
Monads in mathematics

Rémy Oudompheng

March 3, 2009

Abstract

This is an overview of the theory of monads and its applications.

Contents
1 Examples 1

1.1 Categories . 1
1.2 Monads . 2
1.3 Basic examples . 2

2 Algebras over monads and operads 3
2.1 Monads from operads . 3
2.2 Algebras over monads . 4

3 Adjoint functors and general monads 4
3.1 Pairs of adjoint functors . 4
3.2 Monads from adjunction . 5

4 The Kleisli category 5

5 Free operads 5

6 Resolutions with monads 5

1 Examples

1.1 Categories
Category theory studies in an abstract way how structures and constructions of math-
ematics are related. A category is a collection of (mathematical) objects. Usually, in-
teresting categories contain objects sharing the same properties (there is a category of
sets, a category of groups, a category of rings, and so on). A category need also have a
definition of arrows, which oĞen correspond to the usual definition of functions, maps
or morphisms. But it is possible to define categories having more complicated arrows.
A (not so) stupid non-trivial category is the opposite category Cop of a given category
C, which has arrows going the other way.

1

1 EXAMPLES 2

1.2 Monads
A monad M on a category C is a functor: it associates to any object X in C another
object MX of C in a so-called functorial way, which means that any arrow X → Y
should give rise to an arrow MX → MY . But in order to call M a monad, we require
several other properties: there should be natural transformations X → MX (so that
X → MX → MY and X → Y → MY are the same, which can be expressed by
a commutative square), and MMX → MX such that MX → MMX → MX is the
identity (notice that there are two ways to obtain an arrow MX → MMX). MacLane
in Categories for the Working Mathematician [ML98] gives a good account of the theory
along with a bit of history and references.

X
ιX //

f
��

MX

Mf
��

Y
ιY // MY

MX
ιMX //

M(ιX)
��

MMX

��
MMX // MX

Most examples of monads arising in mathematics are derived from two concepts:
operads, which combine monads with much richer structure (but correspond to really
tangible examples), and adjunctions (a framework in which monads can actually fit). I
should write about these later, and concentrate on examples. Monads are also used in
computer science, because they model a construction scheme which is widely spread.
The programming languageHaskell formulates many concepts in the language of mon-
ads. Marco Maggesi wrote a small introduction to monads [Mag] (in Italian), which
covers monads appearing in Haskell.

1.3 Basic examples
A basic undergraduate example is the monad of vector spaces. If k is a field, and X
is a set, define Vk(X) to be the vector space with basis X : this is the set of abstract
linear combinations of elements of X with coefficients in k. Then Vk is a monad is the
category of sets: it maps each set to another set (which is in fact a vector space over k), in
a functorial way (any function X → Y defines a map of vector spaces Vk(X) → Vk(Y)).
We recognize the structure of a monad by considering the injection X → Vk(X) which
maps an element of X to the corresponding basis vector. We also have a natural map
Vk(Vk(X)) → Vk(X) which sends an abstract linear combination of elements of Vk(X)
to their actual linear combination, which is a well-defined element of Vk(X). Checking
the other properties of monads is a simple exercise.

In a similar way, it is possible to define a monad of associative monoids (which is
also the List monad of Haskell), a monad of commutative monoids, a monad of rings,
etc. These can all be expressed using the formalism of operads or of adjoint functors.

A more pictorial example of monad is the monad of trees, which is closely related
to operads.

This monad associates to a set X the set TX of trees (to be defined) with a root (the
boĴom part of the tree in the picture) and leaves (the upper part) which are labelled by
elements of the set (here a, b, c). The set X maps to TX : an element x is represented by
the tree having no lines at all, just a point, labelled by x. The set TTX represents trees
where leaves v carry a tree T (v): such a tree-labelled tree has a natural associated tree,
constructed by drawing really T (v) at v, which makes a bigger tree (this operation is
called graĞing trees).

2 ALGEBRAS OVER MONADS AND OPERADS 3

Figure 1: A tree with labelled leaves

2 Algebras over monads and operads

2.1 Monads from operads
A large class of monads is actually derived from operads: basic examples formmonads
in the category of sets and associate to a set X a set TX of abstract “terms” made of
elements of X . For example, the monad of vector spaces I mentioned in the previous
post is such a monad, and associates to a set the abstract linear combinations of its
elements.

Operads are a generic structure giving a more precise definition of these terms. An
operad is an abstract set of operations of various arities (an ugly word to precise the
number or arguments taken by an operation: a ternary operation is said to have ar-
ity three), subject to relations between them or their compositions. For example, the
operad of vector spaces consists of two basic operations: sum and product by scalars
(which are actually infinitely many operations), which are tied by distributivity, com-
mutativity and associativity among other relations. An example of operation of this
monad is (x, y, z) → 2x + 3y + z, which is a ternary operation.

An operad T defines a natural associated monad, which associates to a setX the set
TX of terms built on X , which is defined inductively by the following rules: atoms are
the elements ofX , and for anyn-ary operation o ∈ T , and terms t1, . . . , tn, o(t1, t2, . . . , tn)
is a term (several terms should be identified if the operad says they correspond to equiv-
alent operations). Since ordinary definitions of operads already assume that it contains
all compositions of operations, we usually only need ti to be elements of X , which kills
the need for recursion. However, this readily shows why T behaves like a monad:
there is a natural map X → TX , and the map TTX → TX comes from the fact that a
term over TX is an operation taking terms of X as abstract inputs. It becomes a term
over X by replacing these abstract inputs by real inputs and calculating the resulting
composition.

