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1 Introduction

This document contains the notes for a summer school course given by the first named author during
an MSRI/SLMath summer school entitled ”Concentration Inequalities and Localization Techniques
in High Dimensional Probability and Geometry”, that took place in July 2023.

It was one of two courses, the other one was given by Dan Mikulincer. The two courses were
intertwined, and several notions that are used in these notes were presented in the other course,
including Poincaré inequalities and the Kannan-Lovesz-Simonovits bisection method for building
needle decompositions on convex domains of Euclidean spaces. Some aspects were more developed
during the lectures (notably towards the end of these notes, in particular solving the Monge problem
for the distance cost, and the construction of needle decompositions). Additionally, the lectures were
completed by exercise sessions that were run by Arianna Piana and Shay Sadovsky.

2 Brunn-Minkowski inequality and applications

The content of this section is based on the first chapter of [2]. We refer to it for more about the
Brunn-Minkowski, including other proofs and applications, as well as the history of the problem.

2.1 Brunn-Minkowski inequality

Theorem 1 (Brunn-Minkowski inequality). Let A,B ⊂ Rd be two compact non-empty sets. Then

Vold(A+B)1/d ≥ Vold(A)
1/d +Vold(B)1/d.

This inequality can also be viewed as a type of concavity property, when rewritten as

Vold(λA+ (1− λ)B)1/d ≥ λVold(A)
1/d + (1− λ)Vold(B)1/d

for any λ ∈ [0, 1].
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We will mostly be interested, and only prove, the case where A and B are convex bodies, that is
compact, convex sets with non-empty interior.

An equivalent formulation is the multiplicative form

Vold(λA+ (1− λ)B) ≥ Vold(A)
λ ×Vold(B)1−λ (1)

which has the advantage (or,depending on the context, inconvenience) of not explicitly depending on
the dimension. It can be deduced from the previous statement by applying the arithmetic-geometric
inequality. However, it is actually equivalent: assuming without loss of generality that both sets
have (strictly) positive volume, consider

A1 := Vold(A)
−1/dA; B1 := Vold(B)−1/dB; λ :=

Vold(A)
1/d

Vold(A)1/d +Vold(B)1/d
.

Both A1 and B1 have volume 1, and hence if we apply to them the multiplicative version,

Vold(λA1 + (1− λ)B1) ≥ 1.

But since

λA1 + (1− λ)B1 =
A+B

Vold(A)1/d +Vold(B)1/d

we immediately get the arithmetic form.
Note also that with this argument, we see it is enough to prove the Brunn-Minkowski inequality

for sets with volume 1, which will be useful in the sequel.

Proof of the Brunn-Minkowski inequality for convex sets. We shall proceed by induction on the di-
mension. The case d = 1 is immediate, since

λ[a, b] + (1− λ)[c, d] = [λa+ (1− λ)c;λb+ (1− λ)d].

Let us assume the statement is true for all dimensions less than d − 1. Let K0 and K1 be two
convex bodies in dimension d. Without loss of generality, we can assume their volume to be equal
to 1.

Let θ ∈ Sd−1. We define for i ∈ {1, 2}

fi(t) := Vold−1({x ∈ Ki; ⟨x, θ⟩ = t})
gi(t) := Vold−1({x ∈ Ki; ⟨x, θ⟩ ≤ t})

If X is a random variable uniformly distributed on Ki, thet fi is the density of the variable ⟨X, θ⟩
while gi is its cumulative distribution function. Let [ai, bi] be the support of fi. We also define
hi : (0, 1) −→ R to be the inverse function of gi. It is differentiable, and

h′i(u) =
1

g′(hi(u))
=

1

fi(hi(u))
.

Let hλ = (1− λ)h0 + λh1 and Kλ = (1− λ)K0 + λK1. Let

Kλ(u) := Kλ ∩ {y + hλ(u)θ; y ⊥ θ}

be the (reparametrized) decomposition of Kλ into slices along the direction θ. As an immediate
consequence of these definitions,

(1− λ)K0(u) + λK1(u) ⊂ Kλ(u).
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By making the change of variable t = hλ(u) on the range of hλ, we have

Vold(Kλ) =

∫
Vold−1(Kλ ∩ {tθ + y; y ⊥ θ})dt

≥
∫ 1

0

Vold−1(Kλ(u))h
′
λ(u)du

=

∫ 1

0

Vold−1(Kλ(u))

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du

≥
∫ 1

0

Vold−1((1− λ)K0(u) + λK1(u))

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du

≥
∫ 1

0

f0(h0(u))
1−λf1(h1(u))

λ

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du.

Using the arithmetic-geometric inequality on the second factor we see that the integrand is bounded
from below by 1, which concludes the proof.

Let’s look at the equality cases in this proof. Due to the translation invariance, we can assume
that bothK0 andK1 have their barycenter at the origin. Equality in the Brunn-Minkowski inequality
requires equality at the point where we used the arithmetic-geometric inequality. Hence if there is
equality, then f0 ◦ h0 = f1 ◦ h1, and hence h′0 = h′1. Therefore h1 − h0 is constant. But since the
barycenter is at the origin, then

0 =

∫
Ki

⟨x, θ⟩dx =

∫
tfi(t)dt

=

∫ 1

0

hi(u)fi(hi(u))h
′
i(u)du =

∫
hi(u)du

so that actually h1 = h0. Therefore g0 = g1 and the boundaries of the two convex sets must be the
same, since the extremal in every direction θ is the same.

For the general Brunn-Minkowski inequality (that allows for non-convex sets), equality holds iff
the two sets are homothetic to subsets of full measures of a same convex set. See [16] for a stable
version of this statement.

2.2 Applications

Theorem 2 (Borell’s Lemma). Let K be a convex body with volume 1, and A be a symmetric convex
closed subset of K, such that Vold(K ∩A) = δ > 1/2. Then for any t > 1 we have

Vold(K ∩ (tA)c) ≤ δ

(
1− δ

δ

)(t+1)/2

.

Remark 3. The constant 1/2 for the minimal value of the volume is not so important, we still get
exponential decay in t for other values, up to changing other constants.

Proof. We first show by contradiction that

2

t+ 1
(tA)c +

t− 1

t+ 1
A ⊂ Ac.
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If this is not so, there is y /∈ tA and a, b ∈ A such that

a =
2

t+ 1
y +

t− 1

t+ 1
b.

But then
y

t
=
t+ 1

2t
a+

t− 1

2t
(−b) ∈ A

by convexity and symmetry of A, which is a contradiction.
As a consequence,

2

t+ 1
((tA)c ∩K) +

t− 1

t+ 1
(A ∩K) ⊂ Ac ∩K.

Applying the Brunn-Minkowski inequality then yields

1− δ = Vold(A
c ∩K) ≥ Vold((tA)

c ∩K)2/(t+1) Vold(A ∩K)(t−1)/(t+1)

= Vold((tA)
c ∩K)2/(t+1)δ(t−1)/(t+1).

Rearranging the terms concludes the proof.

Definition 4. The perimeter (Minkowski content) of a convex set K can be defined as

Per(K) := lim inf
t→0+

Vold(K + tBd2 )−Vold(K)

t
.

There are other common definitions, which coincide with this one.

Theorem 5 (The isoperimetric inequality). Let K be a convex body in Rd. Then

Per(K) ≥ dVold(B
d
2 )

1/dVold(K)(d−1)/d.

