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Abstract

We establish quantitative stability results for the entropy power inequality (EPI). Specifically,

we show that if uniformly log-concave densities nearly saturate the EPI, then they must be close

to Gaussian densities in the quadratic Wasserstein distance. Further, if one of the densities is

log-concave and the other is Gaussian, then the deficit in the EPI can be controlled in terms

of the L1-Wasserstein distance. As a counterpoint, an example shows that the EPI can be

unstable with respect to the quadratic Wasserstein distance when densities are uniformly log-

concave on sets of measure arbitrarily close to one. Our stability results can be extended to

non-log-concave densities, provided certain regularity conditions are met. The proofs are based

on optimal transportation.

1 Introduction

Let X and Y be independent random vectors on Rn with corresponding probability measures

µ and ν, each absolutely continuous with respect to Lebesgue measure. The celebrated entropy

power inequality (EPI) proposed by Shannon [1] and proved by Stam [2] asserts that

N(µ ∗ ν) ≥ N(µ) +N(ν), (1)

where N(µ) := 1
2πee

2h(µ)/n denotes the entropy power of µ, and h(µ) = h(X) = −
∫
f log f is

entropy associated to the density f of X ∼ µ. For a parameter t ∈ (0, 1), let us define

δEPI,t(µ, ν) := h(
√
tX +

√
1− tY )−

(
th(X) + (1− t)h(Y )

)
. (2)

Unaware of the works by Shannon, Stam and Blachman [3], Lieb [4] rediscovered the EPI by

establishing δEPI,t(µ, ν) ≥ 0 and noting its equivalence to (1). Due to the equivalence of the

Shannon-Stam and Lieb inequalities, we shall generally refer to both as the EPI.

It is well known that δEPI,t(µ, ν) vanishes if and only if µ, ν are Gaussian measures that are

identical up to translation1. However, despite the fundamental role the EPI plays in information

1Lieb did not settle the cases of equality; this was done later by Carlen and Soffer [5].
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theory, few stability estimates are known. Specifically, if δEPI,t(µ, ν) is small, must µ and ν

be ‘close’ to Gaussian measures, which are themselves ‘close’ to each other, in a precise and

quantitative sense? This is our motivating question.

Toward answering this question, our main result is a dimension-free, quantitative stability

estimate for the EPI. More specifically, we show that if measures µ, ν have uniformly log-concave

densities and nearly saturate either form of the EPI, then they must also be close to Gaussian

measures in quadratic Wasserstein distance. We also show that the EPI is not stable (with

respect to the same criterion) in situations where the densities nearly satisfy the same regularity

conditions. A weaker deficit estimate is obtained involving the L1-Wasserstein distance for log-

concave measures when one of the two variables is Gaussian, and dimension-dependent quadratic

Wasserstein estimates in certain more general situations.

Before stating the main results, let us first introduce some notation. We let Γ ≡ Γ(Rn)

denote the set of centered Gaussian probability measures on Rn, and let γ denote the standard

Gaussian measure on Rn. That is2,

dγ(x) = dγn(x) = e−|x|
2/2 dx

(2π)n/2
.

Next, we recall that the quadratic Wasserstein distance between probability measures µ, ν is

defined according to

W2(µ, ν) = inf
(
E|X − Y |2

)1/2
,

where | · | denotes the L2 metric on Rn and the infimum is over all couplings on X,Y with

marginal laws X ∼ µ and Y ∼ ν. If X ∼ µ is a centered random vector, then we write

Σµ = EXX> to denote the covariance matrix of X. For two centered probability measures µ, ν,

we define the quantity

d2
F (µ, ν) := inf

θ∈(0,1)

∥∥∥√θΣ1/2
µ −

√
1− θΣ1/2

ν

∥∥∥2

F
,

where ‖ · ‖F denotes Frobenius norm, to provide a convenient measure of distance between the

second order statistics of µ, ν. In particular, d2
F (µ, ν) = 0 if and only if Σµ and Σν are propor-

tional. We remark here that both forms of the EPI are invariant to translation of the measures

µ, ν. Thus, our persistent assumption of centered probability measures is for convenience and

comes without loss of generality.

Organization

The rest of this paper is organized as follows: Sections 2.1 and 2.2 describe our main stability

results for log-concave densities and the relationship to previous work, respectively. Section 2.3

gives an example where the EPI is not stable with respect to quadratic Wasserstein distance

when regularity conditions are not met. Section 3 gives proofs of our main results and a brief

discussion of techniques, which are based on optimal mass transportation. We conclude in

Section 4 with extensions of our results to more general settings.

2Explicit dependence of quantities on the ambient dimension n will be suppressed in situations where our arguments

are the same in all dimensions.
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2 Main Results

This section describes our main results, and also compares to previously known stability esti-

mates. Proofs are generally deferred until Section 3.

2.1 Stability of the EPI for log-concave densities

Our main result is the following:

Theorem 1. Let µ = e−ϕγ and ν = e−ψγ be centered probability measures, where ϕ and ψ are

convex. Then

δEPI,t(µ, ν) ≥ t(1− t)
2

inf
γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
. (3)

Remark 1. Measures of the form µ = e−ϕγ for convex ϕ have several names in the literature.

Such names include ‘strongly log-concave densities’, ‘log-concave perturbation of Gaussian’, ‘uni-

formly convex potential’ and ‘strongly convex potential’ (see [6, pp. 50-51]). This situation also

corresponds to the Bakry-Émery condition CD(ρ,∞) when the space is Rn.

Under the assumptions of the theorem, the three terms in the RHS of (3) explicitly give

necessary conditions for the deficit δEPI,t(µ, ν) to be small. In particular, µ, ν must each be

quantitatively close to Gaussian measures, which are themselves quantitatively close to one

another. Additionally, W 2
2 is additive on product measures, so the estimate (3) is dimension-

free, which is compatible with the additivity of δEPI,t on product measures.

