z}_K^{\times}$ as a *G*-module. $K_i = K^{H_i}$. Then

$$\mathcal{C}(\rho) = rac{R_{\mathcal{K}_1}}{R_{\mathcal{K}_2}} = rac{h_{\mathcal{K}_2}}{h_{\mathcal{K}_1}}$$

イロト 不得 とくほと くほとう

ъ

Example of regulator constants

$$G = \operatorname{GL}_2(\mathbb{F}_p)/\Box, H_+ = \begin{pmatrix} \Box & * \\ 0 & * \end{pmatrix}, H_- = \begin{pmatrix} * & * \\ 0 & \Box \end{pmatrix}.$$
$$B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \subset \operatorname{GL}_2(\mathbb{F}_p), r : \begin{pmatrix} a & * \\ 0 & * \end{pmatrix} \mapsto \begin{pmatrix} \frac{a}{p} \end{pmatrix}.$$
$$I = \operatorname{Ind}_B^G r \text{ irreducible, of dimension } p + 1.$$

イロト 不得 とくほと くほとう

ъ

Example of regulator constants

$$G = \operatorname{GL}_2(\mathbb{F}_p)/\Box, H_+ = \begin{pmatrix} \Box & * \\ 0 & * \end{pmatrix}, H_- = \begin{pmatrix} * & * \\ 0 & \Box \end{pmatrix}.$$
$$B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \subset \operatorname{GL}_2(\mathbb{F}_p), r : \begin{pmatrix} a & * \\ 0 & * \end{pmatrix} \mapsto \begin{pmatrix} \frac{a}{p} \end{pmatrix}.$$

 $I = \text{Ind}_B^G r$ irreducible, of dimension p + 1.

Proposition (P., Bartel)

For all irreducible representation ρ of G over \mathbb{Q} , we have $\mathcal{C}(\rho) = 1$, except $\mathcal{C}(I) = p$.

イロト 不得 とくほと くほとう

Comparison of regulators

Theorem (P., Bartel)

 $X \rightarrow Y$ Galois covering of hyperbolic 3-manifolds with Galois group G. Gassmann triple G, H, H' and p prime number. Assume $|H^{ab}|$ and $|H'^{ab}|$ coprime to p. M := G-module $H_2(X, \mathbb{Z})$. Then

$$\frac{R(X/H')}{R(X/H)} = \mathcal{C}(M) \cdot u.$$

for some $u \in \mathbb{Z}_{(p)}^{\times}$.

ヘロト 人間 ト ヘヨト ヘヨト

Computations

Good supply of 3-manifold: arithmetic Kleinian groups!

$$h: \Gamma
ightarrow G$$
 is surjective, $Y = \mathcal{H}^3/\Gamma$ and $X = \mathcal{H}^3/$ ker h ,

$$\Rightarrow X \rightarrow Y$$
 is a Galois covering with Galois group G.

イロン 不同 とくほう イヨン

ъ

Computations

Good supply of 3-manifold: arithmetic Kleinian groups!

- $h: \Gamma \to G$ is surjective, $Y = \mathcal{H}^3/\Gamma$ and $X = \mathcal{H}^3/\ker h$,
- \Rightarrow X \rightarrow Y is a Galois covering with Galois group G.

 $H_1(X/H, R) \cong H_1(h^{-1}(H), R) \cong H_1(\Gamma, R[G/H]).$

イロト イポト イヨト イヨト

1

Example

$$F = \mathbb{Q}(t) \text{ with } t^4 - t^3 + 2t^2 - 1.$$
$$B = \left(\frac{-1, -1}{F}\right).$$

 ${\cal O}$ an Eichler order of level norm 71.

 Γ has volume 27.75939054 . . . , and a presentation with 5 generators and 7 relations.

We found a surjective $\Gamma \to GL_2(\mathbb{F}_7),$ yielding two isospectral manifolds with homology

$$\mathbb{Z}^3 + \mathbb{Z}/4 + \mathbb{Z}/4 + \mathbb{Z}/12 + \mathbb{Z}/12 + \mathbb{Z}/(2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23)$$
, and

 $\mathbb{Z}^3 + \mathbb{Z}/4 + \mathbb{Z}/4 + \mathbb{Z}/12 + \mathbb{Z}/(12 \cdot 7) + \mathbb{Z}/(2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23).$

ヘロト ヘアト ヘビト ヘビト

Questions?

Thank you!

Aurel Page Torsion homology of arithmetic Kleinian groups

イロト イポト イヨト イヨト

æ