The isoperimetric inequality is true for more general sets, but one must pay attention to the
definition of the boundary.

Proof. Take r such that Vold(K) = Vold(rB
d
2 ). Then

Vold(K + tBd2 )
1/d ≥ Vold(K)1/d + tVold(B

d
2 )

1/d = (r + t)Vold(B
d
2 )

1/d

so that

Per(K) ≥ lim inf
(r + t)d − td

t
Vold(B

d
2 )

= drd−1 Vold(B
d
2 )

and the conclusion follows since r = (Vold(K)/Vold(B))1/d.

3 Lecture 2: Prékopa-Leindler inequality and Gaussian log-
arithmic Sobolev inequality

3.1 Log-concave measures

Definition 6. A non-negative measure µ on Rd is said to be log-concave if it satisfies the multi-
plicative form of the Brunn-Minkowski inequality, that is for any compact non-empty sets A and B
we have

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ.
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Remark 7. In general, such measures are not translation-invariant, and do not satisfy a scaling
property with respect to dilations. In particular, the multiplicative form does not imply the additive
form of the Brunn-Minkowski inequality for general measures. Optimal additive Brunn-Minkowski
inequalities for more general measures are not so well-understood at this time. For example, the
optimal exponent 1/d for the Gaussian additive Brunn-Minkowski inequality has only been established
in 2021 by Eskenazis and Moschidis, answering a question of Gardner and Zvavitch, and only holds
when restricting to convex, symmetric sets (Nayar and Tkocz gave a counterexample when symmetry
is omitted).

Since for proving Borell’s lemma we only used the multiplicative form, it can be extended to
log-concave measures, and we get

Theorem 8. Let µ be a log-concave probability measure on Rd. Then for any symmetric convex set
A with µ(A) = δ ∈ (1/2, 1) and any t > 1, we have

1− µ(tA) ≤ δ

(
1− δ

δ

)(t+1)/2

.

However, the isoperimetric inequality uses the additive form (it is dimensional), and hence does
not generalize.

3.2 Prékopa-Leindler inequality

A common theme in geometric functional analysis is that many inequalities comparing volumes of
sets have functional forms. In the case of the Brunn-Minkowski inequality, the functional form is
the Prékopa-Leindler inequality:

Theorem 9 (Prékopa-Leindler inequality). Let f , g and h be three functions on Rd, and t ∈ (0, 1),
such that

h(tx+ (1− t)y) ≥ tf(x) + (1− t)g(y)

for all x, y in Rd. Then ∫
ehdx ≥

(∫
efdx

)t(∫
egdx

)1−t

.

Corollary 10 (Measures with log-concave densities are log-concave). Let µ be a positive measure
on Rd, admitting a log-concave density w.r.t. the Lebesgue measure. Then it is log-concave, in the
sense of Definition 6.

Proof. Let eV be the density, with V concave, and let A and B be two closed convex sets. Taking
f = V on A and −∞ outside, g the same for B, and h the same on tA+ (1− t)B, we immediately
get the desired result by applying the Prékopa-Leindler inequality.

The converse is also true, in a strong sense (see [6] for a proof):

Theorem 11 (Borell’s theorem). If a log-concave probability measure on Rd is not supported on
a hyperplane (that is, µ(H) < 1 for any hyperplane H), then it is absolutely continuous w.r.t. the
Lebesgue measure, and its density is log-concave.

Corollary 12 (Convolutions of log-concave functions are log-concave). Let V and W be convex
functions. Then

z −→ − log

∫
e−V (x)−W (z−x)dx

is convex.

5



Proof. Apply the Prékopa-Leindler inequality to f(x) = −V (x)−W (z1−x), g(x) = −V (x)−W (z2−
x) and h(x) = −V (x)−W (tz1 + (1− t)z2 − x).

Corollary 13 (Heat flow preserves log-concavity). Let ρ0 be log-concave and L1, and let ρ(t, x) be
the solution to

∂tρ = ∆ρ.

Then for any t > 0, ρ(t, ·) is log-concave.

Proof. The heat flow can be obtained by convolution with a time-dependent Gaussian kernel, with
covariance matrix 2t Id. We can then apply the previous corollary.

Proof of the Prékopa-Leindler inequality. We shall once again proceed by induction on the dimen-
sion. Let’s start with dimension one. Without loss of generality, assume that f and g are continuous,
positive probability densities. The goal is then to prove that

∫
h ≥ 1.

We can reparametrize by the cumulative distribution functions, that is let x(t), y(t) be functions
on (0, 1) defined by ∫ x(t)

−∞
f = t;

∫ y(t)

−∞
g = t.

We have
x′(t)f(x(t)) = y′(t)g(y(t)) = 1.

Let
z(t) := λx(t) + (1− λ)y(t),

which is a strictly increasing, C1 function satisfying

z′(t) = λx′(t) + (1− λ)y′(t)

≥ (x′(t))λ(y′(t))1−λ)

= f(x(t))−λg(y(t))1−λ.

We now have ∫
R
h =

∫ 1

0

h(z(t))z′(t)dt

≥
∫
h(λx(t) + (1− λ)y(t))f(x(t))−λg(y(t))1−λdt

≥ 1

by the assumption on h. This concludes the proof in dimension 1.
Assume now that the Prékopa-Leindler inequality is true in dimension d − 1, and let’s prove it

in dimension d. Consider f, g and h satisfying the assumptions of the theorem, and consider their
families of (d− 1)-dimensional restrictions, defined as

fs(x) = f(s, x); s ∈ R, x ∈ Rd−1

and similarly for g and h. It follows from the assumption that

hλs0+(1−λ)s1(λx+ (1− λ)y) ≥ fs0(x)
λgs1(y)

1−λ.
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Hence

H(λs0 + (1− λ)s1) :=

∫
Rd−1

hλs0+(1−λ)s1

≥
(∫

fs0

)λ(∫
gs1

)1−λ

=: F (s0)
λG(s1)

1−λ.

Since F,G and H satisfy the assumptions of the Prékopa-Leindler inequality in dimension one, which
we already proved, we can use Fubini’s theorem to get∫

Rd

h =

∫
R
H

≥
(∫

R
F

)λ(∫
R
G

)1−λ

=

(∫
Rd

f

)λ(∫
Rd

g

)1−λ

.

Prékopa-Leindler inequality implies Brunn-Minkowski. Take ef = 1A, e
g = 1B and eh = 1tA+(1−t)B ,

and apply the Prékopa-Leindler inequality.

Theorem 14 (Gaussian logarithmic Sobolev inequality). For all positive, locally lipschitz functions
such that

∫
|∇f |2dγ <∞, we have∫

f2 log f2dγ −
(∫

f2dγ

)
ln

(∫
f2dγ

)
≤ 2

∫
|∇f |2dγ.

Proof. We will prove it in the equivalent form

Entγ(e
g) ≤ 1

2

∫
|∇g|2egdγ.

