
The gradient flow approach to hydrodynamic
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Abstract We present a new approach to prove the macroscopic hydrodynamic be-
haviour for interacting particle systems, and as an example we treat the well-known
case of the symmetric simple exclusion process (SSEP). More precisely, we char-
acterize any possible limit of its empirical density measures as solutions to the heat
equation by passing to the limit in the gradient flow structure of the particle system.
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1 Introduction

The aim of this work is to show how one can use gradient flow structures to prove
convergence to the hydrodynamic limit for interacting particle systems. The exposi-
tion is focused on the case of the symmetric simple exclusion process on the discrete
d-dimensional torus, but the strategy can be adapted to other reversible particle sys-
tems, such as zero-range processes (see [11] for the definitions of these models).
Gradient flows are ordinary differential equations of the form

ẋ(t) =−∇V (x(t)),

where ∇V denotes the gradient of the function V . De Giorgi and his collaborators
showed in [5] how to give a meaning to solutions to such equations in the setting of
metric spaces: these solutions are called minimizing-movement solutions, or curves
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of maximal slope. When considering the case of spaces of probability measures, one
can use this notion to rewrite the partial differential equations governing the time
evolution of the laws of diffusion processes, such as the heat equation, as gradient
flows, for which V is the entropy with respect to the optimal transport (or Wasser-
stein) distance. We refer to [3] for more details. This framework can be adapted
to the case of reversible Markov chains on finite spaces. This was proven indepen-
dently by Maas [13] and Mielke [16], who both developed a discrete counterpart to
the Lott-Sturm-Villani theory of lower bounds on Ricci curvature for metric spaces.

These gradient flow structures are a powerful tool to study convergence of se-
quences of dynamics to some limit. Two main strategies have already been devel-
oped. One of them consists in using the discrete (in time) approximation schemes
suggested by the gradient flow structure (see for example [4]). The second one,
which we shall use here, consists in characterizing gradient flows in terms of a re-
lation between the energy function and its variations, and passing to the limit in
this characterization. It was first developed by Sandier and Serfaty in [18], and then
generalized in [19]. This strategy can be combined with the gradient flow structure
of [13, 16] to prove convergence to some scaling limit for interacting particle sys-
tems. This was recently done for chemical reaction equations in [14] and mean-field
interacting particle systems on graphs in [6].

Gradient flow structures are also related to large deviations, at least when con-
sidering diffusion processes, see [1, 8]. While we only present here the case of the
SSEP, the technique is fairly general, and can be adapted to other reversible inter-
acting particle systems. For example, the adaptation of the proof to the case of a
zero-range process on the lattice (with nice rates) is quite straightforward. It would
be very interesting to apply this method to obtain other PDEs, more degenerate than
the heat equation, as hydrodynamic limits of some interacting particle system: for
instance, porous medium and fast diffusion equations (see [17, 20]) also have a gra-
dient flow structure, and are not directly solvable by standard techniques.

The plan of the sequel is as follows: in Section 2, we present the gradient flow
framework for Markov chains on discrete spaces developed in [13, 16]. In Section 3,
we expose the setup for proving convergence of gradient flows. Finally, in Section 4,
we investigate the symmetric simple exclusion process, and reprove the convergence
to its hydrodynamic limit.

2 Gradient flow structure for reversible Markov chains

2.1 Framework

We start by describing the gradient flow framework for Markov chains on discrete
spaces. The presentation we use here is the one of [13]. We consider an irreducible
continuous time reversible Markov chain on a finite space X with kernel K : X ×
X → R+ and invariant probability measure ν . Let P(X ) (resp. P+(X )) be the
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set of probability densities (resp. positive) with respect to ν . The probability law
ρtν of the Markov chain at time t satisfies the evolution equation

ρ̇t(x)+ ∑
y∈X

(ρt(x)−ρt(y))K(x,y) = 0, for all x ∈X . (1)

Hereafter we denote by ρ̇t(x) the derivative with respect to time of the function
(t,x) 7→ ρt(x). Given a function ψ : X → R, we define ∇ψ(x,y) := ψ(y)−ψ(x).
The discrete divergence of a function Φ : X ×X −→ R is defined as

div(Φ)(x) :=
1
2 ∑

y∈X
(Φ(x,y)−Φ(y,x))K(x,y).

With these definitions, we have the integration by parts formula

∑
x,y∈X

∇ψ(x,y)Φ(x,y)K(x,y)ν(x) =− ∑
x∈X

ψ(x)div(Φ)(x)ν(x). (2)

Let us introduce three notions we shall use to define the gradient flow structure:

DEFINITION 2.1 1. The relative entropy with respect to ν is defined as

Entν(ρ) := ∑
x∈X

ν(x)ρ(x) logρ(x), for ρ ∈P(X ),

with the convention that ρ(x) logρ(x) = 0 if ρ(x) = 0. We sometimes denote
H (ρ) := Entν(ρ), whenever ν is fixed and no confusion arises.