Theorem 1 may be readily adapted to the setting of uniformly log-concave densities. Toward

this end, let η > 0 and recall that h(η1/2X) = h(X) + 1
2 log η, so that δEPI,t(µ, ν) is invariant

under the rescaling (X,Y ) → (η1/2X, η1/2Y ). Similarly, if X ∼ µ has density f satisfying the

Bakry-Émery criterion

−∇2 log f ≥ ηI, (4)

then a change of variables reveals that the density fη associated to the rescaled random variable

η1/2X satisfies −∇2 log fη ≥ I. In particular, fηdx = e−ϕdγ for some convex function ϕ. Thus,

Theorem 1 is equivalent to the following:

Corollary 1. If µ and ν are centered probability measures with densities satisfying (4), then

δEPI,t(µ, ν) ≥ η t(1− t)
2

inf
γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
.

This result will also apply to certain families of non log-concave measures, see Remark 5.

For convenience, let d2
W2

(µ) := infγ0∈ΓW
2
2 (µ, γ0) denote the squared W2-distance from µ to

the set of centered Gaussian measures. Using the inequality (a+b+c)2 ≤ 3(a2 +b2 +c2) and the

triangle inequality for W2, we may conclude a weaker, but potentially more convenient variant

of Corollary 1.

Corollary 2. If µ and ν are centered probability measures with densities satisfying (4), then

δEPI,t(µ, ν) ≥ η t(1− t)
8

(
d2
W2

(µ) + d2
W2

(ν) +W 2
2 (µ, ν)

)
. (5)

Shannon’s form of the entropy power inequality (1) is oftentimes preferred to Lieb’s inequality

for applications in information theory. Starting with Corollary 2, we may establish an analogous

estimate for Shannon’s EPI.
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Corollary 3. Let µ and ν be centered probability measures on Rn satisfying (4) with parameters

ηµ and ην , respectively. Then,

N(µ ∗ ν) ≥ (N(µ) +N(ν)) ∆EPI(µ, ν),

where

∆EPI(µ, ν) := exp

(
min{θηµ, (1− θ)ην}

4n

(
(1− θ)d2

W2
(µ) + θd2

W2
(ν) + d2

F (µ, ν)
))

, (6)

and θ is chosen to satisfy θ/(1− θ) = N(µ)/N(ν).

Remark 2. Equality is attained in (1) if and only if µ, ν are Gaussian with proportional covari-

ances. Under the stated assumptions of log-concavity, these conditions are explicitly captured by

the last three terms in (6).

We also derive a stability estimate when one variable is simply log-concave and the other

variable is Gaussian, involving the L1-Wasserstein distance:

W1(µ, ν) = inf E[|X − Y |],

where | · | denotes the L2 metric on Rn and the infimum is over all couplings on X,Y with

marginal laws X ∼ µ and Y ∼ ν.

Theorem 2. For any log-concave centered random variable with law µ, we have

δEPI,t(µ, γ) ≥ C t(1− t) min(W 2
1 (µ, γ), 1),

with C a numerical constant that does not depend on µ.

This estimate is reminiscent of the deficit estimates on Talagrand’s inequality of [7, 8], with

a remainder term that stays bounded when the distance becomes large. The advantage of this

estimate is that it does not rely on any quantitative information on µ, only on the fact that it

is log-concave.

2.2 Relation to Prior Work

As remarked above, a few stability estimates are known for the EPI. Here, we review those

that are most relevant and comment on the relationship to our results. To begin, we mention a

stability result due to Toscani [9], which asserts for probability measures µ, ν with log-concave

densities, there is a function R such that

N(µ ∗ ν) ≥ (N(µ) +N(ν))R(µ, ν),

where R(µ, ν) = 1 only if µ, ν are Gaussian measures. However, the function R(µ, ν) is quite

complicated3, and does not explicitly control the distance of µ, ν to the space of Gaussian mea-

sures. Toscani leaves this as an open problem [9, Remark 7]. Corollary 3 provides a satisfactory

answer to his problem when µ, ν satisfy the Bakry-Émery criterion (4) for some parameter η > 0.

Similarly, Theorem 2 provides an answer when one of the measures is log-concave and the other

Gaussian.

3R(µ, ν) is expressed in terms of integrals of nonlinear functionals evaluated along the evolutes of µ, ν under the

heat semigroup.
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Next, we compare Corollary 1 to the main result of Ball and Nguyen [10], which states that

if µ is a centered isotropic probability measure (i.e., Σµ = I) with spectral gap λ and log-concave

density (not necessarily uniformly), then

δEPI,1/2(µ, µ) ≥ λ

4(1 + λ)
D(µ‖γ) ≥ λ

8(1 + λ)
W 2

2 (µ, γ), (7)

where D(µ‖γ) =
∫
dµ log dµ

dγ is the relative entropy between µ and γ, and the second inequality

is due to Talagrand. Now, if µ satisfies the Bakry-Émery criterion (4), then Corollary 1 yields

the similar bound

δEPI,1/2(µ, µ) ≥ η

4
inf
γ0∈Γ

W 2
2 (µ, γ0).

Given the similarity, Corollary 1 may be viewed as an extension of (7) to non-identical measures

and all parameters t ∈ (0, 1). However, two points should be mentioned: (i) a stability estimate

with respect to W2 is weaker than one involving relative entropy; and (ii) the Bakry-Émery

criterion for η > 0 implies a positive spectral gap, but not vice versa. It is interesting to ask

whether the hypothesis of Corollary 1 can be weakened to require only a spectral gap; the result

of Ball and Nguyen and a similar earlier result by Ball, Barthe and Naor [11] in dimension one

provides some grounds for cautious optimism. In Section 4, we shall obtain a one-dimensional

result for non log-concave measures under a stronger assumption than [11] (namely a Cheeger

isoperimetric inequality), but with the advantage of being valid for non-identical measures.

The two results mentioned above assume log-concave densities, as do we. In contrast, the

refined EPI established in [12] provides a qualitative stability estimate for the EPI when µ

is arbitrary and ν is Gaussian. However, the deficit is quantified in terms of the so-called

strong data processing function, and is therefore not directly comparable to the present results.

Nevertheless, a noteworthy consequence is a reverse entropy power inequality, which does bear

some resemblance to the result of Corollary 3. In particular, for arbitrary probability measures

µ, ν on Rn with finite second moments, it was shown in [13] that

N(µ ∗ ν) ≤ (N(µ) +N(ν)) ((1− θ)p(µ) + θp(ν)) , (8)

where θ is the same as in the definition of ∆EPI(µ, ν) and p(µ) := 1
nN(µ)J(µ) ≥ 1 is the Stam

defect, with J(µ) denoting Fisher information. We have p(µ) = 1 only if µ is Gaussian, and

thus p(µ) may reasonably be interpreted as a measure of how far µ is from the set of Gaussian

measures. Thus, the deficit term (1− θ)p(µ) + θp(ν) in (8) bears a pleasant resemblance to the

deficit term (1− θ)d2
W2

(µ) + θd2
W2

(ν) in Corollary 3. Importantly, though, the former upper is

an bound on N(µ ∗ ν), while the latter yields a lower bound.