Let V (x) = |x|2/2 + d ln(2π)/2. We will consider an interpolation between the two densities of
interest e−V and eg−V by applying the Prékopa-Leindler inequality with u(x) = eg(x)/t−V (x) and
v(y) = e−V (y) for t ∈ (0, 1). The best possible function we can take in the upper bound is w(z) =
egt(z)−V (z) with

gt(z) = sup
z=tx+sy

g(x)− (tV (x) + sV (y)− V (z))

where s = 1− t, and we get ∫
egtdγ ≥

(∫
eg/tdγ

)t
. (2)

The entropy arises as the first order-variation of Lp norms as p −→ 1, that is(∫
e(1+ϵ)gdγ

)1/(1+ϵ

=

∫
egdγ + ϵEntγ(e

g) + o(ϵ),
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so that replacing 1 + ϵ by t−1 and letting t go to 1 (i.e. s to zero), we get(∫
eg/tdγ

)t
=

∫
egdγ + sEntγ(e

g) + o(s).

The LSI will be derived by making a Taylor expansion of a suitable upper bound on gt.
Setting z = tx+ sy, w = z − y and r = s/t, we can rewrite

gt(z) = sup
w
g(z + rw)− r

2
|w|2.

Since g has a compact support, for small s (and hence small r) we can write it as

gt(z) = sup
w
g(z) + r⟨∇g(z), w⟩ − −r

2
|w|2 +O(r2|w|2)

where the reminder term is uniformly controlled, so that
for r small enough. Hence, again using that g is compactly supported,∫

egtdγ ≤
∫
eg
(
1 +

r

2
|∇g(z)|2 + C ′′r2

)
dγ

=

∫
egdγ +

r

2

∫
|∇g|2egdγ +O(r2)

Comparing the two Taylor expansions yields the desired result.

4 Lecture 3: Gaussian concentration and isoperimetric in-
equalities

4.1 Gaussian concentration

Theorem 15 (Gaussian concentration inequality). Let f be a 1-Lipschitz function on Rd. Then for
any λ ∈ R we have ∫

exp(λf)dγ ≤ exp

(
λ

∫
fdγ +

λ2

2

)
.

As a consequence, for any r ≥ 0 and X a standard Gaussian random variable,

P (f(X) ≥ E[f(X)] + r) ≤ exp(−r2/2).

The first part of the theorem is sharp, since equality is attained for f(x) = x1. The second
inequality is not quite sharp for fixed r, but the exponential part is sharp, in the sense that the
factor 1/2 cannot be improved to 1/2 + ϵ.

For f(x) = d−1/2
∑
xi, we observe the same asymptotic as in Cramér’s theorem on large devia-

tions, but the result here has the advantage of being non-asymptotic.
We will deduce this inequality from the Gaussian LSI, following what is known as Herbst’s

argument:
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Proof. Let f be a 1-Lipschitz function on Rd with
∫
fdγ = 0, and let F (λ) = log

∫
exp(λf)dγ for

λ ≥ 0. We have F (0) = 0 and

F ′(λ) =

∫
f exp(λf)dγ∫
exp(λf)dγ

=
1

λ
Entγ(e

λf/eF (λ)) +
1

λ
F (λ)

≤ 1

2λ

∫
λ2|∇f |2 exp(λf)dγ∫

exp(λf)dγ
+

1

λ
F (λ)

≤ λ

2
+

1

λ
F (λ).

So we get (
1

λ
F

)′

≤ 1

2
.

Integrating with respect to λ yields

F (λ) ≤ λ2

2
,

which is the desired result. The second inequality then follows from Chernoff’s inequality (that is,
Markov’s inequality applied to eλf and then optimizing in λ).

We will now see an application of Gaussian concentration to data compression. The goal is to
find an efficient way of embedding N points of a high-dimensional space Euclidean space (which can
be taken as equal to N) in a lower-dimensional space, without distorting too much the distances
ebtween points. The result we shall prove is

Theorem 16 (Johnson-Lindenstrauss flattening lemma). Let N ∈ N, ϵ ∈ (0, 1) and T a set of N

points in RN . Then for any n > 6 log(2N2)
ϵ2 tehre exists a linear map A : RN −→ Rn such that

∀x, y ∈ T, (1− ϵ)||x− y||2 ≤ ||Ax−Ay||2 ≤ (1 + ϵ)||x− y||2. (3)

Proof. The method of proof is probabilistic: we shall construct a linear map at random, and show
that (3) holds with positive probability, which ensures existence.

Let n ∈ N which shall be chosen later. Let B be a matrix of size n ×N with Bi,j = gi,j ,where
the gi,j are iid standard Gaussians. Then for any u ∈ RN such that ||u|| = 1, Bu is a centered
Gaussian vector in Rn, whose covariance matrix is the identity matrix. Since the Euclidean norm is
1-lipschitz, we have

P(|||Bu||2−E[||Bu||2]| ≥ r) = P(||Bu||2−E[||Bu||] ≥ r)+P(||Bu||2−E[||Bu||] ≤ −r) ≤ 2 exp(−r2/2).

Let m = E[||X||] be the expectation of the norm of a standard Gaussian vector in dimension n and
A = 1

mB. With u such that ||u|| = 1 and taking r = ϵm, we have

P (|||Au|| − 1| ≥ ϵ) ≤ 2 exp(−ϵ2m2/2).

In particular, for any x, y ∈ T , we have

P
(∣∣∣∣ ||A(x− y)||

||x− y||
− 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp(−ϵ2m2/2).
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By a union bound, we get

P
(
∃x, y ∈ T s.t.

∣∣∣∣ ||A(x− y)||
||x− y||

− 1

∣∣∣∣ ≥ ϵ

)
≤ 2N2 exp(−ϵ2m2/2).

It is therefore enough to pick n such that

m2 >
2 log(2N2)

ϵ2

for obtaining existence of a linear map A such that (3) holds.
Since for X standard Gaussian vector we have

n = E[||X||2] ≤ E[||X||]2/3E[||X||4]1/3 and E[||X||4] ≤ 3n2,

we have m2 ≥ n/3, so it is enough to take n > 6 log(2N2)
ϵ2 for the result to hold.

4.2 Isoperimetric inequalities and concentration

The isoperimetric inequality on the sphere, due to P. Lévy and Schmidt, states that

Theorem 17 (Spherical isoperimetric inequality). Let A be a subset of the unit sphere, and B be a
spherical cap with same volume as A. Then

Per(A) ≥ Per(B).

Without loss of generality, we can view a spherical cap as of the form {x ∈ Sn; 1− t ≤ x1 ≤ 1}.
Its volume is given by the formula

1

ZN

∫ 1

1−t
(1− x2)N/2−1dx

where ZN is a constant, computed from the volume ratios.
If we integrate the isoperimetric inequality, we have

Corollary 18. Let A be a subset of the unit sphere, and B be a spherical cap with same volume as
A. Then for any r > 0

Vol(Ar) ≥ Vol(Br)

where Ar is the closed r-neighborhood of A, that is Ar = {x ∈ Sd, d(x,A) ≤ r}.

If we consider the uniform probability measure on the unit sphere of dimension d (embedded in
Rd+1, we can see that the mass of a spherical cap of radius strictly smaller than π/2 decays expo-
nentially fast. More precisely, for any fixed point z and setting Vd the volume of the d-dimensional
unit sphere (which is equal to π(d+1)/2/Γ(d/2 + 1), we have

Vol({x; d(x, z) ≤ t})
Vol(Sd)

=
Vd−1

∫ 1

cos(t)
(1− u2)(d−1)/2

Vd

≤
√
2π√
d

∫ 1

cos(t)

(1− u2)(d−1)/2

≤
√
d+ 1√
2π

∫ 1

cos(t)

exp(−(d− 1)u2/2)du.

