Around the Numerical Evaluation of D-Finite Functions

Marc Mezzarobba

ARIC Team – INRIA

Algorithmic Combinatorics Seminar, RISC November 28, 2012

0.9900	0.42345 08779 18527	0.83850 80695 55370
01	.42336 70387 10965	.83855 04104 51134
02	.42328 32076 37097	.83859 27429 63383
03	.42319 93846 98665	.83863 50670 92932
04	.42311 55698 97410	.83867 73828 40594
0.9905	0.42303 17632 35074	0.83871 96902 07183
06	.42294 79647 13396	.83876 19891 93512
07	.42286 41743 34116	.83880 42798 00397
08	.42278 03920 98971	.83884 65620 28651
09	.42269 66180 09698	.83888 88358 79088
0.9910	0.42261 28520 68035	0.83893 11013 52524
11	.42252 90942 75717	.83897 33584 49774
12	.42244 53446 34478	.83901 56071 71651
13	.42236 16031 46054	.83905 78475 18972
14	.42227 78698 12177	.83910 00794 92552
0.9915 16 17 18 19	0.42219 41446 34579 .42211 04276 1 .42202 67187 5 .42194 30180 5 .42185 93255 2	0.83914 23030 93207 Introduction
0.9920	0.42177 56411 51354	0.83935 32955 31151

D-Finite Functions

An analytic function $y(z): \mathbb{C} \to \mathbb{C}$ is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

$$a_r(z) y^{(r)}(z) + \cdots + a_1(z) y'(z) + a_0(z) y(z) = 0, \quad a_j \in \mathbb{K}[z].$$

▶ The sequence of Taylor coefficients of a D-finite functions obeys a linear *recurrence relation* with polynomial coefficients.

Example:
$$y(z) = \sin z$$

 $y''(z) + y(z) = 0$ $y(0) = 0$, $y'(0) = 1$

D-Finite Functions

An analytic function $y(z): \mathbb{C} \to \mathbb{C}$ is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

$$a_r(z) y^{(r)}(z) + \cdots + a_1(z) y'(z) + a_0(z) y(z) = 0, \quad a_j \in \mathbb{K}[z].$$

▶ The sequence of Taylor coefficients of a D-finite functions obeys a linear *recurrence relation* with polynomial coefficients.

Example:
$$y(z) = K_0(z)$$
 (modified Bessel function) $z y''(z) + y'(z) - z y(z) = 0$

3. Numerical Evaluation

$$Ai(1/4 + 1/4i) \approx 0.28881085 - 0.06285935i.$$

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_i should be of the form x + y * i.)

path =
$$1/4+1/4*i$$
 precision = 8 Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

3. Numerical Evaluation

$$Ai(1/4 + 1/4i) \approx 0.28881085 - 0.06285935i.$$

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

path =
$$1/4 + 1/4$$
 precision = 8 Supmit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

...isMat

3. Numerical Evaluation

$$Ai(1/4 + 1/4i) \approx 0.28881085 - 0.06285935i.$$

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \ldots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_i , should be of the form x + y * i.)

path =
$$1/4 + 1/4$$
 precision = 80 Supmit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

...isMatl

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1,z_2,\ldots,z_n]$ along which to perform analytic $rac{ ext{metadata}}{ ext{total}}$

continuation of the solution of the defining differential equation. Each
$$z_k$$
 should be of the form $x + y*i$.)

path = $1/4 + 1/4*i$ precision = 80 Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

... isMat

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

path =
$$1/4+1/4*i$$
 precision = 80

Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

path =
$$1/4+1/4*i$$
 precision = 80

Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1,z_2,\ldots,z_n]$ along which to perform analytic

continuation of the solution of the defining differential equation. Each z_k should be of the form x + y*i.)

path =
$$1/4 + 1/4*i$$
 precision = 80

Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

... isMatl

3. Numerical Evaluation

 $\text{Ai}\left(1/4+1/4\,i\right)\approx0.28881085384820872173256483671407046811262524805800436861749378392647}$

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \ldots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form $x + y \neq 1$.)

precision = 80

Submit Query

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AirvAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

...isMatl

3. Numerical Evaluation

(Below, path may be either a point z or a broken-line path $[z_1, z_2, \dots, z_n]$ along which to perform analytic continuation of the solution of the defining differential equation. Each z_k should be of the form x + y * i.)