We would be remiss to not mention that the inequality p(µ) ≥ 1 mentioned above is known

as Stam’s inequality, and is equivalent to Gross’ celebrated logarithmic Sobolev inequality for

Gaussian measure [14,15]. Taking µ = ν in (8) gives the sharpening p(µ) ≥ exp
(

2
nδEPI,t(µ, µ)

)
,

holding for any probability measure µ with finite second moment. Equivalently, if µ is centered,

then

1

2
I(µ‖γ) ≥ D(µ‖γ) + δEPI,t(µ, µ),

where I(µ‖γ) denotes the relative Fisher information of µ with respect to γ. When µ satisfies

the Bakry-Émery criterion (4), we have a dimension-free quantitative stability result for the

logarithmic Sobolev inequality 1
2I(µ‖γ) ≥ D(µ‖γ). This is an improvement upon the main result
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of Indrei and Marcon [16], who consider the subset of densities satisfying (4) for some parameter

η > 0, whose Hessians are also uniformly upper bounded. Unfortunately, this improvement is

already obsolete, as Fathi, Indrei and Ledoux [7] have recently shown that a similar result holds

for all probability measures with positive spectral gap. Interestingly though, (8) does imply

a general upper bound on δEPI,t(µ, ν) involving Fisher informations. Specifically, for arbitrary

probability measures µ, ν with finite second moments,

δEPI,t(µ, ν) ≤ (1− t)
(

1

2
I(µ‖γ)−D(µ‖γ)

)
+ t

(
1

2
I(ν‖γ)−D(ν‖γ)

)
.

See [13] for details. Other deficit estimates for the logarithmic Sobolev inequality have been

obtained in [17,18].

If X ∼ µ is a radially symmetric random vector on Rn, n ≥ 2, satisfying modest regularity

conditions (e.g,. convolution with a Gaussian measure of small variance is sufficient), then it

was recently established in [19] that, for any ε > 0

δEPI,1/2(µ, µ) ≥ Cε(µ)nεD1+ε(µ‖γµ), (9)

where γµ denotes the Gaussian measure with the same covariance as µ, and Cε(µ) is an explicit

function that depends only on ε, a finite number of moments of µ, and its regularity. This

closely parallels quantitative estimates on entropy production in the Boltzmann equation [20,21].

Neither (3) nor (9) imply the other since the hypotheses required are quite different (strong log-

concavity vs. radial symmetry). However, both results do give quantitative bounds on entropy

production under convolution in terms of a distance from Gaussian measures. In general, the

constants in (3) will be much better than those in (9) which, although numerical, can be quite

small. We return to the setting of radially symmetric measures in Section 4.

Finally, we mention Carlen and Soffer’s qualitative stability estimate for the EPI that holds

under general conditions [5]. Roughly speaking, their result is the following: if probability

measures µ, ν on Rn are isotropic with Fisher informations upper bounded by J0, then there is

a nonlinear function Θ : R→ [0,∞), strictly increasing from 0, depending only on the dimension

n, the parameter t, the number J0 and smoothness and decay properties of µ, ν that satisfies

δEPI,t(µ, ν) ≥ Θ(D(µ‖γ)).

The construction of the function Θ relies on a compactness argument, and therefore is non-

explicit. As such, it is again not directly comparable to our results. However, it does settle

cases of equality.

2.3 Instability of the EPI: An Example

As a counterpoint to Theorem 1 and to provide justification for the regularity assumptions

therein, we observe that there are probability measures that satisfy the hypotheses required in

Theorem 1 on sets of measure arbitrarily close to one, but severely violate its conclusion.

Proposition 1. There is a sequence of probability measures (µε)ε>0 on R with finite and uni-

formly bounded entropies and second moments such that

1. The measures µε essentially satisfy the Bakry-Émery criterion (4) for η = 1. That is,

limε↓0 µε(Ωε) = 1, where Ωε := {x | − d2

dx2 log fε(x) ≥ 1} with dµε = fεdx.

2. The measures µε saturate the EPI as ε approaches zero. That is, limε↓0 δEPI,t(µε, µε) = 0

for all t ∈ (0, 1).
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3. The measures µε are bounded away from Gaussians in the W2 metric; specifically,

lim infε↓0 infγ0∈ΓW
2
2 (µε, γ0) > 1/3.

We remark that the measures (µε)ε>0 in the proposition are not necessarily pathological.

In fact, it suffices to consider simple Gaussian mixtures that approximate a Gaussian measure,

albeit with heavy tails.

Proof. Define the density fε as

fε(x) = ε

√
ε√
π
e−εx

2

+ (1− ε)
√

1− ε√
π

e−(1−ε)x2

. (10)

Evidently, fε is a Gaussian mixture having unit variance; the mixture components have variance

(2ε)−1 and (2(1− ε))−1, respectively.

Proof of 1. On any interval, as ε ↓ 0, the densities (fε)ε>0 and their derivatives converge

uniformly to those of the Gaussian density with variance 1/2. Therefore,

− lim
ε↓0

f ′′ε (x) = 2 ∀x ∈ R. (11)

Since the measures µε converge weakly to a Gaussian measure with variance 1/2, it is straight-

forward to conclude that limε↓0 µε(Ωε) = 1, where Ωε is defined as in the statement of the

proposition.

Proof of 2. This follows immediately from [22, Theorem 1] due to pointwise convergence of

uniformly bounded densities and uniformly bounded second moments.

