Isospectrality, regulators and special value formulas

Aurel Page
joint work with Alex Bartel
University of Warwick

November 16, 2016

ICERM peer-to-peer seminar
Can you hear the shape of a drum?

Mathematical question (Kac 1966):

\[M, M' \text{ same spectrum for Laplace operator (isospectral)} \Rightarrow M, M' \text{ isometric?} \]

Answer:

Milnor 1964: No! (dimension 16)

Sunada 1985: No! (dimension \(d\))

Mathematical question (Kac 1966):
M, M' same spectrum for Laplace operator (isospectral)
$\Rightarrow M, M'$ isometric?
Can you hear the shape of a drum?

Mathematical question (Kac 1966): M, M' same spectrum for Laplace operator (isospectral) $\Rightarrow M, M'$ isometric?

Answer:
Milnor 1964: No! (dimension 16)
Sunada 1985: No! (dimension d)
What properties of drums can you hear?

Weyl's law

Betti numbers (if strongly isospectral)

Torsion in the homology?

Sunada: No! (dimension 4)

Tighter question: small dimension, special classes of manifolds

Dimension 2 orientable

⇒ torsion-free homology

Dimension 3 orientable

⇒ torsion-free H_0, H_2 and H_3

Theorem (P. Bartel)

For all primes $p \leq 37$, there exist pairs of compact hyperbolic 3-manifolds M, M' that are strongly isospectral and cover a common manifold, but such that $|H_1(M, \mathbb{Z})[\overline{p}]| \neq |H_1(M', \mathbb{Z})[\overline{p}]|$.

Aurel Page

Isospectrality, regulators and special value formulas
What properties of drums can you hear?

Volume: Weyl’s law
Betti numbers (if strongly isospectral)
Torsion in the homology?
What properties of drums can you hear?

Volume: Weyl’s law
Betti numbers (if strongly isospectral)
Torsion in the homology?
Sunada: No! (dimension 4)
Tight question: small dimension, special classes of manifolds
Dimension 2 orientable \Rightarrow torsion-free homology
Dimension 3 orientable \Rightarrow torsion-free H_0, H_2 and H_3

Theorem (P. Bartel)
For all primes $p \leq 37$, there exist pairs of compact hyperbolic 3-manifolds M, M' that are strongly isospectral and cover a common manifold, but such that $|H_1(M, \mathbb{Z})_\infty| \neq |H_1(M', \mathbb{Z})_\infty|$
What properties of drums can you hear?

Volume: Weyl’s law
Betti numbers (if strongly isospectral)
Torsion in the homology?
Sunada: No! (dimension 4)
Tighter question: small dimension, special classes of manifolds
Dimension 2 orientable \Rightarrow torsion-free homology
Dimension 3 orientable \Rightarrow torsion-free H_0, H_2 and H_3

Theorem (P., Bartel)

For all primes $p \leq 37$, there exist pairs of compact hyperbolic 3-manifolds M, M' that are strongly isospectral and cover a common manifold, but such that

$$|H_1(M, \mathbb{Z})[p^\infty]| \neq |H_1(M', \mathbb{Z})[p^\infty]|$$
Number fields K, K' are **arithmetically equivalent** if $\zeta_K = \zeta_{K'}$ but $K \not\cong K'$.

- Same degree, same signature.
- Same discriminant.
- Same largest subfield that is Galois over \mathbb{Q}.
- Same roots of unity.
- Same product class number \times regulator.

Dyer 1999: No!

Existing examples: $p = 2, 3, 5$.

Aurel Page

Isospectrality, regulators and special value formulas
Number fields K, K' are **arithmetically equivalent** if $\zeta_K = \zeta_{K'}$ but $K \ncong K'$.

Same degree, same signature.
Same discriminant.

Same roots of unity.
Same product class number \times regulator.
Same class number?
Number fields K, K' are **arithmetically equivalent** if $\zeta_K = \zeta_{K'}$ but $K \not\cong K'$.