3 ADJOINT FUNCTORS AND GENERAL MONADS 4

2.2 Algebras over monads
An algebra over a monad T is a set equipped with a morphism TX → X , with the
additional requirement that the associated morphism TTX → TX be exactly the com-
position of the monad T . In the case of an operad, this amounts to set a value in X for
each term, that is, defining internal operations on X mimicking the properties of the
abstract operations of the operad. For example, an algebra over the monad of vector
space is exactly what we usually call a vector space.

We already know examples of algebras over an arbitrary monad T : since it comes
with natural morphisms TTX → TX , TX itself is always a T -algebra. We say that it is
the free T -algebra over X . A free vector space over a set is the vector space having this
set as a basis, a free commutative ring is a polynomial ring over indeterminates given
by the base set, a free algebra over the monad/operad of groups is a free group, etc.

Let X be a set and evY : TY → Y be a T -algebra structure on a set Y . Any map
f : X → Y defines naturally a map Tf : TX → Y which is TX → TY → Y . This
corresponds to the fact that giving images for generators X produces maps from the
free object TX to Y . Head-aching abstract nonsense proves actually that this corre-
spondance is a bĳection Map(X, Set(Y)) = HomT (TX, Y).

X
ιX //

f

RTf

!!DD
DD

DD
DD

TX

��

Tf

""FFFFFFFF

Y TYevY

oo

Indeed, a map f : TX → Y conversely restricts to Rf : X → Y defined on the
generators. Given a map f : X → Y , f : X → Y = (X → Y → TY) → Y = (X →
TX → TY) → Y = RTf . Given a map f : TX → Y , we know that Rf : X → TX → Y
becomes T (Rf) : TX → TTX → TY where TTX → TY = Tf . Thus TRf : TX →
TTX → TY → Y = RTf = f .

X //

Rf !!DD
DD

DD
DD

TX

f
�� TRf

RTf

$$HH
HH

HH
HH

H
ιTX // TTX

Tf
��

Y TYevY

oo

We say that the forgetful functor sending a T -algebra Y to the ordinary set Y is
(right) adjoint to the free T -algebra functor X → TX .

3 Adjoint functors and general monads

3.1 Pairs of adjoint functors
The adjunction property between two functors, T : C1 → C2 and U : C2 → C1, says
that there is a natural bĳection betweenmorphismsHom1(A,UB) (in the first category)
and Hom2(TA, B) (in the second category). Here natural means that these bĳection is
compatible with composition with morphisms B → B′, UB → UB′ or A′ → A and
TA′ → TA.

Adjunctions are naturally created by the use of monads or operads. For example,
the functor Vk : Set → Vectk mapping a set X to the free vector space Vk(X) = k(X)

with basis X , has a adjoint, U : Vectk → Set, mapping a vector space to the set of its

4 THE KLEISLI CATEGORY 5

elements. The meaning of the adjunction, is that a morphism Vk(X) → W is equivalent
to the choiceX → W of images of basis vectors whereW is considered as as set. Similar
adjunctions exist for other free objects (free algebras, free groups, free modules).

Another fundamental adjunction relates products and exponentials in the following
sense. If X , Y and Z are sets, the bĳection Hom(X × Y, Z) = Hom(X,ZY) adjoins the
functors • × Y and •Y . A similar adjunction works for modules or vector spaces, and
states Hom(X ⊗ Y, Z) ≃ Hom(X,Hom(Y, Z)).

An informal way of describing adjoint functors is that one of the functors describes
how to obtain morphisms to/from objects created by the other functor (these mor-
phisms are said to be representable). For example, morphisms from a free vector space
are described by picking elements in the target, so the “free vector space” functor is
adjoint to the “set of elements” functor.

3.2 Monads from adjunction
Arbitrary pairs of adjoint functors define monads in the following way: if T and U are
adjoint functors as before (T being the leĞ adjoint and U the right adjoint). Recall that
the adjunction between T and U says that U describes morphisms coming from objects
of the form TX . Then the identity TX → TX should be represented by a morphism
X → UTX .

Is is then a simple but head-aching exercise to show that UT is a monad and under-
stand what it means. When U is the “set of elements” functor and T the “free thing”
functor, UT is the “free thing” monad in the sense of the first section. Beware that TU
does not define a monad, but a comonad (whose definition has arrows going the other
way): the natural morphism is TUX → X .

The product/exponential adjunction defines a comonad Y ×Hom(Y, X) → X which
is the evaluationmap (y, f) → f(y). There is also amonadX → Hom(Y, X×Y): apply-
ing it twice yields Hom(Y,Hom(Y, X×Y)×Y)which has a natural morphism towards
Hom(Y,X × Y using the evaluation map. This monad can model computations with
side effects (the Statemonad ofHaskell) : these computations can usually be described
asmaps S×X1 → S×X2, but these are exactly the same asmapsX1 → Hom(S, S×X2),
which syntaxically allows going from stateless objects to state-dependent objects.

4 The Kleisli category

5 Free operads

6 Resolutions with monads

REFERENCES 6

References
[Bec03] Jonathan Mock Beck, Triples, algebras and cohomology, Repr. Theory Appl. Categ. 2 (2003), 1–59

(electronic).

[ML98] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathe-
matics, vol. 5, Springer-Verlag, New York, 1998.

[Mag] Marco Maggesi, Introduzione alla teoria delle monadi, available at
hĴp://web.math.unifi.it/users/maggesi/monadi.pdf.

	Examples
	Categories
	Monads
	Basic examples

	Algebras over monads and operads
	Monads from operads
	Algebras over monads

	Adjoint functors and general monads
	Pairs of adjoint functors
	Monads from adjunction

	The Kleisli category
	Free operads
	Resolutions with monads