Proof of 3. Let mp(µ) denote the pth absolute moment associated to µ. For conjugate

exponents p, q ≥ 1, Hölder’s inequality implies

W 2
2 (µε, γs) ≥ s+ 1− 2m1/p

p (µε)m
1/q
q (γs),

where γs is the Gaussian measure with variance s. Fix p = 3/2 and q = 3. By the dominated

convergence theorem, we have limε↓0m3/2(µε) = m3/2(γ1/2). Thus, using the characterization

of Gaussian moments, we have

W 2
2 (µε, γs) ≥ s+ 1− 2

√
2s

π
(Γ(5/4))

4/3
,

where Γ(·) denotes the Gamma function. The minimum is achieved at s = 2
π (Γ(5/4))

4/3
, so

that

inf
s>0

W 2
2 (µε, γs) ≥ 1− 2

π
(Γ(5/4))

4/3 ≈ 0.441562 > 1/3.

Remark 3. Our construction of fε is closely related to the counterexamples proposed by Bobylev

and Cercignani in their disproof of Cercignani’s conjecture on entropy production in the Boltz-

mann equation [23]. This construction also appeared in the context of the Boltzmann equation

in [24, Proposition 23].
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3 Discussion and Proofs

The remainder of this paper makes use of ideas from optimal transport, and reader familiarity

assumed. The unfamiliar reader is directed to the comprehensive introductions [25, 26]. We

recall that a map T : Rn → Rn is said to transport a measure µ to ν if the pushforward of µ

under T is ν (i.e., ν = T#µ).

Our starting point comes from a recent paper of Rioul [27]. Through an impressively short

sequence of direct but carefully chosen steps, Rioul recently gave a new proof of the EPI based

on transportation of measures. From his proof, we may readily distill the following:

Lemma 1. Let T1 : Rn → Rn and T2 : Rn → Rn be diffeomorphisms satisfying µ = T1#γ and

ν = T2#γ. If µ and ν have finite entropies, then

δEPI,t(µ, ν) ≥ E log
det(t∇T1(X∗) + (1− t)∇T2(Y ∗))

det(∇T1(X∗))t det(∇T2(Y ∗))1−t , (12)

where X∗ ∼ γ and Y ∗ ∼ γ are independent.

Remark 4. For a vector-valued map Φ = (Φ1,Φ2, . . . ,Φn) : Rn → Rn, we write ∇Φ to denote

its Jacobian. That is, (∇Φ(x))ij = ∂
∂xi

Φj(x).

In words, (12) shows that the deficit in the EPI can always be bounded from below by a

function of the Jacobians ∇T1 and ∇T2, where T1 and T2 are are invertible and differentiable

maps that transport measures γ to µ and γ to ν, respectively.

When T1 and T2 are Knöthe maps (see [26, 28, 29]), the Jacobians ∇T1 and ∇T2 are up-

per triangular matrices with positive diagonal entries. Using this property, Rioul concludes

δEPI,t(µ, ν) ≥ 0 using concavity of the logarithm applied to the eigenvalues (diagonal entries) of

∇T1 and ∇T2. By strict concavity of the logarithm, saturation of this inequality implies the

diagonal entries of ∇T1 and ∇T2 must be equal almost everywhere. Combining this information

with the fact that a relative entropy term (omitted above) must vanish, Rioul recovers the well

known necessary and sufficient conditions for δEPI,t(µ, ν) to vanish. Specifically, µ and ν must

be Gaussian measures, equal up to translation.

In our proof, instead of the Knöthe map, we shall use the Brenier map from optimal transport

theory, which has a useful rigid structure:

Theorem 3 (Brenier-McCann, [25,30,31]). Consider two probability measures µ, ν on Rn, and

assume that µ is absolutely continuous with respect to the Lebesgue measure. There exists a

unique map T (which we shall call the Brenier map) transporting µ onto ν that arises as the

gradient of a convex lower semicontinuous function. Moreover, this map is such that

W 2
2 (µ, ν) = E[|X − T (X)|2],

where X is a random variable with law µ, and therefore T (X) has law ν. In other words,

(X,T (X)) is an optimal coupling for the Wasserstein distance W2.

In contrast to Rioul’s argument based on Knöthe maps, if T1 and T2 are taken instead to

be Brenier maps (again, transporting γ to µ and γ to ν, respectively), then the Jacobians ∇T1

and ∇T2 are symmetric positive definite by the Brenier-McCann Theorem. Thus, concavity

of the log-determinant function on the positive semidefinite cone immediately gives the EPI

from (12). Moreover, by strict concavity of the log-determinant function, equality in the EPI

implies ∇T1(X∗) = ∇T2(Y ∗) almost everywhere, and are thus constant. Hence, T1 and T2 are
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necessarily affine functions, identical up to translation. This immediately implies δEPI,t(µ, ν) = 0

only if µ, ν are Gaussian measures with identical covariances.

Unfortunately, while both arguments easily settle cases of equality in the EPI, neither yield

quantitative stability estimates. However, we note that the Brenier map is generally better suited

for establishing quantitative stability in functional inequalities. Indeed, it was remarked by

Figalli, Maggi and Pratelli in their comparison to Gromov’s proof of the isoperimetric inequality

that the Brenier map is generally more efficient than the Knöthe map in establishing quantitative

stability estimates due to its rigid structure [32]. We shall fruitfully exploit the properties of

the Brenier map in our proof of Theorem 1.

3.1 Proof of Theorem 1

The proof of Theorem 1 is short, but makes use of several foundational results from the theory

of optimal transport. We will need the following lemma; a proof can be found in the Appendix.

Lemma 2. For positive definite matrices A,B and t ∈ [0, 1], we have

log det(tA+ (1− t)B) ≥ t log det(A) + (1− t) log det(B) +
t(1− t)

2 max{λ2
max(A), λ2

max(B)}
‖A−B‖2F ,

where λmax(·) denotes the largest eigenvalue.

In addition, we remind the reader that a random vector X having log-concave density enjoys

(i) finite second moment (in fact, finite moments of all orders); and (ii) finite entropy h(X).

Since Theorem 1 requires log-concave densities, these conditions will be implicitly assumed

throughout the proof.

Proof of Theorem 1. Assume first that the densities e−ϕ and e−ψ are smooth and strictly pos-

itive on Rn. Also, let X∗ ∼ γ and Y ∗ ∼ γ be independent. Define T1 to be the Brenier map

transporting γ to µ, and let T2 denote the Brenier map transporting γ to ν. We recall here

that a Brenier map is always the gradient of a convex function by the Brenier-McCann theorem,

and therefore ∇T2 and ∇T1 are positive semidefinite since they coincide with Hessians of con-

vex functions. In fact, since all densities involved are non-vanishing, they are positive definite.