- 4. Taylor expansion of Ai(x) at 0
- Expansion of AiryAi at 0:

$$\mathrm{Ai}\left(x\right) = \sum_{n=0}^{\infty} 1/3 \, \frac{\sqrt[3]{3} x^{3\,n}}{9^n \Gamma\left(n+2/3\right) n!} - 1/9 \, \frac{3^{2/3} x^{3\,n+1}}{9^n \Gamma\left(n+4/3\right) n!}.$$

isMat

NumGfun

http://algo.inria.fr/libraries/ (GNU LGPL)

http://algo.inria.fr/libraries/papers/gfun.html

B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM TOMS, 1994.

M. Mezzarobba. NumGfun: a Package for Numerical and Analytic Computation with D-finite functions. ISSAC 2010.

M. Mezzarobba. Autour de l'évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique, 2011.


```
> diffeq := {diff(diff(y(z),z),z)+(2*z^3-
z^2*a-2*z-a)/((z+1)^2*(z-1)^2)*diff(y(z)
,z)+(z^2*b+z*c+2*z*a+d)*y(z)/((z-1)^3*
(z+1)^3),y(0)=1,(D(y))(0)=0};
```

```
> diffeq := {diff(diff(y(z),z),z)+(2*z^3-
z^2*a-2*z-a)/((z+1)^2*(z-1)^2)*diff(y(z)
,z)+(z^2*b+z*c+2*z*a+d)*y(z)/((z-1)^3*
        (z+1)^3, y(0)=1, (D(y))(0)=0;
 diffeq :=  \begin{cases} \frac{d^2}{dz^2} y(z) + \frac{(2z^3 - z^2a - 2z - a)(\frac{d}{dz}y(z))}{(z+1)^2(z-1)^2} \end{cases} 
 + \frac{(z^2b + zc + 2za + d)y(z)}{(z-1)^3(z+1)^3}, y(0) = 1, D(y)(0) = 0
```

```
> diffeq := {diff(diff(y(z),z),z)+(2*z^3-
z^2*a-2*z-a)/((z+1)^2*(z-1)^2)*diff(y(z)
,z)+(z^2*b+z*c+2*z*a+d)*y(z)/((z-1)^3*
       (z+1)^3, y(0)=1, (D(y))(0)=0;
diffeq := \begin{cases} \frac{d^2}{dz^2} y(z) + \frac{(2z^3 - z^2a - 2z - a)(\frac{d}{dz}y(z))}{(z+1)^2(z-1)^2} \end{cases}
     +\frac{(z^2b+zc+2za+d)y(z)}{(z-1)^3(z+1)^3}, y(0) = 1, D(y)(0) = 0
```

```
> diffeq := {diff(diff(y(z),z),z)+(2*z^3-
z^2=a-2z-a/((z+1)^2(z-1)^2)*diff(y(z),z)+(z^2b+z*c+2*z*a+d)*y(z)/((z-1)^3*
      (z+1)^3, y(0)=1, (D(y))(0)=0;
diffeq :=  \frac{d^2}{dz^2} y(z) + \frac{(2 z^3 - z^2 a - 2 z - a) \left(\frac{d}{dz} y(z)\right)}{(z+1)^2 (z-1)^2} 
      + \frac{(z^2b + zc + 2za + d)y(z)}{(z-1)^3(z+1)^3}, y(0) = 1, D(y)(0) = 0
> a, b, c, d := 1, 1/3, 1/2, 3;

a, b, c, d := 1, \frac{1}{3}, \frac{1}{2}, 3
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069
> myHeunD := diffeqtoproc(diffeq, y(z)):
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069

> myHeunD := diffeqtoproc(diffeq y(z)):
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069

> myHeunD := diffeqtoproc(diffeq y(z)):

> myHeunD(1/3, 50);
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069
> myHeunD := diffeqtoproc(diffeq, y(z)):
> myHeunD(1/3, 50);
1.23715744756395253918007831405821000395447403052075
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069

> myHeunD := diffeqtoproc(diffeq, y(z)):

> myHeunD(1/3, 50);
1.23715744756395253918007831405821000395447403052075
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069

> myHeunD := diffeqtoproc(diffeq, y(z)):

> myHeunD(1/3, 50);
1.23715744756395253918007831405821000395447403052075

> myHeunD(1/3, 2000);
```

```
> evalf[51](HeunD(a, b, c, d, 1/3));
1.23715744756395253918007831405821000395447403052069

> myHeunD := diffeqtoproc(diffeq, y(z)):

> myHeunD(1/3, 50);
1.23715744756395253918007831405821000395447403052075

> myHeunD(1/3, 2000);
(1.3 s later...)
```

```
evalf[51](HeunD(a, b, c, d, 1/3));
  1.23715744756395253918007831405821000395447403052069
  myHeunD := diffeqtoproc(diffeq, y(z)):
 myHeunD(1/3, 50);