Same degree, same signature.
Same discriminant.
Same largest subfield that is Galois over \mathbb{Q}
Same roots of unity.
Same product class number \times regulator.
Same class number?
Number fields K, K' are **arithmetically equivalent** if $\zeta_K = \zeta_{K'}$ but $K \not\cong K'$.

Same degree, same signature.
Same discriminant.
Same largest subfield that is Galois over \mathbb{Q}
Same roots of unity.
Same product class number \times regulator.

Same class number?
Dyer 1999: No!
Existing examples: $p = 2, 3, 5$.
Analytic class number formula:

$$\lim_{{s \to 1}} (s - 1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K |D_K|^{1/2}}$$
Analytic class number formula:

$$\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K |D_K|^{1/2}}$$

Spectrum of Δ on i-forms: $\zeta_{M,i}(s) = \sum \lambda^{-s}$.

Cheeger–Müller theorem (conjectured by Ray–Singer):

$$\prod_i \left(R_i(M) \cdot |H_i(M, \mathbb{Z})_{tors}| \right)^{(-1)^i} = \prod_i \exp(\frac{1}{2} \zeta'_{M,i}(0))^{(-1)^i}$$

$R_i(M)$ regulator of $H_i(M, \mathbb{Z})/H_i(M, \mathbb{Z})_{tors}$.
Special value formulas

Analytic class number formula:

$$\lim_{s \to 1} (s - 1) \zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K |D_K|^{1/2}}$$

Spectrum of Δ on i-forms: $\zeta_{M,i}(s) = \sum \lambda^{-s}$.

Cheeger–Müller theorem (conjectured by Ray–Singer):

$$\prod_i (R_i(M) \cdot |H_i(M, \mathbb{Z})_{tors}|)^{(-1)^i} = \prod_i \exp\left(\frac{1}{2} \zeta'_{M,i}(0)\right)^{(-1)^i}$$

$R_i(M)$ regulator of $H_i(M, \mathbb{Z})/H_i(M, \mathbb{Z})_{tors}$.

Birch and Swinnerton-Dyer !
Gassman triple (1925):

G finite group and H, H' subgroups such that

$$\mathbb{C}[G/H] \cong \mathbb{C}[G/H'].$$
Gassman triple (1925):
A finite group and H, H' subgroups such that

$$\mathbb{C}[G/H] \cong \mathbb{C}[G/H'].$$

If K Galois number field with Galois group G

$$\Rightarrow \zeta_{K^H}(s) = L(\mathbb{C}[G/H], s).$$
Gassman triple (1925):

G finite group and H, H' subgroups such that

$$\mathbb{C}[G/H] \cong \mathbb{C}[G/H']$$

If K Galois number field with Galois group G

$$\Rightarrow \zeta_{KH}(s) = L(\mathbb{C}[G/H], s).$$

Sunada: if $X \to Y$ is a Galois covering with Galois group G

$$\Rightarrow X/H \text{ and } X/H' \text{ are strongly isospectral.}$$
Cohomological Mackey functors

Map:
\[F: \{ \text{subgroups of } G \} \to \text{R-modules}, \] and \[\text{R-linear maps } c: F(H) \to F(H^g) \] conjugation
\[r: F(H) \to F(K) \] restriction
\[t: F(K) \to F(H) \] transfer

with natural axioms, among which
\[r_{H,L} \circ t_{H,K} = \sum_{g \in L \setminus H/K} \text{"usual formula"} \]

Proposition (P., Bartel)
\[H \mapsto H_i(X/H, Z) \] is a cohomological Mackey functor. In particular, if \[Z_p[G/H] \cong Z_p[G/H'] \] then
\[H_i(X/H, Z) \otimes Z_p \cong H_i(X/H', Z) \otimes Z_p. \]
Cohomological Mackey functors