Moreover, when the densities are strictly positive on the whole space, we know by results of

Caffarelli [33, 34] that the maps T1 and T2 are C1-smooth.

Using the assumed smoothness and convexity of the potentials ϕ and ψ, Caffarelli’s con-

traction theorem (see [35] and, e.g., [25, Theorem 9.14]) implies T1 and T2 are 1-Lipschitz, so

that λmax(∇T1) ≤ 1 and λmax(∇T2) ≤ 1. Therefore, since ∇T2 and ∇T1 are positive definite,

Lemma 2 yields the following (pointwise) estimate

log det(t∇T1 + (1− t)∇T2) ≥ t log det(∇T1) + (1− t) log det(∇T2) +
t(1− t)

2
‖∇T1 −∇T2‖2F .

Combined with (12) we obtain:

δEPI,t(µ, ν) ≥ t(1− t)
2

E‖∇(T1(X∗)−X∗)−∇(T2(Y ∗)− Y ∗)‖2F .

Now, define matrices A = E[∇(T1(X∗)−X∗)] and B = E[∇(T2(Y ∗)− Y ∗)]. By orthogonality,

9



we have

E‖∇(T1(X∗)−X∗)−∇(T2(Y ∗)− Y ∗)‖2F
= E‖∇(T1(X∗)− (I +A)X∗)−∇(T2(Y ∗)− (I +B)Y ∗)‖2F + ‖A−B‖2F
= E‖∇(T1(X∗)− (I +A)X∗)‖2F + E‖∇(T2(Y ∗)− (I +B)Y ∗)‖2F + ‖A−B‖2F
≥ E|T1(X∗)− (I +A)X∗|2 + E|T2(Y ∗)− (I +B)Y ∗|2 + ‖(I +A)− (I +B)‖2F .

The final inequality is due to the Gaussian Poincaré inequality
∫
|f |2dγ ≤

∫
|∇f |2dγ, holding

for every C1-smooth f : Rn → R with mean zero. Indeed, its application is justified by C1-

smoothness of the Brenier maps among log-concave distributions, and the identity

E[T1(X∗)− (I +A)X∗] =

∫
xdµ(x)− (I +A)

∫
xdγ(x) = 0,

which holds similarly for Y ∗. The desired inequality now follows from the definition of W2 and

the identity W 2
2 (γ1, γ2) = ‖Σ1/2

γ1 − Σ
1/2
γ2 ‖2F (e.g., [36]). The application of this identity is valid

because I +A and I +B are positive definite, a consequence of the positive definiteness of ∇T1

and ∇T2 noted previously.

Thus, Theorem 1 holds when the densities are smooth and positive everywhere. If this is not

the case, we may first convolve µ, ν with a Gaussian measure so that the resulting densities will

be both smooth and positive. The general result then follows by considering arbitrarily small

perturbations, which is justified by Proposition 2, found below.

Proposition 2. For a probability measure µ and s > 0, let µs denote the probability measure

corresponding to X +
√
sZ, where X ∼ µ and Z ∼ γ are independent. If probability measures

µ, ν have finite second moments, and

∆(µ, ν) := inf
γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
,

then lims↓0 ∆(µs, νs) = ∆(µ, ν). Moreover, if µ, ν have densities, then lims↓0 δEPI,t(µs, νs) =

δEPI,t(µ, ν). Finally, if µ satisfies the Bakry-Émery criterion (4) with parameter η > 0, then µs
satisfies the Bakry-Émery criterion (4) with parameter η/(1 + sη).

Proof. Evidently, if γs denotes the Gaussian measure with covariance matrix sI, then µs = µ∗γs.
Observe that for any fixed Gaussian measures γ1, γ0 (not to be confused with γs),

W 2
2 (µ, γ1) +W 2

2 (ν, γ2) +W 2
2 (γ1, γ2)

≥W 2
2 (µ ∗ γs, γ1 ∗ γs) +W 2

2 (ν ∗ γs, γ2 ∗ γs) +W 2
2 (γ1 ∗ γs, γ2 ∗ γs)

≥ ∆(µs, νs),

so that ∆(µ, ν) ≥ ∆(µs, νs). It remains to prove an inequality in the reverse direction.

In general, W 2
2 (µ, ν) ≥ (

√
E|X|2−

√
E|Y |2)2 when X ∼ µ and Y ∼ ν by the Cauchy-Schwarz

inequality. Therefore, there is K = K(µ, ν) < ∞ depending only on the second moments of µ

and ν such that

∆(µ, ν) = inf
γ1,γ2∈ΓK

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
,

where ΓK ⊂ Γ denotes the set of centered Gaussian measures with second moments bounded

by K. From this, it is straightforward to argue that for s sufficiently small,

∆(µs, νs) ≥ inf
γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
−
√
sC, (13)

10



where C = C(µ, ν) <∞ depends only on the second moments of µ and ν. Thus, the first part

of the claim follows.

The second claim follows immediately from the fact that lims↓0 h(µs) = h(µ) for any µ

having density and finite second moment. See, e.g., [5, Lemma 1.2].

The third claim can be found in [6, Theorem 3.7(b)].

Remark 5. The assumption of log-concavity is mainly used to ensure that the optimal transport

map is Lipschitz. This can sometimes still be the case in other situations. For example, the

recent work [37] shows that this property holds for certain families of bounded perturbations of

the Gaussian measure, including the radially symmetric case.

3.2 Proof of Corollary 3

Proof of Corollary 3. Lieb’s derivation of N(X + Y ) ≥ N(X) + N(Y ) from the inequality

h(
√
tX̃ +

√
1− tỸ ) ≥ th(X̃) + (1 − t)h(Ỹ ) proceeds by choosing t to satisfy t/(1 − t) =

N(X)/N(Y ) and identifying X̃ = t−1/2X and Ỹ = (1 − t)−1/2Y . Now, if X ∼ µ satisfies

the Bakry-Émery criterion (4) with parameter ηµ, then the density of X̃ satisfies the Bakry-

Émery criterion with parameter tηµ. A similar statement holds for Ỹ . Thus, both X̃ and Ỹ

satisfy the Bakry-Émery criterion with parameter min{tηµ, (1− t)ην}.
Let µ̃ and ν̃ denote the laws of X̃ and Ỹ , respectively. We note that t(1 − t)d2

W2
(µ̃) =

(1− t)d2
W2

(µ) and t(1− t)d2
W2

(ν̃) = td2
W2

(ν) by a simple rescaling. Also, we have the following

lower bound on W 2
2 (µ̃, ν̃):

t(1− t)W 2
2 (µ̃, ν̃) ≥ d2

F (µ, ν).