  1.23715744756395253918007831405821000395447403052075
> myHeunD(1/3, 2000);
1.237157447563952539180078314058210003954474030520747249\
   77368122339910479272634279104260366917046868224326693\
   22058740005957868869065637255063771378117634825003548
  96170152380808246265230916158732964496323766777357428\
  28214335810166903875586333320334746574757060060591160\
  33361999970684428816250827723506800809
```

```
evalf[51](HeunD(a, b, c, d, 1/3));
  1.23715744756395253918007831405821000395447403052069
 myHeunD := diffeqtoproc(diffeq, y(z)):
 myHeunD(1/3, 50);
  1.23715744756395253918007831405821000395447403052075
> myHeunD(1/3, 2000);
1.237157447563952539180078314058210003954474030520747249\
   77368122339910479272634279104260366917046868224326693
   22058740005957868869065637255063771378117634825003548
  96170152380808246265230916158732964496323766777357428\
  28214335810166903875586333320334746574757060060591160\
  33361999970684428816250827723506800809
                          more general code = less bugs!
```

```
> evalf(HeunD(a, b, c, d, -0.9));
```

```
> evalf(HeunD(a, b, c, d, -0.9));
2.695836763
```

```
> evalf(HeunD(a, b, c, d, -0.9));
2.695836763
> myHeunD(-0.9, 9);
2.695836219
```

```
> evalf(HeunD(a, b, c, d, -0.9));
2.695836763

> myHeunD(-0.9, 9);
2.695836219

> evalf(HeunD(a, b, c, d, -0.99));
```

```
evalf(HeunD(a, b, c, d, -0.9));
> myHeunD(-0.9, 9);
                    2.695836219
> evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
is not converging
                     undefined
> myHeunD(-0.99);
                   4.6775585280
```

```
evalf(HeunD(a, b, c, d, -0.9));
> myHeunD(-0.9, 9);
> evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
is not converging
                     undefined
> myHeunD(-0.99);
                   4.6775585280
 myHeunD(-0.99, 500);
```

```
evalf(HeunD(a, b, c, d_{\mu}-0.9));
> myHeunD(-0.9, 9);
> evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
is not converging
                      undefined
> myHeunD(-0.99);
                    4.6775585280
 myHeunD(-0.99, 500);
(6.1 s later...)
```

```
evalf(HeunD(a, b, c, d_{\mu}-0.9));
                     2.695836763
  myHeunD(-0.9, 9);
                     2.695836
> evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
is not converging
                       undefined
> myHeunD(-0.99);
                     4.6775585280
> myHeunD(-0.99, 500);
4.677558527966890481646371616414130565650323560409922037\
   89542201276207762696563032189351846152496641167932588\
   4660460023972873078881
```

```
evalf(HeunD(a, b, c, d_{\mu}-0.9));
                     2.695836763
  myHeunD(-0.9, 9);
                      2.695836
> evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
is not converging
                       undefined
> myHeunD(-0.99);
                     4.6775585280
> myHeunD(-0.99, 500);
4.67755852796689048164637161641413056565032356040992203
   89542201276207762696563
                         no numerical instability issues
   4660460023972873078881
                         (price to pay: computation time)
```

```
> diffeq := random_diffeq(3, 2);
```

 $-\frac{3}{5}z^{2}\left(\frac{d^{3}}{dz^{3}}y(z)\right), y(0) = 0, D(y)(0) = \frac{7}{30}, D^{(2)}(y)(0) =$

