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Spring school on abelian varieties

Augsburg, 24th March 2010

This talk is an introduction to the topic of isogenies between
abelian varieties. Wedealwith the point of view of complex tori,
line bundles and periods in the first part, and with the algebraic
point of view (especially the case of positive characteristic) in
the second part.

1. IѠќєђћіђѠ ќѓ ѐќњѝљђѥ ѡќџі юћё ѝђџіќёѠ (30’)

1.1. Definition and laĴice-theoretic interpretation (7’). See [BL04, 1.2]

Definition. If X and Y are complex tori, an isogeny X → Y is a surjective homo-
morphism with finite kernel.

Recall that a homomorphismof complex tori is a holomorphicmapmapping
zero to zero: it is easy to see that a map is an isogeny iff it is étale. If X =
Cn/L, Y = Cn/M , the isogenies X → Y are given by elements of GLn(C)
mapping L intoM . Hence any isogeny has the form Cn/L → Cn/M , where L
is a sublaĴice of finite index inM .

Any torus has self-isogenies given by [n] : x 7→ nx.

Definition. The degree of an isogeny f is the order of the finite group ker f . The
exponent of f is the least common multiple of order of elements of ker f .

Proposition 1. If f : X → X ′ is an isogeny with exponent e, there exists an isogeny
g such that fg = eIdX′ and gf = eIdX .

Acomplex torus is said to have complexmultiplicationwhenever there is some
other element f ∈ GLn(C)mapping L into itself.

Elliptic curves with complex multiplication have the form C/OK where K
is some number field. Examples:

{
y2 = x3 − 1

}
(K = Q(j)),

{
y2 = x3 − x

}
(K = Q(i)).

The set of isogeniesX → X forms a ring: it can be embedded inHom(L,M),
hence it is free as a Z-module.

Proposition 2. The localisation of End(X) = Hom(X,X) with respect to isogenies
is EndQ(X) = End(X)⊗Z Q.

1.2. Line bundles and isogenies X → X̂ (10’). Recall that line bundles on a
complex torus X = V /L correspond bĳectively to canonical factors of auto-
morphy

αH,χ(λ, z) = χ(λ) exp(πH(λ, z) + π/2 ·H(λ, λ))

Then the translated automorphy factor by a point v is
αH,χ(λ, z + v) = χ(λ) exp(πH(λ, v)) exp(πH(λ, z) + π/2 ·H(λ, λ))

We want to identify χv(λ) = χ(λ) exp(πH(λ, v)) with a unit semi-character
L → S1. For this consider the semi-character

χv(λ) exp(−πH(v, λ)) = χ(λ) exp(2iπImH(λ, v))

Proposition 3 (see [BL04, 2.4]). Let L be a holomorphic line bundle on X , H an
automorphy factor for L, such that the real symplectic form E = ImH is integral and
nondegenerate (E can be identified with the harmonic 2-form c1(L)).

Then ϕL : x 7→ τx
∗L⊗ L−1 defines a degree detE isogeny X → X̂ .

Proof. For the moment by X̂ we mean Hom(L, S1). The morphism ϕL is given
by v 7→ exp(2iπImH(•, v)): the kernel consists of v such that E(L, v) ⊂ Z,
which has detE elements. �
1.3. Elliptic curves, arithmetic-geometric mean (8’). A historical example of
isogeny between elliptic curves is given by thework of Gauß on the arithmetic-
geometric mean [Cox84,Gra89].

Proposition 4. Let a and b be positive real numbers, and α and γ denote their arith-
metic and geometric mean. Then∫ ∞

0

dx

2
√

x(x+ a2)(x+ b2)
=

∫ ∞

0

dx

2
√

x(x+ γ2)(x+ α2)

The value of this integral is exactly π/AGM(a, b)whereAGM denotes the arithm-
etic-geometric mean.

Let
A =

(a+ b

2

)2
G = ab

Consider the following elliptic curves:
E1 =

{
y2 = x(x+ a2)(x+ b2)

}
E2 =

{
Y 2 = X(X +A)(X +G)

}
and the morphism f : E2 → E1 given in projective coordinates by

[X : Y : 1] 7→ [x : y : z] = [Y 2 : Y (X2 + 2AX +AG) : (X +A)2]
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Rewrite E1 as
{
y2 = x((x−G)2 + 4Ax)

}
and note that

x−Gz = Y 2 −G(X +A)2 = (X +A)(X(X +G)−G(X +A))

= (X +A)(X2 −AG)

Then check that

x((x−Gz)2 + 4Axz)

Y 2(X +A)2

= (X2 −AG)2 + 4AY 2

= (X2 −AG)2 + 4AX(X +A)(X +G)

= (X2 +AG)2 − 4AGX2 + 4AX(X2 +AG+ (A+G)X)

= (X2 +AG)2 + 4AX(X2 +AG) + 4A2X2 =
y2z

Y 2(X +A)2

Let ω be the canonical 1-form ω = d(x/z)
2(y/z) . Then

ω =
dx

2y
− xdz

2yz

1

X
+

1

X +G
− 1

X +A
=

X2 + 2AX +AG

Y 2

f∗ω =
2Y dY

2Y (X2 − 2AX +AG)
− 2Y 2(X −A)dX

2Y (X −A)2(X2 − 2AX +AG)

=
Y

X2 − 2AX +AG

(
dY

Y
− dX

X −A

)
=

Y

X2 − 2AX +AG
× 1

2

(
dX

X
+

dX

X +G
− dX

X +A

)
=

dX

2Y

Proposition 5. The morphism defined above is an isogeny of degree 2.