2. The symmetric Dirichlet form is given for two real-valued functions φ ,ψ by

E (φ ,ψ) :=
1
2 ∑

x,y∈X
(φ(y)−φ(x))(ψ(y)−ψ(x))K(x,y)ν(x),

3. The Fisher information (or entropy production) writes as I (ρ) := E (ρ, logρ).

Notice that Entν is the mathematical entropy, and not the physical entropy. It
decreases along solutions of (1), so in physical terms it plays the role of a free
energy. We call I the entropy production since along solutions of (1) we have

d
dt

Entν(ρt) =−I (ρt).

2.2 Continuity equation

We introduce the logarithmic mean Λ(a,b) of two non-negative numbers a,b as

Λ(a,b) =
∫ 1

0
asb1−sds =

b−a
log(b)− log(a)

if a 6= b,a > 0,b > 0,
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and Λ(a,a) = a, and also Λ(a,b) = 0 if a = 0 or b = 0. The mean Λ satisfies:
√

ab≤Λ(a,b)≤ (a+b)/2, for all a≥ 0,b≥ 0. (3)

Let us now define, for ρ ∈P+(X ), its logarithmic mean ρ̂ defined on X ×X as

ρ̂(x,y) := Λ(ρ(x),ρ(y)). (4)

In order to define a suitable metric on P(X ), we need a representation of curves
as solving a continuity equation:

LEMMA 2.1 Given a smooth flow of positive probability densities {ρt}t≥0 on X ,
there exists a function (t,x) 7→ ψt(x) such that the following continuity equation
holds for any t ≥ 0 and x ∈X :

ρ̇t(x)+ ∑
y∈X

(ψt(y)−ψt(x))K(x,y)ρ̂t(x,y) = 0. (5)

Moreover, for any t ≥ 0, ψt(·) is unique up to an additive constant.

We refer to [13, Section 3] for the proof.

DEFINITION 2.2 Given ρ ∈P(X ) and ψ : X → R, we define the action

A (ρ,ψ) :=
1
2 ∑

x,y∈X
(ψ(y)−ψ(x))2

ρ̂(x,y)K(x,y)ν(x)≥ 0.

A distance between two probability densities (ρ0,ρ1) could then be defined as the
infimum of the action of all curves {ρt ,ψt}t∈[0,1] linking these densities, as was done
in [13]. However, we do not need to introduce that metric here, since we shall only
use the formulation of gradient flows as minimizing-movement curves, as follows:

PROPOSITION 2.2 Let {ρt}t≥0 be a smooth flow of probability densities on X ,
and let {ψt}t≥0 be such that the continuity equation (5) holds. Then, for any T > 0,

Entν(ρT )−Entν(ρ0)+
1
2

∫ T

0
I (ρt)dt +

1
2

∫ T

0
A (ρt ,ψt)dt ≥ 0, (6)

with equality if and only if {ρt}t≥0 is the flow of the Markov process on X with
kernel K and invariant measure ν , solution to (1).

This is the analogue of the characterization of solutions to ẋt = −∇V (xt) on Rd

as the only curves for which the non-negative functional

V (xT )−V (x0)+
1
2

∫ T

0
|∇V (xt)|2dt +

1
2

∫ T

0
|ẋt |2dt

cancels. Hence in the framework of Markov chains, Entν plays the role of V , and
the entropy production I plays the role of |∇V |2.
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Proof (of Proposition 2.2). Denote H (ρ) = Entν(ρ). We have

H (ρT )−H (ρ0) =
∫ T

0

d
dt

(
H (ρt)

)
dt =

∫ T

0
∑

x∈X
ν(x)

d
dt

(
ρt(x) logρt(x)

)
dt

=
∫ T

0
∑

x∈X
ν(x)ρ̇t(x) logρt(x)dt.

Using the reversibility of the invariant measure ν , we write

H (ρT )−H (ρ0) =−
∫ T

0
∑

x,y∈X
ν(x)(ψt(y)−ψt(x))K(x,y)ρ̂t(x,y) logρt(x) dt

=
∫ T

0

1
2 ∑

x,y∈X
(ψt(y)−ψt(x))(logρt(y)− logρt(x))ρ̂t(x,y)K(x,y)ν(x) dt

≥−1
4

∫ T

0
∑

x,y∈X
(ψt(x)−ψt(y))2

ρ̂t(x,y)K(x,y)ν(x) dt

− 1
4

∫ T

0
∑

x,y∈X
(logρt(x)− logρt(y))2

ρ̂t(x,y)K(x,y)ν(x) dt

=−1
2

∫ T

0
A (ρt ,ψt) dt− 1

2

∫ T

0
I (ρt) dt

with equality if and only if, for all x,y ∈X and almost every t ∈ [0,T ], we have

ψt(x)−ψt(y) = logρt(y)− logρt(x)

which is equivalent to saying that for almost every t and for every x we have

ρ̇t(x)+ ∑
y∈X

(logρt(x)− logρt(y))ρ̂t(x,y)K(x,y) = 0.