10



We see that as soon as π/2− t >> d−1/2, this quantity is exponentially small. So the mass on a
high-dimensional sphere is concentrated on an equator.

In particular, if we consider sublevel sets of a lipschitz functions, we see that a 1 lipschitz function
of a uniform random variable on the unit sphere has typical fluctuations around its median of order
d−1/2.

If we rescale the sphere by setting the radius to
√
n and let n go to infinity, the distribution of

a single coordinate converges to a standard Gaussian distribution (Borel-Poincaré lemma). We get
in the limit the Gaussian isoperimetric inequality, due to Sudakov, Tsirel’son and Borell. We refer
to [18] for a survey of the many known direct proofs of the Gaussian isoperimetric inequality, and
some of its extensions.

Theorem 19 (Gaussian isoperimetric inequality). Let A be a subset of Rd such that γd(A) = α.
Let H be a half-space ]−∞, a]× Rd−1 such that γd(H) = γ1(]−∞, a]) = α. Then

Perγd(A) ≥
exp(−a2/2)√

2π
= Perγd(H).

In this theorem, a can be expressed by inverting the Gaussian cumulative distribution function.
Explicit computations show that this inequality is stronger than the Gaussian concentration inequal-
ity. More generally, the Gaussian isoperimetric inequality implies the Gaussian logarithmic Sobolev
inequality.

5 Lecture 4: Introduction to Stein’s method

The goal of this lecture is to introduce the basics about Stein’s method for distribution approx-
imation. We refer to [21, 12] for an overview of the field, and to [1, 3] for discussions of recent
developments.

5.1 Stein’s method for the standard Gaussian measure in dimension one

Definition 20 (L1 optimal transport distance). Let µ and ν be two probability measures on a Polish
space (E, d), with finite first moment. Then the L1 Wasserstein (or Monge-Kantorovitch) distance
is defined as

W1(µ, ν) := sup
f1−lip

∫
fdµ−

∫
fdν = inf

X≡µ,Y≡ν
E[d(X,Y )].

The equality between the two formulations is a non-trivial convex duality result (Kantorovitch-
Rubinstein duality theorem).

Theorem 21 (Stein’s lemma). Let ν ∈ P(R).Then

W1(ν, γ) ≤ sup

{∫
(f ′ − xf)dν; ||f ||∞, ||f ′||∞, ||f ′′||∞ ≤ 1

}
Proof. Consider a class of functions H such that for any 1-lipschitz function g, there exists f ∈ H
such that f ′ − xf = g −

∫
gdγ. Then trivially

W1(ν, γ) ≤ sup
f∈H

∫
f ′ − xfdν.

So all we need to do is to show that there are solutions that satisfy the regularity bounds. Since the
equation is an ODE, this is an explicitly tacklable (although tricky) problem. We refer to [21] for
the proof.
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5.2 An application : eigenfunctions of the Laplacian

Our goal here is to prove the following theorem, due to E. Meckes:

Theorem 22. Let (M, g) be a compact Riemannian manifold with Laplace-Beltrami-operator ∆.
Let µ be the normalized volume (i.e. the probability measure proportional to the volume measure
induced by g). If h is an eigenfunction of ∆ with eigenvalue −λ, normalized so that

∫
h2dµ = 1,

then
W1(µ ◦ h−1, γ) ≤ λ−1 Varµ(|∇h|2).

Proof. Let ν = µ ◦ h−1, and let f be a smooth test function on R. We have∫
xf(x)dν =

∫
hf ◦ hdµ

= −λ−1

∫
(∆gh)f ◦ hdµ

= λ−1

∫
∇h · ∇(f ◦ h)dµ

= λ−1

∫
f ′(h)|∇h|2dµ

Hence ∫
f ′ − xfdν ≤

∫
f ′(h)(1− λ−1|∇h|2)dµ.

Since
∫
|∇h|2dµ = λ, we consider f such that ||f ′||∞ ≤ 1 and apply Stein’s lemma to get

W1(ν, γ) ≤ λ−1 Varµ(|∇h|2).

The conclusion immediately follows.

The argument generalizes to weighted Riemannian manifolds (including the Euclidean space),
with reference measure µ = e−V dVol, if we consider L = ∆g −∇V · ∇ instead of the usual Laplace-
Beltrami operator. The important properties we used in the proof are the integration by parts
formula ∫

(Lf)ge−V dVol = −
∫

∇f · ∇ge−V dVol

and the chain rule, which indeed both hold for general reversible diffusion generators.

5.3 The general setting

The key to generalizing this approach to very general measures is a viewpoint proposed by Barbour,
known as the generator approach to Stein’s method. The starting point is that we can reformulate
the caracterization of the Gaussian as ∫

f ′′ − xf ′dγ = 0.

The differential operator is Lf = f ′′−xf ′, which is precisely the generator of the Ornstein-Uhlenbeck
process

dXt = −Xtdt+
√
2dBt.

12



So one way of formulating the characterization is that the standard Gaussian measure is the unique
invariant measure of this Markov process.

It is now clear how to generalize the abstract setting: given a target measure µ, one should
identify a Markov process with generator L, whose unique invariant probability measure should be
µ, and seek an estimate of the form

W1(µ, ν) ≤ sup
f∈F

∫
Lfdν

where the class of test functions F should hopefully be as small as possible. To rewrite the Wasser-
stein distance in this form, we are naturally led to considering the Poisson equation

Lf = g −
∫
gdµ

where g is an arbitrary 1-lipschitz function.
The situation is then about converting good properties of the Markov process into properties

of solutions to Poisson equations. Thee are many ways of tackling this problem, and we shall not
adress them here.

Let us consider a few examples.
For a multivariate standard Gaussian Nd(0, Id), it is natural to still consider the Ornstein-

Uhlenbeck process, now in dimension d. The generator is

Lf = ∆f − x · ∇f.

The Poisson equation can actually be solved explicitly using a convolution kernel, using properties
of Gaussian processes (such as the Ornstein-Uhlenbeck process).

Theorem 23. Let g be a 1-lipschitz function on Rd. Then there exists a solution f to the PDE

∆f − x · ∇f = g −
∫
gdγd

such that ||∇2f ||HS ≤ 1.

A remarkable feature is that the estimate is dimension-free, which is very useful in statistical
applications.

For a probability measure µ = e−V dx on Rd, one possible choice is

dXt =
√
2dBt −∇V (Xt)dt

whose generator is Lf = ∆f −∇V ·∇f . The nicer V is, the stronger the properties on the solutions
one can prove. Note that the Poisson equation is an elliptic PDE, so nice regularity properties are
to be expected (but may be hard to explicitly estimate in a non-compact setting).

For measures on graphs, one can consider random walks, with bias (for example, Metropolis-
Hastings algorithm) to enforce a given invariant measure.

6 Introduction to Ricci curvature

The goal here is to give a brief introduction to Ricci curvature, largely following the beginning of
[20].
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We consider a complete smooth Riemannian manifold (M, g), which for simplicity we assume
to be without boundary. g is defined from a family gx of positive symmetric bilinear forms on the
tangent spaces TxM . In particular, every tangent space is endowed with an Euclidean norm, but
this norm changes with the base point.

Recall that the Riemannian structure induces the distance function

d(x, y)2 := inf

{∫ 1

0

gu(s)(u̇(s), u̇(s))ds; u(0) = x; u(1) = y

}
.