Proof. The morphism is clearly étale since it pulls back a non-vanishing 1-form
to a non-vanishing 1-form. �

The very fast convergence of the computations can be interpreted as the
rapid growth of j(τ)when τ = i · 2kτ0 (write j(it) =

∑
k jk exp(−2kπt)).

2. IѠќєђћіђѠ яђѡѤђђћ юяђљіюћ ѣюџіђѡіђѠ (20’)

2.1. Definitions, algebraic version (9’). Reference: [vdGM, ch. V].

Proposition 6. Let X and Y be abelian varieties, and f : X → Y be a morphism of
group schemes. The following conditions are equivalent:

(1) f is surjective and dimX = dimY ;
(2) ker f is finite, and dimX = dimY ;
(3) f is finite, flat, and surjective.

A morphism satisfying these conditions is called an isogeny.

Proof. To prove that 1 =⇒ 2, we use the theorem of generic flatness: if Y is
irreducible and reduced, and f : X → Y is a morphism of finite type, then f
is flat over some open subset U ⊂ Y . If f is a surjective morphism of abelian
varieties, any fibre is isomorphic to ker f , which is then finite (by the dimension
formula for flat morphisms).

To prove that 3 =⇒ 1, since f is already known to be surjective, it only
remains to show that dimX = dimY , which follows from the dimension for-
mula.

For 2 =⇒ 3, note that f is properwith finite fibers, hence f is finite, and since
X and Y are regular, f is flat. Surjectivity follows from the fact that dimX =
dimY . �
Definition. The degree of an isogeny f : X → Y is the degree [K(X) : K(Y )].

Proposition 7. An isogeny is separable iff it is étale, or if ker f is an étale group
scheme.

Proposition 8. Any isogeny of degree prime to the characteristic of the base field is
separable.

2.2. Positive characteristic and Frobenius morphism.

Proposition 9. An isogeny is purely inseparable (i.e. injective and gives residue
fields the structure of inseparable extensions) iff k(X) is purely inseparable over k(Y ),
or iff ker f is a connected group scheme.

Recall that the absolute Frobenius F is given on coordinate rings by the p-th
power morphism: ifX is a S-scheme, where S is a characteristic p scheme, the
absolute Frobenius X → X is not a S-morphism, since it can be wriĴen

(s, x ∈ Xs) → (sp, xp ∈ Xsp).



The relative Frobenius morphism is thus defined as the fiber product (π, F ) : X →
X(p) = S ×F,S,π X , which could be wriĴen

(s, x ∈ Xs) → (s, xp ∈ X(p)
s = Xsp ̸= Xs).

It is no longer an endomorphism of X .
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LetR be a k-algebra, where k is a ring of characteristic p, andR(p) := k⊗F,kR,
where F : k → k is the absolute Frobenius map. The k-algebra structure of
k ⊗F R is given by

λ · (a⊗ x) = (λa)⊗ x

(λpa)⊗ x = a⊗ (λx)

The relative Frobenius morphism Fk : R(p) → R is given by λ ⊗ x 7→ λxp,
which is a morphism of k-algebras.

Proposition 10. If X = SpecR, then X(p) = SpecR(p) and FSpec k is induced by
the morphism Fk.

Proposition 11. The Frobenius homomorphism X → X(p) = X ×F Spec k is a
purely inseparable isogeny of degree pg.

2.3. The Verschiebung homomorphism (11’). The Verschiebung operator on
WiĴ vectors

W (Z/pZ) = {(a0, a1, . . . ), ai ∈ Z/pZ}

is defined by
V : (a0, a1, . . . ) 7→ (0, a0, a1, . . . )

and under the isomorphismW (Z/pZ) ≃ Zp given by

(ai) →
∑

ãip
i

(here ãi is the unique root of unity which is≡ ai (mod p), the Teichmüller repre-
sentative), it is easily seen that V (x) = p ·x. But the universal formulae defining
WiĴ p-vectors involve non-linear parts which give the formula

p · x = V (Fx) = F (V x)

where F is the Frobenius automorphism.
The Verschiebung operator can actually be defined for any commutative flat

group scheme (see [vdGM] for an exposition). Since the construction is local
on the base, we suppose the base has the form S = Spec k, where k is a com-
mutative Z/pZ-algebra.

Theorem 12. Let G be a flat commutative group scheme over a base S, and F : G →
G(p) = G×F S the relative Frobenius homomorphism.