3 Scaling limits and gradient flows

With the formulation of Proposition 2.2, we can use the approach of Sandier and
Serfaty [19] to study convergence of sequences of Markov chains to a scaling limit.
Let (Kn) be a sequence of reversible Markov kernels on finite spaces Xn, and let
(νn) be the sequence of invariant measures on Xn. Since we wish to investigate
the asymptotic behaviour of the sequence of random processes, it is much more
convenient to work in a single space X that contains all the Xn. Hence we shall
assume that we are given a space X and a collection of embeddings pn : Xn−→X .
In practice, the choice of X and pn is suggested by the model under investigation.
In the next section, which is focused on the simple exclusion process on the torus,
the embeddings will map a configuration η onto the associated empirical measure
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πn(η) (see (12), Subsection 4.1). Such embeddings immediately define embeddings
of P(Xn) into P(X ).

In order to simplify the exposition below, we adopt the following convention:
whenever we say that a sequence (xn) of elements of Xn converges to x ∈ X ,
we shall mean that pn(xn) −→ x as n goes to infinity. In particular, the topology
used for convergence is implicitly the topology of X , which is assumed to be a
separable complete metric space. The strategy is to characterize possible candidates
for the limit as gradient flows. For that purpose we give a definition of minimizing-
movement curves in the metric setting:

DEFINITION 3.1 Let (X ,d) be a complete metric space. The gradient flows of an
energy functional H : X → R with respect to the metric d are the curves {mt} s.t.

H (mT )−H (m0)+
1
2

∫ T

0
g(mt)dt +

1
2

∫ T

0
|ṁt |2dt = 0,

where g is the local slope for H , defined as

g(m) := limsup
m̃→m

H (m)−H (m̃)

d(m, m̃)
and |ṁt |= limsup

h→0

d(mt ,mt+h)

h
.

REMARK 3.1 This is not a complete definition. To make it correct, we should intro-
duce the notion of absolutely continuous curves, whose slopes are well defined. This
is not a real issue here, since we shall only use it for reversible Markov chains (for
which the notions have already been well defined previously for curves of strictly
positive probability measures) and the heat equation, for which smooth curves of
strictly positive functions do not cause any issue (see the next example). We refer to
[3, 19] for a more rigorous discussion of the issues in the metric setting.

EXAMPLE 3.1 (Heat equation) Let us consider the parabolic PDE

∂m
∂ t

=
∂ 2m
∂θ 2 , t ≥ 0, θ ∈ (0,1). (7)

We know from [2] that (7) is associated to a gradient flow, since we have:

∫ 1

0
h(m(T,θ))dθ −

∫ 1

0
h(m(0,θ))dθ

+
1
2

∫ T

0

∫ 1

0
m(1−m)

(
∂ (h′(m))

∂θ

)2
dθdt +

1
2

∫ T

0

∥∥∥∂m
∂ t

∥∥∥2

−1,m
dt = 0,

with h(x) = x logx+(1− x) log(1− x) and, given u : [0,1]→ R,

||u||2−1,m := sup
J

{
2
∫ 1

0
J(θ)u(θ)dθ −

∫ 1

0
m(1−m)

(
J′(θ)

)2dθ

}
,

where the supremum is over all smooth test functions J.
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We now state the main result of that section. Hereafter, when we assert that a
sequence of curves of probability measures (in P(Xn) ↪→P(X )) converges to
a deterministic curve {mt} (in X ), we mean that it converges to a curve of Dirac
measures {δmt}. Definition 4.1 below gives a more precise meaning in the case of
particle systems. It is important to stress that we study convergence of probability
measures, which are deterministic objects.

THEOREM 3.1 Let (an) be an increasing diverging sequence of positive numbers.
We first assume that the topology on P(X ) has the following property:

(P) For any sequence (ρn
t νn) of smooth curves of positive probability mea-

sures that converges to some deterministic curve {mt}, the following inequal-
ities hold:

liminf
n→∞

1
an

Entνn(ρ
n
T )≥H (mT ) (8)

liminf
n→∞

1
an

∫ T

0
In(ρ

n
t )dt ≥

∫ T

0
g(mt)dt (9)

liminf
n→∞

1
an

∫ T

0
An(ρ

n
t ,ψ

n
t )dt ≥

∫ T

0
|ṁt |2dt, (10)

where ψn
t is such that (ρn

t ,ψ
n
t ) solves (5).