Paths that reach the infimum are called geodesics. These play the role in Riemannian manifolds
of straight lines in Euclidean spaces. They are constant-speed geodesics if we parametrize them so
that gu(u̇, u̇) is constant.

Given a point x and a vector v ∈ Tx, there exists (at least for short times) a unique constant-
speed geodesic starting from x with initial velocity v. We denote by expx(v) the exponential map,
whose value is the point of M reached by this geodesic at time 1 (which exists if v is small enough).

The Riemannian metric also allows to define a volume measure onM , which is the unique positive
measure such that

The Laplace-Beltrami operator is then the operator ∆gf = div(∇f). In local coordinate charts,
we have the formula

∆gf =
1√

det(gx)

∑
i,j

∂i(
√
det(gx)(g

−1
x )ij∂jf)

It satisfies two important properties we shall repeatedly make use of: the chain rule, and an
inetgration by parts formula:

Proposition 24 (Some properties of the Laplace-Beltrami operator). 1. Chain rule : ∆gϕ(f) =
ϕ′(f)∆gf + ϕ′′(f)|∇f |2

2. Integration by parts:
∫
(∆gf)hdVol = −

∫
∇f · ∇gdVol

In particular, it is a symmetric operator in L2(dVol) ∩Dom(∆), and −∆g is nonnegative.

=
Finally, we now define parallel transport. Let x, y ∈ M be two distinct points in M . How can

we transport a pair of orthogonal vectors ux in TxM to TyM along a geodesic from x to y in a way
that is coherent with the geometry? For example, “coherence with the geometry” can be interpreted
as preserving orthogonality between pairs of vectors. It can be done in the following way. Let vx
be such that expx(vx) = y, and wx ∈ TxM be a vector orthogonal to vx. We think of y as being
a vector close to x. There exists wy ∈ TyM orthogonal to vy such that d(expx(ϵwx), expy(ϵwy)) is
minimized. We may advance to the next point at expx(ϵwx) and perform this process again. We
iterate this process while letting ϵ go and d(x, y) go to zero to create parallel transport.

6.1 Sectional and Ricci Curvature

One can view curvature as the evolution of a pair of “parallel” geodesics over time and whether the
distance between the two geodesics change over time. To illustrate this intuitive notion, suppose α
and β are two distinct parallel geodesics in Rn. In the Euclidean space (zero curvature), the distance
d(α(t), β(t)) between the two paths remains constant over time. In contrast, the distance between
two parallel geodesics on a manifold with positive curvature, e.g. Sn, decreases over time. Similarly,
the distance between two parallel geodesics on a manifold with negative curvature increases over
time.
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From this viewpoint (viewing the curvature as an evolution of distance between two geodesic
paths), we may consider a Taylor expansion of the distance

d(expx(ϵwx), expy(ϵwy)) = δ

(
1− ϵ2

2
K(v, wx) +O(ϵ3 + δϵ2)

)
. (4)

The first order term vanishes since the manifold is locally Euclidean. The sectional curvature
of the manifoldM in the directions (v, wx) is given by K(v, wx). From (4), if K(v, wx) < 0, then the
distance between the two paths grow larger. On the other hand, if K(v, wx) > 0, then the opposite
occur; the distance between the two paths become smaller. Since K(v, wx) is the 2nd order Taylor
coefficient of the distance function, K(v, wx) can be thought of as how fast curves gets closer or
further apart (acceleration of converging/diverging parallel geodesics).

The Ricci curvature has the intuitive definition:

Ricx(v) = d · average of K(v, w) , w ∈ Sn−1 ⊂ TxM

where d is the manifold dimension. We can also formulate this in terms of the 2nd order Taylor
expansion. Let x ∈M , y = expx(δv),

Sx = {expx(ϵw) : |w| = 1} , Sy = {expy(ϵw) : |w| = 1}.

Then we have the average of d(z1, z0), (z1 ∈ Sx, z2 ∈ Sy) along parallel transport. We have the
Taylor series expession

Average[d(z1, z0)] = δ

(
1− ϵ2

2d
Ricx(v) +O(ϵ3 + ϵδ2)

)
.

To obtain the definition of Ricx(v, w) from Ricx(v), we can use the polarization identity for
quadratic forms. We may interpret the Ricci curvature as follows: Ric ≥ 0 on average Sx and Sy are
closer than d(x, y)2. Another interpretation is given by Sturm and Von Renesse [22]: Ric ≥ 0 implies
that there exists a coupling of Brownian motions such that on average, the distance is non-increasing.

Note that a sphere of dimension d and radius R has constant Ricci curvature, equal to (d−1)/R2.

6.2 Bochner formula

We state a result that characterizes the Ricci curvature by analytic quantities.

Theorem 25 (Bochner’s Formula). For smooth function f , we have:

1

2
∆g|∇gf |2 − ⟨∇f,∇∆f⟩g = ∥∇2f∥2HS +Ric(∇f,∇f) (5)

where ∥A∥2HS :=
∑
i,j(aij)

2

This formula is a good tool for proving estimates, and can serve as a definition of Ricci curvature,
but has the downside of not being very intuitive.
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6.3 Some global estimates in positive curvature

Theorem 26 (Bonnet-Myers theorem). In (M,g), if dim(M) = d, and if the Ricci curvature of
M has lower bound K · g, where K > 0, then the diameter, denoted as Diam(M), is bounded from

above by π
√

d−1
K .

This theorem is fairly intuitive: by definition, curvature bounds give local estimates on the
distance by the distance on a sphere. This theorem tells us that the same is true globally: the
maximal distance between two points on the manifold is bounded from above by the diameter of a
sphere with appropriate radius. In particular, spheres are equality cases here.

Theorem 27 (Lichnerowicz theorem). If dim(M) = d ≥ 2, Ric ≥ Kg, K > 0; then any positive
eigenvalue of −∆ is greater or equal to dK

d−1 .

The sharpest lower bound on positive eigenvalues pf −∆g is known as the spectral gap of the
manifold.

Once again, spheres are equality cases in this theorem, which can hence be viewed as a comparison
theorem: a manifold with curvature bounded from below by the curvature of a given sphere has
spectral gap bounded form below by that of the sphere.

Proof. Let f be an eigenfunction of −∆g, so that

−∆f = λf, λ > 0. (6)

By the Bochner formula,

1

2
∆|∇f |2 + λ|∇f | ≥ ∥∇2f∥2HS +K|∇f |2 (7)

By Stokes Theorem, ∫
M

∆|∇f |2dVol = 0 (8)

Let α1, α2, ..., αd be eigenvalues of ∇2f , then:

∥∇2f∥2HS =

d∑
i=1

α2
i ≥ (

1

d

∑
αi)

2 =
1

d
(
∑

αi)
2 =

1

d
(∆f)2 =

λ2

d
f2 (9)

also, ∫
M

|∇f |2dVol = −
∫
(∆f)fdVol = λ

∫
f2dVol (10)

=⇒ λ(λ−K) ≥ λ2

d
(11)

=⇒ λ ≥ dK

d− 1
(12)

We also have a comparison theorem for isoperimetric profiles:
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Theorem 28 (Lévy-Gromov). If we have dim(M) = d, and Ric ≥ Kg everywhere in M , where

K > 0 and g is the metric of M . Let A be a subset of M , and B be the spherical cap of Sd(
√

d−1
K )

so that:

|A|
vol(M)

=
|B|

Vol(Sd(
√

d−1
K ))

(13)

Then, we have Per(∂A)
Vol(M) ≥ Per(B)

Vol(Sd(
√

d−1
K ))

.