A Random Example

> diffeq := random_diffeq(3, 2);

diffeq :=
$$\left\{ \left(\frac{13}{30} + \frac{8}{15} z + \frac{7}{30} z^2 \right) y(z) + \left(-\frac{9}{20} + \frac{29}{30} z - \frac{1}{12} z^2 \right) \left(\frac{d}{dz} y(z) \right) + \left(-\frac{43}{60} + \frac{49}{60} z - \frac{2}{30} z$$

diffeq :=
$$\left\{ \left(\frac{13}{30} + \frac{8}{15} z + \frac{7}{30} z^2 \right) y(z) + \left(-\frac{9}{20} + \frac{29}{30} z^2 \right) + \left(-\frac{43}{60} z^2 + \frac{49}{60} z^2 z^2 \right) + \left(-\frac{43}{6$$

$$diffeq := \left\{ \left(\frac{30}{30} + \frac{1}{15} z + \frac{3}{30} z^2 \right) y(z) + \left(-\frac{2}{20} + \frac{2}{30} z^2 \right) + \left(-\frac{1}{20} z^2 \right) \left(\frac{d}{dz} y(z) \right) + \left(-\frac{43}{60} + \frac{49}{60} z z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{1}{12} + \frac{17}{30} z^2 \right) \left(\frac{d^2}{dz^2$$

```
> diffeq := random_diffeq(3, 2);

diffeq := \left\{ \left( \frac{13}{30} + \frac{8}{15} z + \frac{7}{30} z^2 \right) y(z) + \left( -\frac{9}{20} + \frac{29}{30} z^2 \right) \right\}
-\frac{1}{12}z^{2}\left(\frac{d}{dz}y(z)\right) + \left(-\frac{43}{60} + \frac{49}{60}z\right)
+ \frac{11}{30} z^{2} \left( \frac{d^{2}}{dz^{2}} y(z) \right) + \left( -\frac{7}{12} + \frac{17}{30} z \right)
             -\frac{3}{5}z^{2}\left(\frac{d^{3}}{dz^{3}}y(z)\right), y(0) = 0, D(y)(0) = \frac{7}{30}, D^{(2)}(y)(0) =
```

> evaldiffeq(diffeq, y(z), (1+I)/5, 40);

> diffeq := random_diffeq(3, 2);

$$diffeq := \left\{ \left(\frac{13}{30} + \frac{8}{15} z + \frac{7}{30} z^2 \right) y(z) + \left(-\frac{9}{20} + \frac{29}{30} z \right) \right.$$

$$\left. - \frac{1}{12} z^2 \right) \left(\frac{d}{dz} y(z) \right) + \left(-\frac{43}{60} + \frac{49}{60} z \right)$$

$$\left. + \frac{11}{30} z^2 \right) \left(\frac{d^2}{dz^2} y(z) \right) + \left(-\frac{7}{12} + \frac{17}{30} z \right)$$

$$\left. - \frac{3}{5} z^2 \right) \left(\frac{d^3}{dz^3} y(z) \right), y(0) = 0, D(y)(0) = \frac{7}{30}, D^{(2)}(y)(0) = \frac{43}{60}$$

High Precision

```
> evaldiffeq(diffeq, y(z), 1/5, 1000000);
```

High Precision

```
> evaldiffeq(diffeq, y(z), 1/5, 1000000);
(29 min later...)
```

High Precision

```
> evaldiffeq(diffeq, y(z), 1/5, 1000000);
0.033253281257567506772459381920024394391065961347292863\
13611785593075654371610784719859620906805710762776061\
65993844793918297941976188620650536691082179149605904\
31080482988558239935175505111768194891591740446771304\
74730251896359727561534310095807343639273056518962333\
97217595138842309884016425632431029577130431472108646\
95485154767624024297343851584414126056237771911489680\
```

97933258259972366466573219602501650218139747781157348\
78322628655747195818205282428148240800376913561455564\
29598794491231828039584256430669932365880956101719727\
33806130243940574539991121877851105270752378138422728\
76176859592508040781771637205060431902227437673286901\
71292574098466950906705927590030494460150099288210121\
868701569

Some History

- Schroeppel (1972) Special evaluation points
- Brent (1976) Special case of exp (+ variants)
- Chudnovsky & Chudnovsky (1986-1988) General method (incl. a sketch of the case of regular singular points)
- van der Hoeven (1999, 2001) General algorithm with error bounds
- M. Implementation, efficiency improvements, fully automatic error control based on tighter bounds

Main Ideas

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 2. Taylor series method for ODEs