Now consider a sequence (ρn
t νn) of gradient flows (so that there is equality in

(6)), assume that the initial sequence (ρn
0 νn) does converge in distribution to some

m0, and that moreover

lim
n→∞

1
an

Entνn(ρ
n
0 ) = H (m0).

Then, any possible weak limit {mt} of (ρn
t νn) is almost surely a gradient flow of the

energy H , starting from m0. In particular, if gradient flows starting from a given
initial data are unique, (ρn

t νn) weakly converges to a Dirac measure concentrated
on the unique gradient flow of H starting from m0.

Moreover, for any t ∈ [0,T ], we have

1
an

Entνn(ρ
n
t )−−−→n→∞

H (mt).

Above (an) is a sequence of weights that corresponds to the correct scaling of
the system. For particle systems on the discrete torus of length n in dimension d
under diffusive scaling, we would take an = nd . This result is a slight variation of
the abstract method developed in [19], to which we refer for more details. The main
difference (apart from the setting which is restricted to gradient flows in spaces of
probability measures arising from reversible Markov chains) is that we consider
curves of probability measures that converge to a deterministic curve, rather than
any possible limit.
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One of the interesting features of this technique is that it does not require an
assumption of uniform semi-convexity on the sequence of relative entropies, which
can be hard to establish for interacting particle systems (see [7] for the general
theory of geodesic convexity of the entropy for Markov chains, and [9] for the study
of this property for interacting particle systems on the complete graph). Such an
assumption of semi-convexity is known as a lower bound on Ricci curvature for the
Markov chain, by analogy with the situation for Brownian motion on a Riemannian
manifold. For the simple exclusion on the discrete torus, it seems reasonable to
conjecture that curvature is non-negative, but this is still an unsolved problem.

Proof. First of all, for any weak limit Q of the laws of the trajectories, we also have

liminf
n→∞

1
an

∫ T

0
E (ρn

t , logρ
n
t )dt ≥Q

[∫ T

0
g(mt)dt

]
and

liminf
n→∞

1
an

∫ T

0
A (ρn

t ,ψ
n
t )dt ≥Q

[∫ T

0
|ṁt |2dt

]
,

where we denote by {mt} a random trajectory with law Q. This is a direct conse-
quence of the following lemma (whose proof is given below):

LEMMA 3.2 Let ( fn) be a sequence of real-valued, non-negative functions on a
space (Ω ,P), and assume that there exists a function f such that for any sequence
of random variables (Xn) that converges in law to a deterministic limit x, we have

liminf
n→∞

E[ fn(Xn)]≥ f (x).

Then, for any sequence (Xn) of random variables that converges in law to a random
variable X∞, we have

liminf
n→∞

E[ fn(Xn)]≥ E[ f (X∞)].

We now use Proposition 2.2 with the gradient flows {ρn
t νn}, and pass to the limit in

1
an

(
Entνn(ρ

n
T )−Entνn(ρ

n
0 )+

1
2

∫ T

0
E (ρn

t , logρ
n
t )dt +

1
2

∫ T

0
A (ρn

t ,ψ
n
t )dt

)
= 0,

and therefore

Q[H (mT )]−H (m0)+
1
2
Q

[∫ T

0
g(mt)dt

]
+

1
2
Q

[∫ T

0
|ṁt |2dt

]
≤ 0. (11)

Since the above quantity is an expectation of a non-negative functional, we see that

H (mT )−H (m0)+
1
2

∫ T

0
g(mt)dt +

1
2

∫ T

0
|ṁt |2dt = 0, Q-almost surely.

This means that Q-almost surely, {mt} is a gradient flow of H . If uniqueness of
gradient flows with initial condition m0 holds, convergence immediately follows.
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Convergence of the relative entropy at time T necessarily holds, since otherwise
it would contradict (11). Finally, it also holds at any other time t ∈ [0,T ], since one
can rewrite the same result on the time-interval [0, t].

We still have to prove Lemma 3.2. This proof is taken from [6].

Proof (of Lemma 3.2). Consider a sequence (Xn) that converges in law to a random
variable X∞. Using the almost-sure representation theorem, there exists a sequence
(Yn) such that for any n, Yn has the same law as Xn, and (Yn) almost surely converges
to Y∞. If we condition the whole sequence on the event {Y∞ = y}, then (Yn) almost
surely converges to y. Then we have, using Fatou’s lemma

liminf
n→∞

E[ fn(Xn)] = liminf
n→∞

E[ fn(Yn)] = liminf
n→∞

EY∞

[
E[ fn(Yn)|Y∞]

]
≥ EY∞

[
liminf

n→∞
E[ fn(Yn)|Y∞]

]
≥ EY∞

[ f (Y∞)] = E[ f (X∞)].