This follows from rescaling, the fact that W2 is non-increasing under rescaled convolution, the

central limit theorem, weak continuity of W2, the identity for W2 distance between Gaussian

measures mentioned in the proof of Theorem 1, and finally the definition of d2
F .

Upon substituting our choice of t and the above observations into (5), we find

2

n
h(µ ∗ ν) ≥ log(N(µ) +N(ν)) + log(2πe)

+
min{tηµ, (1− t)ην}

4n

(
(1− t)d2

W2
(µ) + td2

W2
(ν) + d2

F (µ, ν)
)
,

which completes the proof.

3.3 Proof of Theorem 2

Proof of Theorem 2. Assume that X∗ ∼ γ, and let T be the Brenier map sending γ onto µ.

For convenience, let us write λi for the eigenvalues of ∇T (x), in increasing order (so that

λn = λmax(∇T (x))). The combination of (12) and Lemma 2 yields in this case

δEPI,t(µ, γ) ≥ t(1− t)
2

E
[
‖∇T (X∗)− I ‖2F

1 + λmax(∇T (X∗))2

]
=
t(1− t)

2
E
[∑n

i=1(λi − 1)2

1 + λ2
n

]
. (14)

From the L1 Poincaré inequality for the Gaussian measure, we have

W1(µ, γ) ≤ 2E
[√∑

(λi − 1)2

]
.

11



By the Cauchy-Schwarz inequality, we have

E
[√∑

(λi − 1)2

]
≤
√

E[1 + λ2
n]

√
E
[∑

(λi − 1)2

1 + λ2
n

]

≤
√

E[1 + λ2
n]

√
2

t(1− t)
δEPI,t(µ, γ).

Hence in this situation, if we have an L2 bound on the largest eigenvalue of ∇T , we can deduce

a W1 estimate on the deficit (in contrast to using a uniform bound as in the proof of Theorem

1).

A result of Kolesnikov asserts that E[λ2
n] ≤ 3

2E[λn]2 (see [38], Theorem 6.1 and the discussion

at the top of page 1526). Moreover,

E[λn] ≤ 1 + E[|λn − 1|] ≤ 1 + E
[√∑

(λi − 1)2

]
.

From this estimate we deduce

E
[√∑

(λi − 1)2

]
≤

√
4 + 3E

[√∑
(λi − 1)2

]2
√

2

t(1− t)
δEPI,t(µ, γ).

Since r/
√

1 + r2 ≥ cmin(r, 1) and 2E
[√∑

(λi − 1)2
]
≥W1(µ, γ), we deduce the estimate√

2δEPI,t(µ, γ)/(t(1− t)) ≥ C min(W1(µ, γ), 1),

and the result follows.

4 Extensions

The proof of Theorem 1 uses the fact that under the assumptions the Brenier optimal maps are

Lipschitz to bound the square of the largest eigenvalue λ2
max in the deficit estimate for the log-

concavity of the determinant. A natural question is whether we can use weaker assumptions on

the map and still obtain a deficit estimate for the EPI. It turns out that we can get an estimate,

provided the largest eigenvalue of ∇T (x) grows at most linearly at infinity. We shall later see

that in dimension 1, as well as for multidimensional radially symmetric measures, this assump-

tion of eigenvalue growth holds as soon as the law of the random variable satisfies a Cheeger

isoperimetric inequality, which is a stronger assumption than the spectral gap assumption used

for the one-dimensional result of [11], but equivalent in (non-uniformly) log-concave situations.

A first case in which we establish a deficit estimate is when one of the two variables is

Gaussian:

Proposition 3. Let µ be a centered probability measure on Rn, and let T be the Brenier map

sending the standard Gaussian measure γ onto µ. If T is C1 and satisfies the pointwise bound

λmax(∇T (x)) ≤ c
√

1 + |x|2 for all x, for some c > 1. Then

δEPI,t(µ, γ) ≥ t(1− t)
8c2n

W 2
2 (µ, γ).

12



This estimate can be compared to Theorem 2. Its advantage is that it involves the stronger

W2 distance, and that its assumptions may be satisfied in certain non log-concave situations

(as we shall later see for one-dimensional random variables), but has the downside of strongly

depending on the dimension, and of requiring more quantitative information on the measure µ,

via the constant c in the eigenvalue bound.

Proof. Using the assumption, and following the same steps as in the proof of Theorem 1, we

have

δEPI,t(µ, γ) ≥ t(1− t)
2c2

E
[
‖∇T (X∗)− I‖2F

1 + |X∗|2

]
.

According to Corollary 5.6 in [39] (see also [40] for the one-dimensional case), the standard

Gaussian measure in dimension n satisfies the weighted Poincaré inequality

E
[
|∇f(X∗)|2

1 + |X∗|2

]
≥ 1

4n
Var(f(X∗)).

Applying this result and following the same steps as in the proof of Theorem 1 yields

δEPI,t(µ, γ) ≥ t(1− t)
8c2n

W 2
2 (µ, γ).

which concludes the proof.

We also prove a lower bound when neither of the two measures are Gaussian, but with an

even worse dependence on the dimension:

Proposition 4. Let T1 and T2 be the Brenier maps sending Gaussians to X and Y , respectively.

Assume that X and Y are centered and that the maps Ti are C1 and satisfy the pointwise bound

λmax(∇Ti(x)) ≤ c
√

1 + |x|2 for all x, for some c > 1. Then there is a universal constant C > 0

such that

δEPI,t(µ, ν) ≥ Ct(1− t)
(cn)2

inf
γ1,γ2∈Γ

(W 2
2 (µ, γ1) +W 2

2 (ν, γ2) +W 2
2 (γ1, γ2)).

Proof. Let us define

cn := E[(1 + |X∗|2)−1], A := c−1
n E

[
∇T1(X∗)− I

1 + |X∗|2

]
, and B := c−1

n E
[
∇T2(Y ∗)− I

1 + |Y ∗|2

]
.