Map: $\mathcal{F} : \{\text{subgroups of } G\} \longrightarrow R$-modules, and R-linear maps
- $c^g_H : \mathcal{F}(H) \rightarrow \mathcal{F}(H^g)$ conjugation
- $r^K_H : \mathcal{F}(H) \rightarrow \mathcal{F}(K)$ restriction
- $t^K_H : \mathcal{F}(K) \rightarrow \mathcal{F}(H)$ transfer

with natural axioms, among which

$$r_L^H \circ t^K_H = \sum_{g \in L \setminus H/K} \text{"usual formula"}$$
Cohomological Mackey functors

Map: $\mathcal{F} : \{\text{subgroups of } G\} \rightarrow R$-modules, and R-linear maps

- $c^g_H : \mathcal{F}(H) \rightarrow \mathcal{F}(H^g)$ conjugation
- $r^K_H : \mathcal{F}(H) \rightarrow \mathcal{F}(K)$ restriction
- $t^K_H : \mathcal{F}(K) \rightarrow \mathcal{F}(H)$ transfer

with natural axioms, among which

\[r^L_H \circ t^K_H = \sum_{g \in L \setminus H/K} "\text{usual formula}" \]

Proposition (P., Bartel)

$H \mapsto H_i(X/H, \mathbb{Z})$ is a cohomological Mackey functor. In particular, if $\mathbb{Z}_p[G/H] \cong \mathbb{Z}_p[G/H']$ then

\[H_i(X/H, \mathbb{Z}) \otimes \mathbb{Z}_p \cong H_i(X/H', \mathbb{Z}) \otimes \mathbb{Z}_p. \]
Smallest Gassman triple

Theorem (de Smit)

Let p be an odd prime. If G, H, H' is a Gassman triple such that

$$\mathbb{Z}_p[G/H] \ncong \mathbb{Z}_p[G/H']$$

and $[G : H] \leq 2p + 2$, then there is an isomorphism

$$G \cong \text{GL}_2(\mathbb{F}_p)/(\mathbb{F}_p^\times)^2$$

sending H, H' to

$$\begin{pmatrix} \Box & * \\ 0 & * \end{pmatrix} \text{ and } \begin{pmatrix} * & * \\ 0 & \Box \end{pmatrix}.$$
Regulator constants

Regulators: transcendental, arithmetic, hard.
Regulator constants: rational, representation-theoretic, easy.
Regulator constants

Regulators: transcendental, arithmetic, hard.
Regulator constants: rational, representation-theoretic, easy.

G, H, H' Gassman triple, ρ representation of G over $R = \mathbb{Z}$ or \mathbb{Q}. $\langle \cdot, \cdot \rangle$ G-invariant pairing on $\rho \otimes \mathbb{C}$.

\[
C(\rho) = \frac{\det(\langle \cdot, \cdot \rangle | (\rho^H)_{\text{free}})}{\det(\langle \cdot, \cdot \rangle | (\rho^{H'})_{\text{free}})} \in R/(R^\times)^2.
\]

Theorem (Dokchitser, Dokchitser)

$C(\rho)$ is independent of the pairing.
Example of regulator constants

\[G = \text{GL}_2(\mathbb{F}_p)/\Box, \quad H_+ = \begin{pmatrix} \Box & \ast \\ 0 & \ast \end{pmatrix}, \quad H_- = \begin{pmatrix} \ast & \ast \\ 0 & \Box \end{pmatrix}. \]

\[B = \begin{pmatrix} \ast & \ast \\ 0 & \ast \end{pmatrix} \subset \text{GL}_2(\mathbb{F}_p), \quad r : \begin{pmatrix} a & \ast \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} a \\ p \end{pmatrix}. \]

\[I = \text{Ind}_B^G r \text{ irreducible}. \]
Example of regulator constants

\[G = \text{GL}_2(\mathbb{F}_p)/\square, \quad H_+ = \begin{pmatrix} \square & \ast \\ 0 & \ast \end{pmatrix}, \quad H_- = \begin{pmatrix} \ast & \ast \\ 0 & \square \end{pmatrix}. \]

\[B = \begin{pmatrix} \ast & \ast \\ 0 & \ast \end{pmatrix} \subset \text{GL}_2(\mathbb{F}_p), \quad r : \begin{pmatrix} a & \ast \\ 0 & c \end{pmatrix} \mapsto \left(\frac{a}{p} \right). \]

\[I = \text{Ind}_B^G r \text{ irreducible.} \]