4 Symmetric Simple Exclusion Process (SSEP)

4.1 Model: definitions and notations

To make notations easier we consider the interacting particle systems on the one-
dimensional torus Tn = {0, ...,n−1}, but the result is valid in any dimension d ≥ 1.
Let us define Xn := {0,1}Tn , X := {0,1}Z, and T = [0,1) the continuous torus,
We create a Markov process {ηn

t ; t ≥ 0} on the state space Xn, which satisfies for
any η ∈Xn:

• η(i) = 1 if there is a particle at site i ∈ Tn,
• η(i) = 0 if the site i is empty,
• any particle waits independently an exponential time and then jumps to one of its

neighbouring sites with probability 1/2, provided that the chosen site is empty.

We are looking at the evolution of the Markov process in the diffusive time scale,
meaning that time is accelerated by n2. The generator is given for f : Xn→ R by

Ln( f )(η) := n2
∑

i∈Tn

η(i)(1−η(i+1))( f (η i,i+1)− f (η)),

where η i, j is the configuration obtained from η exchanging the occupation vari-
ables η(i) and η( j). The hydrodynamics behavior of the SSEP is well-known, and
we refer the reader to [11] for a survey. Let νn

α be the Bernoulli product measure
of parameter α ∈ (0,1), the invariant measures for the dynamics. Under νn

α , the
variables {η(i)}i∈Tn are independent with marginals given by

ν
n
α{η(i) = 1}= α = 1−ν

n
α{η(i) = 0}.
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Let us fix once and for all α ∈ (0,1) and denote by ρn
t the probability density of the

law of ηn
t (whose time evolution is generated by n2Ln) with respect to νn

α .
To prove convergence, we need to embed our particle configurations in a sin-

gle metric space. For each configuration η ∈Xn, we construct a measure on X
associated to η , denoted by πn(η). We do it here through the empirical measures:

π
n
t (dθ) := π

n(ηn
t )(dθ) = n−1

∑
i∈Tn

η
n
t (i)δi/n(dθ), (12)

where δθ stands for the Dirac measure concentrated on θ ∈ T. Let us denote by
M+ =M+(X ) the space of finite positive measures on X endowed with the weak
topology. Assume moreover that, for each n, πn : Xn→M+ is a continuous func-
tion. Our goal is to prove the convergence of the flow of measures (πn(ηn

t )). In
particular, πn inherits the Markov property from ηn.

We start by defining properly two notions of convergence. For any function G :
X → R and any measure π on X , we denote by 〈π,G〉 the integral of G with
respect to the measure π . In the following T > 0 is fixed.

DEFINITION 4.1 Let (πn
t ) be a sequence of flows of measures, each element be-

longing to the Skorokhod space D([0,T ],M+). For each n, let Qn be the probability
measure on D([0,T ],M+) corresponding to {πn

t ; t ∈ [0,T ]}.

1. We say that the sequence (πn
t ) converges to the deterministic flow {πt} if the

probability measure Qn converges to the Dirac probability measure concentrated
on the deterministic flow {πt}.

2. Fix t ∈ [0,T ]. We say that (πn
t ) converges in probability to the deterministic mea-

sure πt ∈M+ if, for all smooth test functions G : X → R, and all δ > 0,

Qn

[∣∣〈πn
t ,G

〉
−
〈
πt ,G

〉∣∣> δ

]
−−−→
n→∞

0. (13)

The next proposition gives the equivalence between the two notions above.

PROPOSITION 4.1 Let (πn
t ) be a sequence of flows of measures which converges

to a deterministic flow {πt}. Assume that t ∈ [0,T ] 7→ πt ∈M+ is continuous (with
respect to the weak topology). Then, for any t ∈ [0,T ] fixed, (πn

t ) converges in prob-
ability to πt ∈M+.

Proof. By assumption, the limiting probability measure on D([0,T ],M+) is con-
centrated on weakly continuous trajectories. Therefore, the limiting flow is al-
most surely continuous, and the map {πt ; t ∈ [0,T ]} 7→ πt is continuous from
D([0,T ],M+) to M+. Then, for t ∈ [0,T ], (πn

t ) converges in distribution to πt .
Since the latter is deterministic, this induces convergence in probability.