 $\arctan\left(\frac{5}{4}(1+i)\right) = ?$

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 2. Taylor series method for ODEs

$$\arctan\left(\frac{5}{4}(1+i)\right) = ?$$

$$\begin{bmatrix} y(z_1) \\ y'(z_1) \end{bmatrix} = \begin{bmatrix} 1 & 0.570... + 0.220... i \\ 0 & 0.728... - 0.206... i \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$$

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 2. Taylor series method for ODEs

$$\arctan\left(\frac{5}{4}(1+i)\right) = ?$$

$$\begin{bmatrix} y(z_1) \\ y'(z_1) \end{bmatrix} = \begin{bmatrix} 1 & 0.570... + 0.220... i \\ 0 & 0.728... - 0.206... i \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$$

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 2. Taylor series method for ODEs

$$\arctan\left(\frac{5}{4}(1+i)\right) = ?$$

$$\begin{bmatrix} y(z_1) \\ y'(z_1) \end{bmatrix} = \begin{bmatrix} 1 & 0.570...+0.220...i \\ 0 & 0.728...-0.206...i \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$$

Main Ideas

- 0 fast integer multiplication
- 1 binary splitting

- 2 analytic continuation
- 3 bit burst
- 2. Taylor series method for ODEs

$$\arctan\left(\frac{5}{4}(1+i)\right) = ?$$

$$\begin{bmatrix} y(z_1) \\ y'(z_1) \end{bmatrix} = \begin{bmatrix} 1 & 0.570... + 0.220... i \\ 0 & 0.728... - 0.206... i \end{bmatrix} \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$$

$$\begin{bmatrix} y(z_2) \\ y'(z_2) \end{bmatrix} = \begin{bmatrix} 1 & 0.365... + 0.329... i \\ 0 & 0.751... - 0.079... i \end{bmatrix} \begin{bmatrix} y(z_1) \\ y'(z_1) \end{bmatrix}$$

. . .

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 0. One can multiply two integers of $\leq n$ bits in $M(n) = O(n \log n \, 2^{O(\log^* n)})$ bit ops [Fürer 2007].

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 1. Within the disk of convergence of a Taylor expansion: fast series summation algorithm based on the recurrence

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst
- 3. High-precision inputs: use analytic continuation even if the series converges!

$$z_0 = 10_2 \rightarrow z_1 = 10.1_2$$

 $\rightarrow z_2 = 10.101_2$ $\sin(e) = \sin(2.718...) = ?$
 $\rightarrow z_3 = 10.1011011_2$
 $\rightarrow z_4 = 10.101101110010100_2$
 $\rightarrow ...$
 $\rightarrow z = 10.10110111001010000...._2 \simeq e$

Main Ideas

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst

Theorem (Chudnovsky²)

The evaluation point z being fixed, one may compute y(z) with error bounded by 2^{-n} in

$$O(M(n \cdot (\log n)^3))$$

bit operations.

Evaluation Algorithm [Chudnovsky & Chudnovsky 1988]

Main Ideas

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst

Theorem (Chudnovsky², van der Hoeven)

The evaluation point z being fixed, one may compute y(z) with error bounded by 2^{-n} in

$$O(M(n \cdot (\log n)^3 (\log n)^2 \cdot \log \log n))$$

bit operations.

Evaluation Algorithm [Chudnovsky & Chudnovsky 1988]

Main Ideas

- 0 fast integer multiplication 2 analytic continuation
- 1 binary splitting 3 bit burst

Theorem (Chudnovsky², van der Hoeven, M.)

The evaluation point z being fixed, one may compute y(z) with error bounded by 2^{-n} in

$$O(M(n \cdot (\log n)^3 (\log n)^2 \cdot \log \log n))$$

bit operations.

Evaluation Algorithm [Chudnovsky & Chudnovsky 1988]

Main Ideas

0 fast integer multiplication 2 analytic continuation

1 binary splitting 3 bit burst

Theorem (Chudnovsky², van der Hoeven, M.)

The evaluation point z being fixed, one may compute y(z) with error bounded by 2^{-n} in

$$O(M(n \cdot (\log n)^3 (\log n)^2 \cdot \log \log n))$$

bit operations using O(n) bits of memory.