Proposition (P., Bartel)

For all irreducible representation \(\rho \) of \(G \) over \(\mathbb{Q} \), we have \(C(\rho) = 1 \), except \(C(I) = p \).
Comparison of regulators

Theorem (P., Bartel)

\(X \rightarrow Y \) Galois covering of hyperbolic 3-manifolds with Galois group \(G \). Gassman triple \(G, H, H' \) and \(p \) prime number. Assume \(|H^{ab}| \) and \(|H'^{ab}| \) coprime to \(p \).

\(M := G \)-module \(H_2(X, \mathbb{Z}) \). Then

\[
\frac{R(X/H')}{R(X/H)} = C(M) \cdot u.
\]

for some \(u \in \mathbb{Z}_x^{(p)} \).
Good supply of 3-manifold: arithmetic Kleinian groups!

F number field with $r_2 = 1$.

B quaternion algebra over F ramified at the real places.

\mathcal{O} order in B.

$\Gamma = \mathcal{O}^1 / \{\pm 1\} \subset \text{PSL}_2(\mathbb{C})$ torsion-free.

$\Rightarrow Y = \mathcal{H}^3 / \Gamma$ hyperbolic 3-manifold with $\pi_1(Y) \cong \Gamma$.
Good supply of 3-manifold: arithmetic Kleinian groups!

F number field with $r_2 = 1$.
B quaternion algebra over F ramified at the real places.
\mathcal{O} order in B.
$\Gamma = \mathcal{O}^1 / \{ \pm 1 \} \subset \text{PSL}_2(\mathbb{C})$ torsion-free.
$\Rightarrow Y = \mathcal{H}^3 / \Gamma$ hyperbolic 3-manifold with $\pi_1(Y) \cong \Gamma$.

Computation: fundamental domain and finite presentation for Γ.
$h : \Gamma \to G$ is surjective, $Y = \mathcal{H}^3/\Gamma$ and $X = \mathcal{H}^3/\ker h$,
$\Rightarrow X \to Y$ is a Galois covering with Galois group G.

$H_1(\frac{X}{\mathcal{H}}, R) \cong H_1(\frac{h^{-1}(\mathcal{H})}{R}) \cong H_1(\Gamma, R[\frac{G}{\mathcal{H}}])$,
where $H_1(\Gamma, M) = M/\langle \gamma m - m \rangle$. Can be computed by linear algebra.
$h : \Gamma \to G$ is surjective, $Y = \mathcal{H}^3/\Gamma$ and $X = \mathcal{H}^3/\ker h$, $
Rightarrow X \to Y$ is a Galois covering with Galois group G.

$H_1(X/H, R) \cong H_1(h^{-1}(H), R) \cong H_1(\Gamma, R[G/H])$,
where $H_1(\Gamma, M) = M/\langle \gamma m - m \rangle$.

Can be computed by linear algebra.
Example

\[F = \mathbb{Q}(t) \text{ with } t^4 - t^3 + 2t^2 - 1. \]

\[B = \left(\frac{-1}{F}, -1 \right). \]

\(\mathcal{O} \) an Eichler order of level norm 71.

\(\Gamma \) has volume 27.75939054 \ldots, and a presentation with 5 generators and 7 relations.

We found a surjective \(\Gamma \to \text{GL}_2(\mathbb{F}_7) \), yielding two isospectral manifolds with homology

\[\mathbb{Z}^3 + \mathbb{Z}/4 + \mathbb{Z}/4 + \mathbb{Z}/12 + \mathbb{Z}/12 + \mathbb{Z}/(2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23), \text{ and} \]

\[\mathbb{Z}^3 + \mathbb{Z}/4 + \mathbb{Z}/4 + \mathbb{Z}/12 + \mathbb{Z}/(12 \cdot 7) + \mathbb{Z}/(2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 23). \]
Thank you!