We recall here the main result, that we are going to prove in a different way.
Recall that πn

t is the empirical measure defined in (12) and Qn is the probability
measure on D([0,T ],M+) corresponding to the flow {πn

t }.
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THEOREM 4.2 (Hydrodynamic limits for the SSEP) Fix a density profile m0 :
T → [0,1] and let (µn) be a sequence of probability measures such that, under
µn, the sequence (πn

0 (dθ)) converges in probability to m0(θ)dθ . In other words,

limsup
n→∞

µ
n
[∣∣∣n−1

∑
i∈Tn

G(i/n)η(i)−
∫
T

G(θ)m0(θ)dθ

∣∣∣> δ

]
= 0,

for any δ > 0 and any smooth function G : T→R. Assume moreover that this initial
data is well-prepared, in the sense that:

lim
n→∞

1
n

Entνn
α
(µn) =

∫
T

h(m0(θ))dθ −h
(∫

T
m0(θ)dθ

)
, (14)

where h has been defined in Example 3.1. Then, for any t > 0, the sequence {πn
t }n∈N

converges in probability to the deterministic measure πt(dθ) = m(t,θ)dθ where m
is solution to the heat equation (7) on R+×T. The entropy also converges:

lim
n→∞

1
n

Entνn
α
(µn

t ) =
∫
T

h(m(t,θ))dθ −h
(∫

T
m(t,θ)dθ

)
.

Note that
∫

m(t,θ)dθ is actually a constant, given by the fixed density of particles.
The convergence of the entropy is equivalent to the local Gibbs behavior (see [12]).
Hence, the assumptions and conclusions are those obtained with the relative entropy
method of [21]. However, the techniques and restrictions are the same as for the
entropy method of [10]: we do not use smoothness of solutions to the hydrodynamic
PDE, but we use the replacement lemma (see Subsection 4.3), which relies on the
two-block estimate, rather than the one-block estimate alone as in [21].

4.2 The gradient flow approach to Theorem 4.2

We are going to apply Theorem 3.1 to obtain Theorem 4.2. The main steps are as
follows:

1. We first need to prove that the sequence (Qn) is relatively compact, so that there
exists a converging subsequence. Such an argument was already part of the en-
tropy method of [10]. We refer to [11][Chapter 4, Section 2] for the proof in the
context of the simple exclusion process.

2. In order to prove (8), we have to investigate the convergence of the relative en-
tropy with respect to the invariant measure νn

α towards the free energy associated
to the limiting PDE (7), which in our case reads as

H (m) =
∫
T

h(m(θ))dθ −h
(∫

T
m(θ)dθ

)
.
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This result is actually equivalent to the large deviation principle for νn
α (see for

example [15]), and is standard (see [11]). Moreover, if our initial data is close (in
relative entropy) to a slowly varying Bernoulli product measure1 associated to m,
which satisfies νn

ρ(·){η(i) = 1} = m(i/n), then its relative entropy with respect
to νn

α converges to the limiting free energy, so that we can easily have (14).
3. We prove the lower bound for the entropy production along curves (9) and the

lower bound for the slopes (10) in Subsection 4.3.
4. When passing to the limit, we obtain that for any weak limit Q of (Qn),

Q

[∫
T

h(m(T,θ))dθ −
∫
T

h(m(0,θ))dθ+

1
2

∫ T

0

∫
T

m(1−m)
(

∂ (h′(m))

∂θ

)2
dθdt +

1
2

∫ T

0
‖ṁt‖2

−1,m dt
]
≤ 0.

Since the expression inside the expectation is the characterization of solutions to
the heat equation as minimizing-movement curves, it is non-negative, and almost
surely m is a solution to the heat equation. Uniqueness of solutions starting from
m0 allows us to conclude.

4.3 Bounds and convergence

Here we prove that (9) and (10) are satisfied for the density ρn
t of the SSEP ac-

celerated in time, assuming that the empirical measure (πn
t (dθ)) converges to a

deterministic curve mt(θ)dθ . Let us start with (10). The argument is based on a du-
ality argument (Proposition 4.3) and on the replacement lemma (Lemma 4.4) which
is commonly used in the literature (see for example [11]).

PROPOSITION 4.3 Consider a couple (ρt ,ψt) satisfying the continuity equation
(5) for almost every t ≥ 0. For any smooth (in time) function J : [0,T ]×X → R,

∫ T

0
A (ρt ,ψt)dt ≥ 2 ∑

x∈X
J(T,x)ρT (x)ν(x)−2 ∑

x∈X
J(0,x)ρ0(x)ν(x)

−2
∫ T

0
∑

x∈X
∂tJ(t,x)ρt(x)ν(x)dt−

∫ T

0
∑
x,y
(J(t,x)− J(t,y))2

ρ̂t(x,y)K(x,y)ν(x)dt.