Then the morphism g → p · g = g + · · ·+ g can be factored as

G
F−→ G(p) V−→ G

where V is called the Verschiebung operator, such that V F = FV = p · IdG.
If G is an abelian variety, V is a degree pg isogeny.

The basic idea is the following: write the p-th power as the composition

G
∆−→ SympG

∑
−→ G

Here SympG is the p-th symmetric power of G: when G = SpecR, SympG is
Spec((R⊗p)Sp). Themorphism

∑
is induced by the p-fold coproductR → R⊗p

is Sp invariant, and∆ is the embedding of the diagonal.
The key ingredient is proving that ∆ factors through the relative Frobenius

morphism. Note that ∆ is expressed in terms of coordinate ring by the mor-
phism δ : R⊗p → R given by

a1 ⊗ · · · ⊗ ap 7→ a1 · · · ap.

Lemma 13. Let N denote the map x 7→
∑

σ∈Sp
xσ. Then the image of N is an ideal

in (R⊗p)Sp . There is a well-defined natural morphism γ : R(p) → (R⊗p)Sp/ImN

such that δγ coincides with the k-linear Frobenius map R(p) → R.

Proof. We first check that δ factors through (R⊗p)Sp/ImN : it follows from the
fact that δ(xσ) = δ(x) for any σ ∈ Sp.

Let γ be the map
(λ, x) 7→ λ(x⊗ · · · ⊗ x)



then γ is semi-linear with respect to x, that is

γ(λ, ax+ by) = apγ(λ, x) + bpγ(λ, y)

and linearwith respect to λ. It thus correctly defines amap γ : R(p) → (R⊗p)Sp .
Of course δγ(λ, x) = λxp = Fk(λ⊗ x). �

Proposition 14. IfX is flat over S, the canonical closed subschemeX [p] = ∆(X) ⊂
SympX is naturally isomorphic toX(p), and γ induces an isomorphism betweenR(p)

and (R⊗p)Sp/ImN, where R = O(X).

Proof. IfX is flat over S, thenR is a direct limit of finitely generated flat (hence
free) k-modules. Note that for any k-moduleM ,

γM : (λ,m) 7→ λ(m⊗ · · · ⊗m)

still defines a morphism k⊗F M → (M⊗p)Sp : if γM is an isomorphism for any
free moduleM , then γ is also an isomorphism.

But if M has basis (ei)i∈I , we know a basis of (M⊗p)Sp , by looking at the
various coefficients, and observe that N(eJ) =

∑
σ eσ(J) gives a basis element

of (M⊗p)Sp except when J = (i, i, . . . , i), in which case the stabilizer has order
divisible by p. The isomorphism γM is then explicit. �

About Cartier duality: if G is a finite locally free group scheme, then the
group ring of G is a Hopf k-algebra H which is a free module of finite rank
over k (up to a localisation).

Then H∗ is also a Hopf algebra, by interchanging product and coproduct.
Remember the diagram

H
Σ∗
−−→ (H⊗p)Sp

∆∗
−−→ H

where Σ∗ is given by the p-fold Hopf coproduct, and ∆∗ is the contraction of
tensors. Then the dual maps are the dual of the product ofH , which is the co-
product ofH∗, and the traditional product onH∗, hence by duality, the Frobe-
nius andVerschiebung operators ofG become theVerschibenug and Frobenius
operators on GD.

2.4. The Verschiebung for elliptic curves. Let k be a field of characteristic 2,
and E a k-ellptic curve with affine equation

y2 + y = x3 + px+ q

Then E(2) is the curve over k with equation

y2 + y = x3 + p2x+ q2 = (x+ p)3 + px2 + p3 + q2.

Let P = (a, b) be a point of E and let us compute −2P = (x, y). The tangent
line at P has equation

y − b = (a2 + p)(x− a) = a2x− a3 + p(x− a)

which gives the equations

(y2 + y)− (b2 + b) = x3 − a3 + p(x− a)

y2 − b2 = x(x2 − a2)

but (y − b)2 = (a2 + p)2(x− a)2, hence

x = (a2 + p)2 = a4 + p2 y = (a2 + p)3 + a3 + pa+ b = (a2 + p)3 + b2 + q

Then 2P is given by corodinates:

x = (a2 + p)2 = a4 + p2

y = (a2 + p)3 + a3 + pa+ b = (a2 + p)3 + b2 + q + 1

This proves that 2P = V (a2, b2), where V is defined by

(A,B) 7→ (X = A2 + p2, Y = (A+ p)3 +B + q + 1)

If (A,B) ∈ E(2), then

Y 2 + Y = (A+ p)6 + (A+ p)3 +B2 +B + q2 + q

= X3 + (pA2 + p3 + q2) + (q2 + q)

= X3 + p(A2 + p2) + q

= X3 + pX + q

2.5. Consequences for p-torsion points. Let X be an abelian variety over a
field k of characteristic p. Then the group of p-torsion pointsX[p] corresponds
bĳectively to the kernel of the Verschiebung morphism X(p) → X , which is a
p-torsion group of rank f ≤ g.

(When l ∧ p = 1, X[l] ≃ (Z/lZ)2g.)
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