Example 29. In (Sd(R), g), due to the symmetry of geometry of the sphere, Ricc(Sd(R)) = d−1
R2 · g

everywhere, with equality holds on the spectral gap(smallest eigenvalue)is equal to dk
d−1 and diameter

of such sphere is exactly π
√

d−1
K , which is the threshold in Bonnet-Myers theorem. The isoperimetric

inequality holds true on such sphere.

Theorem 30 (Obata). If (M, g) is d-dimensional smooth manifold, d ≥ 2, Ric ≥ Kg with K > 0,
and either diam(M) = π

√
(d− 1)/K or λ1(−∆) = dK/(d − 1), then M is isometric to the sphere

Sd(R) with R =
√

(d− 1)/k.

In the language of optimization, Obata’s theorem fully characterizes optimizers for the diame-
ter/spectral gap under a curvature constraint.

6.4 Manifold with General Measures

We want to know what happens to the Bochner formula when (M, g) is endowed with a probability
measure of the form µ << Vol with dµ = e−V dVol (the assumption of unit mass is not so important,
statements can be scaled, but it makes sense for applications in probability). We want to consider
an operator that preserves the integration by parts formula. It turns out that L = ∆g −∇V · ∇ is
the correct operator to use:∫

h · Lf dµ =

∫
f · Lhdµ = −

∫
∇f · ∇h dµ.

Theorem 31 (Generalized Bochner formula).

1

2
L|∇f |2 − ⟨∇f,∇(Lf)⟩ = Ric(∇f) + ⟨∇2V∇f, ∇f⟩︸ ︷︷ ︸

Ricµ(∇f)

+∥∇2f∥2HS

This viewpoint goes back to Bakry and Emery’s work [4]. The left-hand side is known as the
Gamma2 (or carré du champ) operator.
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Definition 32 (Curvature-dimension condition). (M, g, e−V dVol) satisfies CD(K, d), where K is
Ricci curvature of M , if

1

2
L|∇f |2 − ⟨∇f,∇(Lf)⟩ ≥ K|∇f |2 + 1

d
(Lf)2.

Recall in the proof of the Lichnerowitz theorem, we used the inequality ∥∇2f∥2HS ≥ 1
d (∆f)

2. But
in a weighted Riemannian manifold, the parameter d does not necessarily stand for the dimension
as in the Bochner formula for the unweighted case, it is an algebraic parameter that may take some
other value (including negative or infinite).

Theorem 33. If CD(K, d) holds, then positive eigenvalues of L are greater than or equal to
dK

d− 1
.

Examples:

• In (Rd, γd = e−|x|2

2π
d
2
), we have Ricciµ ≥ 1, and CD(1, n) only holds for n = ∞.

• Given d > 1, M = [−1, 1], Lf = (1− x2)f”− dxf ′, g = 1
−x2+1 , dµ = 1

Zd (1− x2)
d−2
2 dx, satisfies

satisfies CD(d− 1, d).

When d is an integer, the second example above corresponds to the first coordinate projection
of Sd(R), and Lf is a generator of a Brownian motion in Rd projected down on M . The diameter
and eigenvalue on the projected space are the same as for the sphere, so we already see that in the
weighted setting, an analogue of Obata’s theorem would have to include other cases.

7 Lecture 6: Optimal transport on metric spaces

Definition 34. A coupling of two probability measures µ and ν, that respectively live on Polish
spaces E and F , is a probability measure π on E×F such that its first marginal is µ and its second
marginal is ν. We denote by Π(µ, ν) the set of all possible couplings of µ and ν.

Definition 35. An optimal transport plan between two probability measures µ and ν on a metric
space E, with respect to a cost c : E×E −→ R+, is a coupling that minimizes

∫
c(x, y)dπ among all

possible couplings of µ and ν.

Definition 36 (Kantorovich problem). Let E be a Polish space and µ, ν ∈ P(E). Let C(µ, ν) be the
set of all couplings satisfying marginal distribution, i.e. π ∈ C(µ, ν) satisfies π(A× E) = µ(A) and
π(E ×B) = ν(B). We want to find

inf
π∈C(µ,ν)

Eπ[c(X,Y )].

Definition 37 (Monge problem). Let E be a Polish space and µ, ν ∈ P(E). We want to find the
transport map T such that the following is minimized:

inf
ν=µT−1

Eµ[c(X,T (X))].
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Generally, solving the Kantorovich problem is easier than solving the Monge problem. For the
Kantorovich problem, we are minimizing a linear function

∫
c dπ over the convex set C(µ, ν), while

in Monge problem, the space does not have such a nice structure, and may even be empty.

Definition 38 (Tightness). We say a set of probability measures Γ ⊂ P(E) is tight if for ∀ϵ > 0,
there exists a compact subset KϵsubsetE such that infµ∈Gamma µ(Kϵ) ≥ 1− ϵ.

Theorem 39 (Prokhorov Theorem). A set of probability measure is closed and tight if and only if
it is compact (for the topology of narrow convergence of probability measures).

Corollary 40. For any pair of probability measures µ, ν on Polish spaces, C(µ, ν) is tight.

Proof. First, ∀ϵ > 0, given two measures mu and nu, there exist compact subset K1,ϵ,K2,ϵ ∈ E
so that µ(K1,ϵ), ν(K2,ϵ) ≥ 1 − ϵ. Thus ∀π ∈ C(µ, ν), π(K1,ϵ,K2,ϵ) ≥ 1 − 2ϵ, and hence C(µ, ν) is
tight.

It is easy to check that the set of couplings is also closed, so applying Prokhorov’s theorem yields
compactness.

One can then check that if the cost c is lower-semicontinuous and bounded from below, then the
map · −→

∫
·dπ is also lower-semicontinuous. Together with the compactness of the set of couplings,

we conclude that solutions to the Kantorovich problem exist.

Definition 41 (Cyclically Monotone support). A set A ⊂ E ×E is c-cyclically monotone if for all
(x1, y1), . . . , (xn, yn) ∈ A

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yi+1) , n+ 1 ≡ 1.

Proposition 42. If the cost c is continuous, then the support of an optimal coupling must be c-
cyclically monotone.

The rpoof is by contradiction: if the support is not monotone, then one can build a better
coupling by using rearrangements.

7.1 Distance cost

Theorem 43 (Kantorovitch-Rubinstein duality formula). Let (E, d) be a Polish space, and µ and
ν be two probability measures with finite first moment. Then

inf
π∈Π(µ,ν)

∫
d(x, y)dπ = sup

f1−lip

∫
fdµ−

∫
fdν.

Let f, g : E → R be functions where E is a Polish space. Let c : E×E → R+ be a cost function.
Consider functions f(x) + g(y) satisfying f(x) + g(y) ≤ c(x, y). If π ∈ C(µ, ν), then∫

c(x, y) dπ ≥
∫
f(x) + g(y) dπ =

∫
f(x)dµ+ g(y) dν.