Proof. From the continuity equation (5), we have

1 This is also the assumption used to make Yau’s relative entropy method work, see [21].
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∑
x∈X

J(T,x)ρT (x)ν(x)− ∑
x∈X

J(0,x)ρ0(x)ν(x)

=
∫ T

0
∑

x∈X
∂tJ(t,x)ρt(x)ν(x)+ J(t,x)ρ̇t(x)ν(x)dt =

∫ T

0
∑

x∈X
∂tJ(t,x)ρt(x)ν(x)dt

−
∫ T

0
∑

x,y∈X
J(t,x)(ψt(y)−ψt(x))ρ̂t(x,y)K(x,y)ν(x)dt.

We symmetrize in x and y the last term, and get

2 ∑
x∈X

J(T,x)ρT (x)ν(x)−2 ∑
x∈X

J(0,x)ρ0(x)ν(x)= 2
∫ T

0
∑

x∈X
∂tJ(t,x)ρt(x)ν(x)dt

−
∫ T

0
∑

x,y∈X
(J(t,x)− J(t,y))(ψt(y)−ψt(x))ρ̂t(x,y)K(x,y)ν(x)dt,

and therefore

1
2n

∫ T

0
A (ρt ,ψt)dt ≥ 1

n ∑
x∈X

J(T,x)ρT (x)ν(x)−
1
n ∑

x∈X
J(0,x)ρ0(x)ν(x)

− 1
n

∫ T

0
∑

x∈X
∂tJ(t,x)ρt(x)ν(x)dt− 1

2n

∫ T

0
∑
x,y
(J(t,x)− J(t,y))2

ρ̂t(x,y)K(x,y)ν(x)dt.

To apply Proposition 4.3 to the SSEP, we consider observables of the form

J(t,η) = ∑
i∈Tn

G
(

t,
i
n

)
η(i) (15)

for smooth functions G : [0,T ]×T→ R. For any ` ∈ N and i ∈ Tn, we denote by
η`(i) the empirical density of particles in a box of size 2`+1 centered at i:

η
`(i) :=

1
2`+1 ∑

| j−i|≤`
η(i).

Hereafter we also denote by τx the translated operator that acts on local functions
g : {0,1}Z→ R as (τxg)(η) := g(τxη), and τxη is the configuration obtained from
η by shifting: (τxη)y = ηx+y. The main tool that we are going to use is the well-
known replacement lemma, which is a consequence of the averaging properties of
the SSEP. We recall the main statement and refer the reader to [10, 11] for a proof:

LEMMA 4.4 (Replacement Lemma) Denote by Pµn the probability measure on
the Skorokhod space D([0,T ],Xn) induced by the Markov process {ηn

t }t≥0 starting
from µn. Then, for every δ > 0 and every local function g,

limsup
ε→0

limsup
n→∞

Pµn

[∫ T

0
n−1

∑
x∈Tn

τxVεn(ηs)ds≥ δ

]
= 0,
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where

V`(η) =

∣∣∣∣ 1
2`+1 ∑

|y|≤`
τyg(η)− g̃(η`(0))

∣∣∣∣
and g̃ : (0,1)→ R corresponds to the expected value: g̃(α) :=

∫
g(η)dνα(η).

We are now able to conclude the proof. We treat separately the terms in the right-
hand side of Proposition 4.3, taking J as in (15). Since, for any fixed t, (πn

t (dθ))
converges in probability to πt(dθ) = mt(θ)dθ we have

1
n ∑

η∈Xn

J(T,η)ρn
T (η)νn

α(η) = Qn
[
〈πn

T ,G〉
]
−−−→
n→∞

∫
T

G(T,θ)mT (θ)dθ .

And the same happens at initial time for ρn
0 . Similarly,

1
n

∫ T

0
∑

η∈Xn

∂J
∂ t

(t,η)ρn
t (η)νn

α(η)dt −→
∫ T

0

∫
T

∂G
∂ t

(t,θ)mt(θ)dθdt.

Then, we write

∫ T

0

1
n ∑

η ,η ′∈Xn

(J(t,η)− J(t,η ′))2
ρ̂n

t (η ,η ′)Kn(η ,η ′)νn
α(η)dt

=
n2

n

∫ T

0
∑
η ,i

[
G
(

t,
i
n

)
−G

(
t,

i+1
n

)]2
η(i)(1−η(i+1)) ρ̂n

t (η ,η i,i+1)νn
α(η)dt.

We now use the logarithmic inequality (3) and write that the latter is smaller than

n
∫ T

0
∑
η ,i

[
G
(

t,
i
n

)
−G

(
t,

i+1
n

)]2
η(i)(1−η(i+1))

ρn
t (η)+ρn

t (η
i,i+1)

2
ν

n
α(η)dt.