M. Mezzarobba. A note on the space complexity of fast D-finite function evaluation. CASC 2012.

Improvements Towards A Practical Algorithm

Error control

- Precision of intermediate steps
- ► Tight a priori bounds on truncation orders

"Constant factor"

- Structure of recurrence matrices
- Fast simultaneous computations of several derivatives

- "Operator version" of the Heffter-Poole method
- ► Specific binary splitting algorithm (faster in "hard" cases)

```
> diffeq := diffeqtohomdiffeq(
    holexprtodiffeq(
    arctan(z), y(z)), y(z));
```

```
> diffeq := diffeqtohomdiffeq(
holexprtodiffeq(
arctan(z), y(z)), y(z));
diffeq := \left\{-2 z \left(\frac{d}{dz} y(z)\right) + \left(-1 - z^2\right) \left(\frac{d^2}{dz^2} y(z)\right), y(0) = 0,\right\}
D(y)(0) = 1
```

```
> diffeq := diffeqtohomdiffeq(
holexprtodiffeq(
arctan(z), y(z)), y(z));

diffeq := \left\{-2z\left(\frac{d}{dz}y(z)\right) + \left(-1-z^2\right)\left(\frac{d^2}{dz^2}y(z)\right), y(0) = 0,\right\}
D(y)(0) = 1
[0, I], ord=3));
```

```
diffeq := diffeqtohomdiffeq(
         holexprtodiffeq(
            arctan(z), y(z)), y(z));
diffeq := \left\{ -2 z \left( \frac{d}{dz} y(z) \right) + \left( -1 - z^2 \right) \left( \frac{d^2}{dz^2} y(z) \right), y(0) = 0, \right.
D(y)(0) = 1
    subs(z=z-I, evaldiffeq(diffeq, y(z),
[0, I], ord=3));

(-0.50000000001) \left( \ln(z-I) + \frac{1}{2} I(z-I) - \frac{1}{8} (z-I)^2 \right)
     + (0.7853981634 + 0.3465735903 \,\mathrm{I})
```

```
diffeq := diffeqtohomdiffeq(
         holexprtodiffeq(
            arctan(z), y(z)), y(z));
diffeq := \left\{ -2 z \left( \frac{\mathrm{d}}{\mathrm{d}z} y(z) \right) + \left( -1 - z^2 \right) \left( \frac{\mathrm{d}^2}{\mathrm{d}z^2} y(z) \right), y(0) = 0, \right.
D(y)(0) = 1 
     subs(z=z-I, evaldiffeq(diffeq, y(z),
                                          [0, I], ord=3));
(-0.50000000001) (In Applications:

+ (0.7853981634 → Analytic Combinatorics
                                    ▶ Resummation, diff. Galois
```


Motivation (I): Numerical Evaluation

$$\sum_{n=0}^{\infty} y_n z^n = \sum_{n=0}^{N-1} y_n z^n + \underbrace{\sum_{n=N}^{\infty} y_n z^n}_{2}$$

Compute suitable truncation orders (and other bounds)? A priori bounds tend to be easier to use in fast algorithms.

- Chudnovsky & Chudnovsky Orders of magnitude only
- van der Hoeven (1999, 2001, 2003) Cauchy-like bounds

We look for asymptotically optimal bounds

Motivation (II): Symbolic Bounds

Baxter Permutations

(OEIS A001181)

$$(n+2)(n+3)B_n = (7n^2 + 7n - 2)B_{n-1} + 8(n-1)(n-2)B_{n-2},$$

$$B_0 = B_1 = 1$$

 \triangleright $B_n \leq 2.9 \cdot 8^n$

Chudnovsky Formula for π

where
$$t_k = \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k}}$$

$$\left| \frac{640320^{3/2}}{12\pi} - \sum_{k=0}^{n-1} t_k \right| \le 10^6 (2,3n^3 + 13,6n^2 + 25n + 13,6) \alpha^n$$

where
$$\alpha = \frac{1}{151931373056000} \simeq 0,66 \cdot 10^{-14}$$

"Tight" Bounds

Input Recurrence + Initial terms
$$\{p_s(n) y_{n+s} + \cdots + p_0(n) y_n = 0, y_0 = \dots, y_1 = \dots\}$$

Output
$$|y_n| \leq n!^{p/q} \alpha^n \varphi(n)$$

 φ subexponential, i.e. $\varphi(n) = e^{o(n)}$

- rigorous bound in all cases
- ▶ for generic initial values: optimal p/q and α (or even $\varphi(n) = n^{O(1)}$)

Theorem

One may compute p/q, α , φ fulfilling these conditions.