As in the proof of Theorem 1, we have

δEPI,t(µ, ν) ≥ t(1− t)
2c2

E
[
‖∇T1(X∗)− I− (∇T2(Y ∗)− I)‖2F

(1 + |X∗|2)(1 + |Y ∗|2)

]
,

where we have used the näıve bound λ2
max ≤ c2(1 + |x|2)(1 + |y|2), which ultimately leads to the

13



worsening of the dependence on the dimension. We then have

E
[
‖∇T1(X∗)− I− (∇T2(Y ∗)− I)‖2F

(1 + |X∗|2)(1 + |Y ∗|2)

]
= E

[
‖∇T1(X∗)− I− cnA‖2F
(1 + |X∗|2)(1 + |Y ∗|2)

]
+ E

[
‖∇T2(Y ∗)− I− cnB‖2F
(1 + |X∗|2)(1 + |Y ∗|2)

]
+ c2n‖cn(A−B)‖2F − 2E

〈
∇T1(X∗)− I− cnA

1 + |X∗|2
,
∇T2(Y ∗)− I− cnB

1 + |Y ∗|2

〉
+ 2E

[〈
cn(A−B)

1 + |Y ∗|2
,
∇T1(X∗)− I− cnA

1 + |X∗|2

〉]
− 2E

[〈
cn(A−B)

1 + |X∗|2
,
∇T2(Y ∗)− I− cnB

1 + |Y ∗|2

〉]
= cnE

[
‖∇T1(X∗)− (I + cnA)‖2F

(1 + |X∗|2)

]
+ cnE

[
‖∇T2(Y ∗)− (I + cnB)‖2F

(1 + |Y ∗|2)

]
+ c2n‖cnA− cnB‖2F

and then the proof continues in the same way as for the previous proposition. The constant cn
above is the expectation of (1 + |X∗|2)−1, which is of order n−1.

To apply these results, we want to know when does the Brenier map satisfy the eigenvalue

bound. We shall prove that for one-dimensional measures and for radially symmetric log concave

measures, such an assumption holds when the measure satisfies a certain isoperimetric inequality.

Proposition 5. If the law of X is given by an exponential measure µ(dx) = 1
2 exp(−|x|)dx,

then the Brenier map T transporting a standard Gaussian random variable onto X satisfies the

bound

T ′(x) ≤ c
√

1 + x2

for some c > 0

Proof. The optimal map from a measure µ onto a measure ν with positive densities in dimension

one is given by x −→ F−1
ν (Fµ(x)), where Fµ(x) = µ(]−∞, x]) is the distribution function asso-

ciated to µ. For the exponential measure the distribution function can be explicitly computed

as Fexp(x) = 1− e−x/2 for x ≥ 0 and ex/2 for x < 0.

Consider x > 0. A direct computation shows that

T ′(x) =
e−x

2/2

√
2π

2

1− Fγ(x)

where Fγ is the distribution function of the standard Gaussian measure. There exists a constant

c such that 1 − Fγ(x) ≥ e−x
2/2

c
√

1+x2
, and the bound on T ′ immediately follows. By symmetry, the

same bound applies when x < 0.

To prove the lower bound on 1− Fγ(x), we just use the fact that

1− Fγ(x) =
e−x

2/2

√
2πx

− 1√
2π

∫ ∞
x

e−t
2/2

t2
dt ≥ e−x

2/2

√
2πx

− 1− Fγ(x)

x2
,

and the existence of a suitable constant easily follows.

Definition 4.1. A probability measure µ is said to satisfy a Cheeger isoperimetric inequality

with constant λ > 0 if for any measureable set A we have

µ+(∂A) ≥ λµ(A)(1− µ(A))
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where µ+(∂A) := lim supε↓0
µ(A+Bε)−µ(A)

ε , with Bε the ball with center 0 and radius ε.

For log-concave measure, Buser’s theorem [41] states that satisfying a Cheeger inequality and

a Poincaré inequality is equivalent, up to universal constants (or more precisely, the extension

of Buser’s theorem to weighted spaces [42]). In general, the Cheeger inequality is stronger

than the Poincaré inequality. It is equivalent (up to universal constants) to the L1 Poincaré

inequality
∫
|∇f |dµ ≥ c

∫
|f |dµ for every function with average zero. More generally, for log-

concave measures the isoperimetric inequality and the exponential concentration property are

equivalent [43].

Theorem 4. Assume X is a one-dimensional random variable with positive density and median

0, that satisfies a Cheeger inequality with constant α. Then the optimal map transporting the

exponential measure onto X is α−1-Lipschitz.

As a consequence, the optimal map T transporting the Gaussian measure onto the law of X

satisfies T ′(x) ≤ c
α (1 + |x|2).

This result can be extended to the non-centered case just by translating.

Note that a measure that is the image of the exponential measure by a Lipschitz map neces-

sarily satisfies Cheeger’s inequality, so the first part of this statement is actually an equivalence.

Proof. Showing an upper bound on the derivative of the map is the same as proving a lower

bound on the derivative of the inverse map T̃ (which is the optimal map sending µ onto the

exponential measure). A computation shows that, if we denote by f the density of the law of

X, we have for x positive

T̃ ′(x) =
2f(x)

1− Fµ(x)
.

Since µ has median 0, the Cheeger inequality implies that for x ≥ 0 we get f(x) ≥ α
2 (1−Fµ(x))

and the first part of the result immediately follows, after applying the same reasoning for negative

x.

The second part can be deduced just by using the fact that in dimension 1 the optimal map

from the Gaussian onto µ is the composition of the map from the Gaussian onto the exponential

measure with T .

The same argument can be generalized to radially symmetric random variables with log-

concave law:

Proposition 6. Assume that X is a radially symmetric random variable, whose law is log

concave and satisfies a Cheeger inequality with constant α. There exists a constant c (indepen-

dent of X) such that the optimal map T transporting the Gaussian measure onto X satisfies

λmax(∇T (x)) ≤ cα−1
√

1 + |x|2.

Remark 6. Bobkov [44] showed that the optimal constant λ in the Poincaré inequality for a ra-

dially symmetric log-concave random variable satisfies nE[|X|2]−1/12 ≤ λ ≤ nE[|X|2]−1. Since

for log-concave measures the square of the Cheeger constant and the Poincaré constant are equiv-

alent [42], the constant α in the Proposition always exists and is comparable to
√
nE[|X|2]−1/2,

up to universal constants.