From the invariance property of νn
α with respect to the change of variables η →

η i,i+1, and from the smoothness of G we get that the above quantity is equal to

1
n

∫ T

0
∑

η∈Xn

∑
i∈Tn

[
G′
(

t,
i
n

)]2
η(i)(1−η(i+1)) ρ

n
t (η)νn

α(η)dt +o
(1

n

)
, (16)

where G′ denotes the space derivative of G.
Above we want to replace η(i)(1−η(i+1)) by m(i/n)(1−m(i/n)). For ε > 0

we define the approximation of the identity iε(u) = (2ε)−11{|u| ≤ ε}. With that
notation, ηεn

t (0) is very close to 〈πn
t , iε〉. Let us denote h(η) := η(0)(1−η(1)).

Since G is a smooth function, (16) equals

1
n

∫ T

0
∑

η∈Xn

∑
i∈Tn

1
2εn+1 ∑

| j−i|≤εn

[
G′
(

t,
j
n

)]2
τih(η)ρn

t (η)νn
α(η)dt +O(ε2).

A summation by parts shows that the previous term can be written as
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1
n

∫ T

0
∑

η∈Xn

∑
i∈Tn

[
G′
(

t,
i
n

)]2 1
2εn+1 ∑

| j−i|≤εn
τ jh(η)ρn

t (η)νn
α(η)dt +O(ε2).

By Lemma 4.4, this expression is then equal to

1
n

∫ T

0
∑

η∈Xn

∑
i∈Tn

[
G′
(

t,
i
n

)]2
τih̃
(
〈πn

t (η), iε〉
)
ν

n
α(η)dt +Rn,ε,T ,

where Rn,ε,T vanishes in probability as n goes to infinity and then ε goes to 0. From
the convergence in probability of (πn

t ), the last expression converges to∫ T

0

∫
T

mt(θ)(1−mt(θ))(G′(t,θ))2 dθdt.

As a result, since the convergences above are valid for any smooth function G,

liminf
n→∞

1
n

∫ T

0
A (ρn

t ,ψ
n
t )dt ≥

∫ T

0
sup

G

{
2
∫
T

G ṁt dθ −
∫
T

mt(1−mt)(G′)2dθ

}
dt

=
∫ T

0
‖ṁt ‖2

−1,m dt.

In the same way, we need to prove

liminf
n→∞

1
n

∫ T

0
E (ρn

t , logρ
n
t )dt ≥

∫ T

0

∫
T

m(1−m)
(

∂ (h′(m))

∂θ

)2
dθdt.

Since the arguments are essentially the same as for the slopes, we shall be more
brief in the exposition. We denote

∇nG
(

t,
i
n

)
= n
[
G
(

t,
i+1

n

)
−G

(
t,

i
n

)]
.

By duality, we have
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1
2n

∫ T

0
E (ρn

t , logρ
n
t )dt

≥
∫ T

0
∑
η ,i
(logρ

n
t (η

i,i+1)− logρ
n
t (η))∇nG

(
t,

i
n

)
ηi(1−ηi+1)ρ̂

n
t (η ,η i,i+1)νn

α(η)dt

− 1
2n

∫ T

0
∑
η ,i

[
∇nG

(
t,

i
n

)]2
ηi(1−ηi+1)ρ̂

n
t (η ,η i,i+1)νn

α(η)dt

≥
∫ T

0
∑
η ,i
(ρn

t (η
i,i+1)−ρ

n
t (η))∇nG

(
t,

i
n

)
ηi(1−ηi+1)ν

n
α(η)dt

− 1
2n

∫ T

0
∑
η ,i

[
∇nG

(
t,

i
n

)]2
ηi(1−ηi+1)ρ

n
t (η)νn

α(η)dt

=−
∫ T

0
∑
η ,i

ρ
n
t (η)

[
∇nG

(
t,

i
n

)
−∇nG

(
t,

i−1
n

)]
ηiν

n
α(η)dt

− 1
2n

∫ T

0
∑
η ,i

[
∇nG

(
t,

i
n

)]2
ηi(1−ηi+1)ρ

n
t (η)νn

α(η)dt

Using the replacement lemma, passing to the supremum in G, and to the limit,

liminf
n→∞

1
n

∫ T

0
E (ρn

t , logρ
n
t )dt

≥ sup
G

{
−2

∫ T

0

∫
T

G′′mt dθdt−
∫ T

0

∫
T

mt(1−mt)(G′)2dθdt
}

= sup
G

{
−2

∫ T

0

∫
T

G′′mt(1−mt)h′′(mt)dθdt−
∫ T

0

∫
T

mt(1−mt)(G′)2dθdt
}

=
∫ T

0

∫
T

mt(1−mt)
(

∂h′(mt)

∂θ

)2
dθdt,

and this is exactly what we were seeking to prove.
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