Algebraic number theory Exercise sheet for chapter 5

Nicolas Mascot (n.a.v.mascot@warwick.ac.uk), Aurel Page (a.r.page@warwick.ac.uk)

TAs: Chris Birkbeck (c.d.birkbeck@warwick.ac.uk), George Turcas (g.c.turcas@warwick.ac.uk)

Version: March 17, 2017

Answers must be submitted by Monday April 24, 14:00

Exercise 1 (65 points). Let $K = \mathbb{Q}(\sqrt{229}) \subset \mathbb{R}$. (Note: 229 is prime)

- 1. (3 points) Write down without proof the ring of integers, the discriminant and the signature of K.
- 2. (5 points) Determine the fundamental unit $u \in \mathbb{Z}_{K}^{\times}$ such that u > 1, and compute $N_{\mathbb{Q}}^{K}(u)$.
- 3. (10 points) Determine a set of prime ideals of \mathbb{Z}_K whose classes generate $\operatorname{Cl}(K)$ and give their residue degree.
- 4. (6 points) Let $\alpha = \frac{7+\sqrt{229}}{2}$ and $\beta = \frac{11+\sqrt{229}}{2}$. Determine the prime factorisations of the ideals (α) and (β).
- 5. (5 points) Let $z = x + y\sqrt{229} \in K$ $(x, y \in \mathbb{Q})$ be such that $N_{\mathbb{Q}}^{K}(z) = \pm 3$. Prove that, after possibly multiplying z by a unit in \mathbb{Z}_{K}^{\times} , we may assume that

$$u^{-1/2} \le z \le u^{1/2}.$$
 (1)

6. (5 points) Let $z = x + y\sqrt{229} \in K$ $(x, y \in \mathbb{Q})$ satisfying (1). Prove that if $N_{\mathbb{Q}}^{K}(z) = 3$, then

$$\frac{1-3u}{2\sqrt{229u}} \le y \le \frac{u-3}{2\sqrt{229u}}$$

Hint: Relate $y\sqrt{229} - x$ to z, and sum the inequalities obtained for z and for $y\sqrt{229} - x$.

7. (5 points) Let $z = x + y\sqrt{229} \in K$ $(x, y \in \mathbb{Q})$ satisfying (1). Prove that if $N_{\mathbb{Q}}^{K}(z) = -3$, then

$$\frac{2}{\sqrt{229u}} \le y \le 2\sqrt{\frac{u}{229}}$$

- 8. (5 points) Prove that no integral ideal of \mathbb{Z}_K of norm 3 is principal.
- 9. (6 points) Prove that $\operatorname{Cl}(K) \cong \mathbb{Z}/3\mathbb{Z}$.
- 10. (5 points) Describe the integral ideals of \mathbb{Z}_K of norm 27, and determine which ones are principal.
- 11. (10 points) Describe the set of elements in \mathbb{Z}_K of norm 27 in terms of u and β , and deduce the set of $(x, y) \in \mathbb{Z}^2$ such that $x^2 + xy 57y^2 = 27$.

Exercise 2 (35 points). Let $K = \mathbb{Q}(\alpha)$, where α is a root of $f(x) = x^3 - 6x - 3$.

- 1. (3 points) Prove that f is irreducible over \mathbb{Q} .
- 2. (5 points) Determine the ring of integers and the discriminant of K.
- 3. (5 points) Determine the decomposition of 3 in K.
- 4. (5 points) Compute the prime factorisation of the fractional ideal (u_1) generated by $u_1 = \alpha^3/3$. What can you deduce about u_1 ? Express u_1 in terms of the basis $1, \alpha, \alpha^2$.
- 5. (3 points) Determine a unit u_2 in \mathbb{Z}_K^{\times} of the form $\alpha + n$ for $n \in \mathbb{Z}$. *Hint: you may use without proof the fact that* $N_{\mathbb{Q}}^K(\alpha n) = f(n)$ *for all* $n \in \mathbb{Z}$.
- 6. (4 points) Let \mathcal{L} be the logarithmic embedding of K. Compute approximate values of $\mathcal{L}(u_1)$ and $\mathcal{L}(u_2)$ up to 10^{-3} . You may use without proof the fact that f(x) has three real roots, with approximate values -2.14510, -0.52397, 2.66907.
- 7. (10 points) Prove that $\{u_1, u_2\}$ generate a subgroup of \mathbb{Z}_K^{\times} of rank 2. *Hint: you can prove that a matrix has nonzero determinant by computing an approximate value of the determinant.*

UNASSESSED QUESTIONS

The next questions are not worth any points. I still recommend you to try to solve them, for practice. Corrections will be available online, just like for the marked questions.

Exercise 3.

- 1. Prove that there is no number field K such that the unit group \mathbb{Z}_{K}^{\times} is isomorphic to $\mathbb{Z}/50\mathbb{Z} \times \mathbb{Z}^{10}$.
- 2. Find a number field K such that $\mathbb{Z}_K \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$.

Exercise 4. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(x) = x^4 - x^3 - x^2 + x + 1$. We will assume without proof that f is irreducible and that disc $f = 117 = 3^2 \cdot 13$.

- 1. Let $\zeta = \alpha^3 \alpha^2$. Prove that $\zeta^3 = 1$.
- 2. Exhibit a primitive 6-th root of unity in K.
- 3. Prove that $\#W_K = 6$.
- 4. Prove that K is totally complex. What is \mathbb{Z}_K^{\times} isomorphic to as an abelian group?
- 5. Prove that $\alpha \in \mathbb{Z}_K^{\times}$ but $\alpha \notin W_K$.

Exercise 5.

- 1. Log in to a university computer that has the computer algebra software gp installed (Linux computers should have it).
- 2. Type gp in a terminal to start the software.
- 3. Pick d > 0 squarefree.
- 4. Type $bnfinit(x^2-d).fu[1]$ and hit Enter. This will compute a fundamental unit of $K = \mathbb{Q}(\sqrt{d})$ and display it in the form $Mod(a*x+b,x^2-d)$, meaning $a\sqrt{d} + b$.
- 5. Compute a fundamental unit of K by hand. Note that it might not be the same that **gp** computed: check that the two answers are compatible!
- 6. Type $bnfinit(x^2-d).clgp[2]$ and hit Enter. This will compute the class group of K and display its structure in the form of a list $[a_1, \ldots, a_n]$ representing the group $\mathbb{Z}/a_1\mathbb{Z} \times \cdots \times \mathbb{Z}/a_n\mathbb{Z}$.
- 7. Compute the class group Cl(K) by hand.