Proof. Let µrad be the law of |X|, and T̃ be the optimal transport sending γrad := rn−1
√

2π
e−r

2/2dr

onto µrad. The Brenier optimal map sending the Gaussian onto the law of X is then given by

x −→ T̃ (|x|)x/|x|. This can be checked by verifying that it sends the Gaussian measure onto

the law of X (which is a simple change of variable argument) and that it is the gradient of the
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convex function H(|x|) with H ′ = T̃ . Since the Brenier map is the only transport map that

arises as the gradient of a convex function, T is necessarily the Brenier map.

We then compute the gradient of the map T , which is given by ∇T (x)v =(
v
|x| −

x
|x|3 〈v, x〉

)
T̃ (|x|) + x

|x|2 T̃
′(|x|)〈x, v〉. Since T (0) = 0, using the mean value theorem,

we therefore have ∇T (x)v =
(
v − x

|x|2 〈v, x〉
)
T̃ ′(t) + x

|x|2 T̃
′(|x|)〈x, v〉 for some t ∈ (0, |x|). From

this, we see that to prove the desired upper bound on the eigenvalues of ∇T , it is enough to

show that T̃ ′(r) ≤ c
√

1 + r2.

To prove this bound, we consider the symmetrized versions of µrad and γrad by extending

them by symmetry to R, and dividing the density by 2 so that they are still probability measures.

We denote these measures by µ̂rad and γ̂rad. These measures are still log-concave, and their

Cheeger constants are comparable to those of the original measures, up to a universal constant,

via Bobkov’s theorem we mentioned in Remark 6. Moreover, their median is located at 0. We

also extend T̃ to R by antisymmetry, and denote the function we obtain by T̂ . It is easy to

check that T̂ is the optimal map sending γ̂rad onto µ̂rad.

Following the same arguments as for the one-dimensional case, denoting by p the density of

µ̂, we have for r ≥ 0

T̂ ′(r) ≥ Crn−1e−r
2/2/p(F−1

µ̂rad
(Fγ̂rad(r))

≤ Cαrn−1e−r
2/2Fγ̂rad(r)−1(1− Fγ̂rad(r))−1

≤ Cαrn−1e−r
2/2(1− Fγrad(r))−1

≤ Cα
√

1 + r2

where we have used the estimate 1 − Fγrad(r) ≥ Ce−r
2/2rn−2 for large enough r, and C was

some positive constant that changed from line to line.

Remark 7. In this proof, the log-concavity is only used to ensure that µ̂rad satisfies a Cheeger

inequality with a constant comparable to α. This is not necessarily the case for non log-concave

radially symmetric measures (for example, the uniform measure on a two-dimensional annulus).
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5 An estimate for the log-determinant function

Definition 5.1. A twice differentiable function f : dom f → R is said to be m(x, y)-strongly

convex between x, y ∈ dom f if ∇2f(tx+ (1− t)y) ≥ m(x, y)I, for all t ∈ [0, 1].

Lemma 3. For all t ∈ [0, 1], a m(x, y)-strongly convex function f between x and y satisfies

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y) + t(1− t)m(x, y)

2
|x− y|2. (15)
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Proof. The Taylor series expansion of f for any two points a, b ∈ dom f yields

f(a) = f(b) + 〈∇f(b), b− a〉+
1

2
〈b− a,∇2f(t0a+ (1− t0)b)(b− a)〉 (16)

≥ f(b) + 〈∇f(b), b− a〉+
m(a, b)

2
|a− b|2, (17)

where equation (16) holds for some t0 ∈ [0, 1], and inequality (17) follows from Definition 5.1.

Denote w , tx+ (1− t)y. Applying inequality (17) twice yields

f(x) ≥ f(w) + 〈∇f(w), w − x〉+
m(x,w)

2
|w − x|2, and (18a)

f(y) ≥ f(w) + 〈∇f(w), w − y〉+
m(y, w)

2
|w − y|2. (18b)

We now multiply equation (18a) by t and (18b) by (1− t) and add them to obtain

tf(x) + (1− t)f(y) ≥ f(w) +
t(1− t)2m(x,w) + t2(1− t)m(y, w)

2
|y − x|2. (19)

By definition, we have m(x,w) ≥ m(x, y) and m(y, w) ≥ m(x, y), and this proves the lemma.

Proof of Lemma 2. The function f(·) = − log det(·) is known to be strictly convex and twice

differentiable in the interior of the positive semidefinite cone. Substituting the definition of

function f into Lemma 3 yields

log det(tA+ (1− t)B) ≥ t log det(A) + (1− t) log det(B) + t(1− t)m(A,B)

2
‖A−B‖2F . (20)

It is a standard fact that ∇2f(M) = M−1⊗M−1, with ⊗ denoting the Kronecker product. The

minimum eigenvalue of this Kronecker product is given by 1/λ2
max(M), where λmax(M) is the

largest eigenvalue of M . We therefore have

m(A,B) ≥ min
t∈[0,1]

1

λ2
max(tA+ (1− t)B)

.

Using the convexity of the maximum eigenvalue then yields the desired result.
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[36] D. Dowson and B. Landau, “The Fréchet distance between multivariate normal distribu-

tions,” Journal of multivariate analysis, vol. 12, no. 3, pp. 450–455, 1982.

[37] M. Colombo, A. Figalli, and Y. Jhaveri, “Lipschitz changes of variables between perturba-

tions of log-concave measures,” preprint, 2016.

[38] A. V. Kolesnikov, “Hessian metrics, CD(K,N)-spaces, and optimal transportation of log-

concave measures,” Discrete Contin. Dyn. Syst., vol. 34, no. 4, pp. 1511–1532, 2014.

[39] M. Bonnefont, A. Joulin, and Y. Ma, “Spectral gap for spherically symmetric log-concave

probability measures, and beyond,” J. Funct. Anal., vol. 270, no. 7, pp. 2456–2482, 2016.

[40] ——, “A note on spectral gap and weighted poincar inequalities for some one-dimensional

diffusions,” ESAIM: Probability & Statistics, vol. 20, pp. 18–29, 2016.

[41] P. Buser, “A note on the isoperimetric constant,” Ann. Sci. École Norm. Sup. (4), vol. 15,
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