M. Mezzarobba and B. Salvy. Effective bounds for P-recursive sequences. Journal of Symbolic Computation, 2010.

Symbolic and Numeric Bounds

Bound Parameters

 $\kappa, \alpha, \ldots \in \mathbb{Q} \text{ or } \bar{\mathbb{Q}} \text{ s.t.}$

$$|y_n| \leqslant n!^{\kappa} \cdot \alpha^n \cdot \varphi(n)$$

Main Tools: Cauchy majorants + elementary asymptotic analysis

Symbolic Bounds

- Readable (as far as possible!)
- ► Asymptotically tight

Numeric Bounds

- ► Safe approx. of parameters
- ► Faster (no alg. numbers)

Outline of the Algorithm


```
> deq := holexprtodiffeq(AiryAi(z), y(z)):
>
```

```
> deq := holexprtodiffeq(AiryAi(z), y(z)):
> myAi := diffeqtoproc(deq, y(z),
                    prec=12, disks=[[0,6]]):
 > plot(myAi, -5..5);
                      0.3
                      0.1
                     -0.1
```

Taylor Series vs. Chebyshev Series

$$e^{x} - \left(1 + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4}\right)$$

$$e^{x} - \left(1,2660T_{0}(x) + 1,1303T_{1}(x) + 0,2714T_{2}(x) + 0,0443T_{3}(x) + 0,0054T_{4}(x)\right)$$

Quasi-Minimax Approximation

For any regular enough function f,

$$||f - p_d||_{\infty} \le \left(\frac{4}{\pi^2} \log(d+1) + 4\right) ||f - p_d^*||_{\infty}$$

Previous Work

- ▶ Numerical computation of Chebyshev expansions
 - Lánczos (1938) τ method
 - Clenshaw (1957) backward iterative method à la Miller
- Recurrence relation
 - Fox & Parker (1968) small orders, link with Clenshaw
 - Paszkowski (1975) general case
 - Geddes (1977), Rebillard (1998), Benoit & Salvy (2009) computer algebra
- ► Chebyshev expansions in Interval Analysis
 - Kaucher & Miranker (1984) ultra-arithmetic
 - Brisebarre & Joldeş (2010) ChebModels

D-finite Chebyshev Series

Obstacles

- Divergent solution sequences
- ▶ Initial values ∉ Q
- Error bounds

Our approach

- 1. Compute the coefficients by a variant of Clenshaw's method
- 2. Validate the output (enclosure + fixed-pt thm)

A. Benoit, M. Joldeş and M. Mezzarobba. Rigourous uniform approximation of D-finite functions using Chebyshev expansions. In preparation.

Computing the Coefficients

Example

$$y(x) = e^{x} = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n c_n - c_{n-1} = 0$$

 $S = \sum_{n=0}^{50} u_n T_n(0) \approx -3.48 \cdot 10^{81}$

Computing the Coefficients

Linear complexity wrt starting index N.

Theorem

The (method) error on the computed coefficients, i.e.,

$$\max_{n=0}^{N} \left| c_n^{[N]} - c_n \right|$$

decreases exponentially as $N \to \infty$.

Computed Polynomials

Input A differential operator, initial values, a polynomial p of degree d, a precision ε

Output R such that

$$||y - p||_{\infty} \le R = O(\sqrt{d}(||y^{(r-1)} - p^{(r-1)}||_{\infty} + \varepsilon))$$

$$\tau(y) := \left(x \mapsto y_0 + \int_0^x \frac{a(t)}{b(t)} y(t) \, \mathrm{d}t\right) \qquad \|\tau(f) - \tau(g)\|_{\infty} \leqslant \gamma \|f - g\|_{\infty}$$
$$\gamma < 1$$

Input A differential operator, initial values, a polynomial p of degree d, a precision ε

Output R such that

$$||y - p||_{\infty} \le R = O(\sqrt{d}(||y^{(r-1)} - p^{(r-1)}||_{\infty} + \varepsilon))$$

$$\tau(y) := \left(x \mapsto y_0 + \int_0^x \frac{a(t)}{b(t)} y(t) \, \mathrm{d}t\right) \qquad \|\tau(f) - \tau(g)\|_{\infty} \leqslant \gamma \, \|f - g\|_{\infty}$$

$$\gamma < 1$$

$$\|p - \hat{p}\|_{\infty} + \hat{R} \leqslant R$$

Input A differential operator, initial values, a polynomial p of degree d, a precision ε