Therefore, we have

inf
π∈C(µ,ν)

∫
c(x, y)dπ ≥ sup{

∫
fdµ+ gdν : f(x) + g(y) ≤ c(x, y)}. (14)
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Kantorovich duality theorem states that 14 is actually an equality. Meaning, one can express an
optimization problem over coupling by an optimization problem over functions:

inf
π∈C(µ,ν)

∫
c(x, y)dπ = sup{

∫
fdµ+ gdν : f(x) + g(y) ≤ c(x, y)}.

We want to make f(x)+g(y) as close as possible to c(x, y). We may then set g(y) = infx c(x, y)−
f(x) = f c(y). This is the best we could do with g, knowing f and c. Similarly, one may set
f(x) = infy∈E c(x, y)− g(y) = gc(x). Therefore, we have an optimization over a single function

inf
π∈C(µ,ν)

∫
c(x, y)dπ = sup{

∫
f dµ+ f c dν : f}.

Suppose f maximizes sup
∫
fdµ+ f c dν. We expect f cc = f . A function is c-concave if it satisfies

this property.

By cyclical monotonicity of optimal couplings, for all (x, y) ∈ supp(πopt), we must have f(x) +
f c(y) = c(x, y). ∫

c(x, y) dπ =

∫
f(x) dµ+

∫
f c(y) dν ≤ sup

f̃

∫
f̃ dµ+

∫
f̃ c dν.

Since we have inequality in the opposite direction, we have inequality (The Kantorovich Duality
Theorem):

∫
c(x, y) dπ = supf

∫
f dµ+

∫
f c dν.

7.2 Quadratic Cost

Let’s consider the Kantorovich duality formulation for the quadratic cost function c(x, y) = |x −
y|2/2. Computations show that |y|2/2− f c(y) = (|x|2/2− f(x))∗ where the ∗ indicate the Legendre
transform. From the properties of the Legendre transform (h∗ is convex, h∗∗ = h iff h is convex),
we deduce that the Kantorovich duality formulation for the quadratic cost is given by

inf
π∈C(µ,ν)

∫
|x− y|2

2
dπ = sup{

∫
|x|2

2
− φ dµ+

∫
|y|2

2
− φ∗ dν : φ convex}.

Uisng the differentiability almost everywhere of convex functions, we can show:

Theorem 44 (Brenier-McCann). If µ ∈ P(Rd) and µ is absolutely continuous w.r.t. the Lebesgue
measure, then there exists a unique convex function φ such that µ ◦ (∇φ)−1 = ν and∫

|x−∇φ(x)|2 dµ = inf
π∈C(µ2)

∫
|x− y|2 dπ.

In particular, this implies existence of a solution to the Monge problem, and that solutions to
the Monge and Kantorovitch problem for the quadratic cost coincide.
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7.3 L1 Cost

Now, consider the case when c(x, y) = |x − y|. We have f c(y) = inf |x − y| − f(x). Suppose a
minimizer x0 exists. If this is the case, then we have f c(y1) − f c(y2) ≤ |y1 − y2|, i.e. f c is 1-
Lipschitz. Examining the c-transform of a 1-Lipschitz function gives us that if g is 1-Lipschitz, then
gc = −g. This implies that the Kantorovich formulation for the L1 cost is given by

inf
π∈C(µ,ν)

∫
|x− y| dπ = sup{

∫
f dµ−

∫
f dν : f ∈ Lip(1)}.

It is possible to prove existence of solutions to the MOnge problem for the distance cost. This
was done (after early contributions of Sudakov) with increasing generality in [13, 8, 15, 5].

8 Needle Decompositions and sharp funcitonal inequalities

We will now discuss the following theorem, due to Cavalleti and Mondino [11, 10], following earlier
work of Klartag in the Riemannian setting [17].

Theorem 45. Let (M, g, µ) be a weighted manifold satisfying CD(K, d) with K ≥ 0, d <∞, µ(M) =
1. If f ∈ L1(M,µ) is such that Eµ[f ] = 0, then we can construct the following decomposition:

1. M = Z ∪ T where f = 0 a.e. on Z and T =
⊔
q∈QNq is a union of disjoint geodesics Nq

(except at their endpoints).

2. There exists probability measures mq with supp(mq) ⊂ Nq so that (Nq, d,mq) is a weighted
manifold satisfying CD(K, d).

3. ν ∈ P(Q) is a probability measure on Q such that for all B ⊂ T measurable,

µ(B) =

∫
Q

mq(B ∩Nq) dν(q) where

∫
Nq

f dmq = 0.

The mq and ν are obtained by disintegrating the measure µ on the needles Nq.
The needles Nq are constructed by considering the lines connecting points that are in the support

of the optimal coupling (for the distance cost) between the two measures with same mass f+µ and
f−µ. The fact that they are non-intersecting (except at their endpoints) is a consequence of the
cyclical monotonicity of the support. That the average is zero along each needle is a consequence
of the mass balancing of the transport (and is delicate to prove rigorously, since the needles are in
general of measure zero for µ).

Remark. Two remarks on the above theorem:

1. The above needle decomposition is not proved for CD(K,∞) since there is no local compactness
in infinite dimensional spaces. It is a currently open problem to prove existence of a needle
decomposition on locally compact CD(K,∞) spaces.

2. The converse holds: existence of needle decompositions satisfying curvature bounds is equiva-
lent to the CD(K, d) condition [9].
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For each geodesic Nq, we can reparametrize by distance to a point on the geodesic, and we have
(Nq, d) ∼=iso ([a, b], | · |), mq = e−ψ, satisfying the curvature condition:

L(f ′)2

2
− f ′ · (Lf)′ ≥ K(f ′)2 +

(Lf)2

d
where Lf = f ′′ − ψ′f ′.

Substituting L, we obtain a condition for the density ψ:

ψ′′ − (ψ′)2

d− 1
−K ≥ 0 , d > 1.

If mq = h dx, then the CD(K, d) condition gives the condition on the density

hd/(d−1) +
k

d− 1

(
hd/(d−1)

)
≤ 0.

As an application of the needle decomposition, we can prove a Poincaré inequality for this
weighted manifold. Assume WLOG Eµ[f ] = 0. Applying needle decomposition gives us

V arµ[f ] =

∫
Q

∫
Nq

f2 dmq dν(q).

If each Nq satisfies the Poincaré inequality with constant CP , then

V arµ[f ] =

∫
Q

∫
Nq

f2 dmq dν(q) ≤ CP

∫
Q

∫
Nq

|f ′|2 dmq dν(q) = CP

∫
|∇f |2 dµ.

The Poincaré inequality on needles can be proved by ODE methods, using the above parametriza-
tion and the differential condition on the density. Hence the needle decomposition allows to deduce
statements in arbitrary dimension from a one-dimensional counterpart. The sharp constants can be
obtained.

The same approach works for other functional inequalities, such as (log-)Sobolev inequalities and
isoperimetric inequalities.

9 Rigid and stable functional inequalities

9.1 Rigidity

We shall make use of Caffarelli’s contraction theorem in dimension one

Theorem 46. If ((a, b), | · |, h dx) satisfies CD(1,∞) and (log h)′′ ≤ −1, then there exits a map
T : R → (a, b) such that T is 1-Lipschitz and γT−1 = h dx where γ is a Gaussian measure.

This theorem holds more generally on Euclidean spaces, but no Riemannian analogue is known
at this time. It was proved in [7] and an alternative proof can be found in [14].

If CD(1,∞) is satisfied, then the Poincaré inequality is satisfied with CP ≤ 1. What happens if
CP = 1? i.e. there exists f such that V arµ[f ] = ∥∇f∥22.

