Université de Nice-Sophia-Antipolis 5 octobre 2009

Préparation à l'agrégation (Rémy Oudompheng)

TD d'analyse n°13 : intégrales à paramètre

Exercice 1 (voir [Lep00, Ch. 5, ex. 524]). On s'intéresse à l'intégrale $I = \int_0^\infty \frac{\sin t}{t} dt$.

- 1. Quel sens donner à la formule précédente?
- 2. Montrer que $I = \int_0^\infty \frac{1-\cos t}{t^2} dt$. Quel sens donner à cette expression?
- 3. On considère la fonction

$$f(x) = \int_0^\infty \frac{\sin t}{x+t} \, dt.$$

Donner un sens à cette expression pour $x \geq 0$.

- 4. Montrer que f est de classe C^2 sur \mathbb{R}_+^* et montrer que f''(x) + f(x) = 1/x.
- 5. Montrer que f n'est pas dérivable en zéro.

Exercice 2 (Intégrale de Gauss, cf. [Gou94, III.4, ex. 2] ou encore [Lep00, ex. 526]). On veut calculer $I = \int_0^\infty \exp(-x^2) dx$. Pour cela nous allons utiliser la fonction

$$E(x) = \int_0^1 \exp(-x^2(t^2+1)) \frac{dt}{t^2+1}.$$

- 1. Donner un intervalle de définition de E. Que vaut E(0)? et $E(\infty)$?
- 2. Exprimer la dérivée de E en fonction de fonctions élémentaires et de la fonction $\varepsilon(x) = \int_0^x \exp(-t^2) dt$.
- 3. En déduire la valeur de $I = \varepsilon(\infty) = \sqrt{\pi}/2$.

Exercice 3 (Équation de la chaleur). Soit f une fonction bornée et de classe \mathcal{C}^2 sur \mathbb{R} . On pose

$$F(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{+\infty} f(x-u) \exp\left(\frac{-u^2}{4t}\right) du$$

- 1. Soit $K(x,t) = \frac{1}{\sqrt{4\pi t}} \exp\left(\frac{-x^2}{4t}\right)$. Montrer que $\partial K/\partial t = \partial^2 K/\partial u^2$. On dit que K vérifie l'équation de la chaleur. Pour la suite de l'exercice, on se souviendra que $\int_{\mathbb{R}} K(x,t) dx = 1$.
- 2. Montrer que la fonction F partage la même propriété. Est-ce encore vrai si ne suppose plus f dérivable (ni même continue)?
- 3. Question subsidiaire : montrer que $F(x,t) \to f(x)$ lorsque $t \to 0_+$.
- 4. On suppose cette fois que f est périodique, de période L. Montrer que la fonction d'énergie $E(t) = \int_0^L F(x,t) dx$ est constante.
- 5. On suppose que f s'écrit sous la forme

$$f(x) = a_0 + \sum_{i=1}^{n} a_i \sin(\alpha_i x + \phi_i),$$

où les α_i sont des réels non nuls. Montrer que F(x,t) converge vers a_0 lorsque $t \to \infty$. Question subsidiaire : montrer que cette convergence est uniforme.

TD d'analyse n°14 : dérivation des intégrales à paramètre, fonction Γ

Exercice 4 (Calcul de $\int_0^\infty \sin t \, \frac{dt}{t}$ [Lep00, Ch. 5, ex. 528]). On considère cette fois la fonction

$$g(x) = \int_0^\infty \frac{\cos xt}{1+t^2} dt$$

- 1. Quel sens donner à la formule précédente?
- 2. Montrer que la formule

$$G(x) = \int_0^\infty \frac{\sin xt}{t(1+t^2)} dt$$

définit une primitive de g. Que vaut G(0)?

- 3. Montrer que g est continue sur \mathbb{R} , et dérivable en tout x>0, et donner une expression de sa dérivée.
- 4. Montrer que

$$xg(x) = \int_0^\infty \frac{2t\sin tx}{(1+t^2)^2} dt$$

5. Établir l'identité

$$xg'(x) = g(x) - \int_0^\infty \frac{2\cos tx}{(1+t^2)^2} dt$$

- 6. En déduire l'équation différentielle g'' = g, et la valeur de g(x) pour tout x.
- 7. Montrer que G(x) g'(x) est égale à $\int_0^\infty \frac{\sin xt}{t} dt$. Montrer que cette expression est constante, égale à l'intégrale I de l'exercice précédent, et en déduire sa valeur.

Exercice 5 (Fonction Γ [Gou94, IV.7.1.1]). On définit la fonction «Gamma» par la formule

$$\Gamma(x) = \int_0^\infty \exp(-t)t^{x-1}dt.$$

- 1. Montrer que Γ est bien définie et de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 2. Montrer que pour tout x > 0, $x\Gamma(x) = \Gamma(x+1)$. En déduire la formule célèbre : $n! = \Gamma(n+1)$ pour $n \in \mathbb{N}$. Donner un équivalent de $\Gamma(x)$ lorsque x tend vers zéro.
- 3. Soient x < y des réels positifs. On pose

$$\phi_1(t) = \frac{1}{\Gamma(x)} \exp(-t)t^{x-1} \text{ et } \phi_2(t) = \frac{1}{\Gamma(y)} \exp(-t)t^{y-1}$$

Étudier ϕ_2/ϕ_1 : en déduire qu'il existe un réel M>0 tel que $\phi_2<\phi_1$ sur [0,M) et $\phi_2>\phi_1$ sur $(M,+\infty)$.

4. Soit ψ une fonction strictement croissante entre 0 et $+\infty$. Montrer que

$$\int_0^\infty \psi(t)\phi_1(t)dt < \int_0^\infty \psi(t)\phi_2(t)dt.$$

5. En déduire que Γ'/Γ est une fonction croissante : on dit que Γ est log-convexe (pourquoi?). Utiliser cette propriété pour retrouver l'inégalité

$$\binom{n}{p} < \binom{n}{n/2}$$

pour n entier et p < n/2.

6. Retrouver la log-convexité de Γ en étudiant ($\log \Gamma$)". (Indication : on pourra utiliser l'inégalité de Cauchy-Schwarz.)

[Gou94] Xavier Gourdon, Les maths en tête: Analyse, Ellipses, 1994.

[Lep00] M. Lepez, Les Grands classiques de Mathématiques, Bréal, 2000.