Output R such that

$$\|y-p\|_{\infty} \leqslant R = O\left(\sqrt{d}\left(\|y^{(r-1)}-p^{(r-1)}\|_{\infty}+\varepsilon\right)\right)$$

$$\tau(y) := \left(x \mapsto y_0 + \int_0^x \frac{a(t)}{b(t)} y(t) \, \mathrm{d}t \right) \qquad \|\tau(f) - \tau(g)\|_{\infty} \leqslant \gamma \, \|f - g\|_{\infty}$$

$$\gamma < 1$$

Algorithm

- ► Choose *i* large enough
- Compute $p_i \approx \tau^i(p)$
- ► Return $R \ge \frac{\|p p_i\|_{\infty} + (\text{errors})}{1 \gamma_i}$

Input A differential operator, initial values, a polynomial p of degree d, a precision ε

Output R such that

$$||y - p||_{\infty} \le R = O(\sqrt{d}(||y^{(r-1)} - p^{(r-1)}||_{\infty} + \varepsilon))$$

$$\tau(y) := \left(x \mapsto y_0 + \int_0^x \frac{a(t)}{b(t)} y(t) \, \mathrm{d}t\right) \qquad \|\tau(f) - \tau(g)\|_{\infty} \leqslant \gamma \, \|f - g\|_{\infty}$$

$$\gamma < 1$$

Algorithm

- Choose i large enough

• Compute
$$p_i \approx \tau^i(p)$$

► Return
$$R \geqslant \frac{\|p - p_i\|_{\infty} + (\text{errors})}{1 - \gamma_i}$$

Quality of the Resulting Bounds

$$\frac{e^{x/2}}{\sqrt{x+16}}$$
4,8
0,58
0,57
$$\frac{3\cos x - \sin x}{2}$$
3,1
3,7
4,1
$$e^{1/(1+2x^2)}$$
0,57
0,56
0,56
$$\text{degree} = 30 \text{ degree} = 60 \text{ degree} = 90$$

Quality:
$$\log_{10} \frac{B}{\|y - p\|_{\infty}}$$

- D-finite functions, DDMF compute everything we can starting from LODE + ini. cond.
- ► Multiple precision analytic continuation general rigorous fully automatic fast
- ➤ Tight bounds symbolic + numeric – Cauchy majorant method
- Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html

Some current & future work

- NumGfun 1.0 and beyond
- ▶ Rigorous approximations on more general bases
- ► Majorants vs enclosures + fixed point thms
- ▶ D-Finite functions in Computer Arithmetic, code generation

- D-finite functions, DDMF compute everything we can starting from LODE + ini. cond.
- ► Multiple precision analytic continuation general rigorous fully automatic fast
- ➤ Tight bounds symbolic + numeric – Cauchy majorant method
- Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html

Some current & future work

- ▶ NumGfun 1.0 and beyond
- Rigorous at Vielen Dank für die Aufmerksamkeit!
- D-Finite functions in Computer Arithmetic, code generation

- D-finite functions, DDMF compute everything we can starting from LODE + ini. cond.
- ► Multiple precision analytic continuation general rigorous fully automatic fast
- ➤ Tight bounds symbolic + numeric – Cauchy majorant method
- ► Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html

Some current & future work

- NumGfun 1.0 and beyond
- ▶ Rigorous approximations on more general bases
- ► Majorants vs enclosures + fixed point thms
- ▶ D-Finite functions in Computer Arithmetic, code generation

Credits

- ► Tables of the error function and its derivative. US National Bureau of Standards, 1954 (public domain)
- http://commons.wikimedia.org/wiki/File: Calipers_in_physics_lab.jpg (by User:Falcorian, Creative Commons Attribution-Share Alike)
- http://commons.wikimedia.org/wiki/File: Paseky,_Havírna,_závora_u_domu_224.jpg (by User:cs:ŠJů, Creative Commons Attribution-Share Alike)
- http://en.wikipedia.org/wiki/File:Stamp_of_USSR_1047.jpg (by User:Butko, taken from http: //kolekzioner.net/modules/smartsection/item.php?itemid=211, public domain)
- ► Some icons used in this document are from the Oxygen icon set (http://oxygen-icons.org), licensed under the GNU Lesser General Public Licence v. 3.