Theorem 47 (Cheng and Zhou 2017, Gigli,Ketterer,Kuwada,Ohta 2020). (M, g, µ) smooth weighted
manifold satisfying CD(1,∞). If there exists f ̸= 0 such that

∫
f2 dµ =

∫
|∇f |2 dµ, thenM ≈ R×M ′

and µ = γ ⊗ µ′.
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Proof. (Sketch) By needle decomposition, we have∫
f2 dµ =

∫ ∫
f2 dmq dν ≤

∫ ∫
|∇f |2 dmq dν =

∫
|∇f |2 dµ. (15)

Since both the left hand side and the RHS are equal, equalities must be maintained throughout,
i.e. the 2nd inequality above is in fact an equality. Therefore, for almost everywhere, the equality
is preserved on each needle. Therefore, following the same reasoning, the below inequality must be
an equality: ∫

f2 dx =

∫
(f ◦ T )2 dγ ≤

∫
(f ′ ◦ T )2 dγ =

∫
(f ′)2h dx. (16)

This implies that T ′ = 1, i.e. T must be a translation. Therefore, we have an explicit expression
of mq = γT−1, i.e. mq ∼ N(cq, 1) where cq is the translation. By the equality in the Gaussian
Poincaré, we have f ◦ T = x. Since T is a translation, we have f(x) = x − cq. Note that f is
invariant under movement in orthogonal direction w.r.t Nq. So cq is independent of q.

Take cq = 0. Consider x 7→ (f(x), q) and define the metric d(q, q′) = inf{d(x, x′) : x ∈ Nq, x ∈
Nq′}. Take M ′ = Q endowed with the defined distance d. The claim follows.

Remark. A couple of remarks:

1. The number of Gaussian factors should be the dimension of the first eigenspace of ∆−∇V ·∇.

2. One can get a better sharp Poincaré constant if CD(d − 1, d) holds and diam(M) ≤ c < π
(to rule out the sphere). This was originally proved by E. Milman [19], and extended to a
non-smooth setting using the needle decomposition by Cavalletti and Mondino.

Analogous results exist for locally Hilbertian CD(K, d) spaces. Equality cases are warped prod-
ucts of spheres. This was originally established by Cheeger and Colding, and generalized by Ketterer.

9.2 Stability

We now discuss partial results on what a space with positive curvature and almost minimal spectral
gap looks like.

Theorem 48. Let (M, g, µ) be a smooth weighted manifold satisfying CD(1,∞). If ∃f ̸= 0 such
that (1 − ϵ)

∫
|∇f |2 dµ ≤ V arµ[f ] ≤

∫
|∇f |2 dµ, and normalized so that

∫
f2dµ = 1, then W1(µ ◦

f−1, γ) << 1 where γ is the Gaussian measure.

Proof. (Sketch) Assume Eµ[f ] = 0. By the needle decomposition, we have

(1− ϵ)

∫ ∫
|f ′|2 dmq dν ≤

∫ ∫
f2 dmq dν ≤

∫ ∫
|f ′|2 dmq dν. (17)

This implies that in every needle, we have almost equality for the Poincaré inequality. Moreover,
on average (out of all needles), the difference between the variance and the L2 norm of the gradient
is small: ∫

Q

(∫
Nq

|f ′|2 − f2 dmq

)
dν ≤ ϵ

∫
|∇f |2 dµ. (18)
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By Markov’s inequality, there exists a subset Qϵ ⊂ Q such that ∀q ∈ Qϵ∫
|f ′|2 − f2 dmq ≤ c

√
ϵ

∫
f2 dmq and ν(Qϵ) ≥ 1− c

√
ϵ. (19)

In each needle, we have

(1− c
√
ϵ)

∫
f2 dmq =

∫
f2 ◦ T dmq ≤

∫
(T ′)2(f ′ ◦ T )2 dγ ≤

∫
|f ′|2 dmq. (20)

Therefore, f ◦ T is almost the equality case and T ′ ≈ 1 in L2. Take the Hermite polynomial
decomposition, f ◦ T is almost x + c in H1(γ). Therefore, we have

∫
|f ′ − 1|2 dmq ≲ c

√
ϵ. This

implies that f looks like x since f ′ ≈ 1.

Expanding V armq [f + th] ≤
∫
|f ′ + th′|2 dmq yields

2t

(∫
f ′h′ − fh

)
+ t2

∫
(h′)2 ≥ −c

√
ϵ

∫
|f ′|2. (21)

We now consider the class of functions h ∈ Lip(1) since we want to estimate the Wasserstein
distance. We set t ∼ ϵ1/4 so that∫

h′ − xh dmq ≈
∫
f ′h′ − fh dmq ≤ cϵ1/4 for all h ∈ Lip(1). (22)

The leftmost approximation is due to f ′ ≈ 1. Applying Stein’s lemma yields the desired result.

Stability of the Poincaré inequality was first considered in the Euclidean setting by De Philip-
pis and Figalli, and revisited using Stein’s method by Courtade and Fathi. In the more general
RCD setting, it was investigated by Bertrand and Fathi. The sue of the needle decomposition for
proving stability was pioneered by Cavalletti and Mondino, starting with other examples (notably,
isoperimetric inequalities).

Remark. Couple of remarks for the above theorem:

1. Mai and Ohta (2020) worked on the log-Sobolev and isoperimetric inequality version.

2. The order ϵ1/4 is not sharp. One can get the error to be of order ϵ log(ϵ). The sharp order of
magnitude of the error is currently unknown.

3. We believe that there should also be a quantitative statement on how far the metric is from
being product, but this is currently an open problem.

We now discuss the CD(d − 1, d) case. The first problem is the almost equality case: d(1 −
ϵ)
∫
|∇f |2 dµ ≤ V arµ[f ] ≤ d

∫
|∇f |2 dµ. We may assume that f is an eigenfunction of Lf = −d(1 +

ϵ)f . Fathi, Gentil, and Serres proved the Wasserstein estimate: W1(µ◦f−1, Z−1
d (1−x2)d/2−1 ≲ c(d)ϵ.

The exponent in that result is sharp, but the dependence of the prefactor on d is not known.

There is another result by Cavaletti and Mondino which says that there exists x0 such that

∥f − λ cos(d(·, x0))∥L2(µ) ≲ c(d)ϵ1/(8d+4). (23)

Cavaletti and Mondino use the needle decomposition to achieve such result. An open problem
is to find out what is the sharp exponent, and whether it depends on the dimension d.
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Another result is an ϵ − δ statement leveraging Gromov’s result that says the class of manifolds
satisfying CD(d− 1, d) is precompact in the Gromov-Hausdorff topology. One then uses a compact-
ness argument to get an ϵ − δ statement: For all ϵ there exists δ such that if CP ≥ d(1 − δ), then
the Gromov-Hausdorff distance dGH(M, eq. cases) ≤ ϵ. Such statements first appeared in works of
Cheeger and Colding.

10 Index of notations

• γd stands for the standard Gaussian measure on Rd. If in-context the dimension is unambigu-
ous, we shall simply write it γ.

• Wp(µ, ν) is the Lp Wasserstein (or Monge-Kantorovitch) distance between the probability
measures µ and ν.

• We denote by Π(µ, ν) the set of all possible couplings of µ and ν.
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