Around the Numerical Evaluation of D-Finite Functions

Marc Mezzarobba

Algorithmic Combinatorics Seminar, RISC
November 28, 2012

0.9900
01
02
03
04
0.9905
06
07
08
09
0.9910
11
12
13
14

0.9915
16
17
18
19
0.423450877918527 .423367038710965 .423283207637097 .423199384698665 .423115569897410
0.423031763235074 .422947964713396 .422864174334116 .422780392098971 .422696618009698
0.422612852068035 .422529094275717
.422445344634478
.422361603146054
.422277869812177
0.422194144634579
.42211042761
.42202671875
.42194301805
.42185932552
$0.9920 \mid 0.421775641151354$
0.838508069555370 .838550410451134 .838592742963383 .838635067092932 .838677382840594
0.838719690207183 .838761989193512 .838804279800397 .838846562028651 .838888835879088
0.838931101352524 .838973358449774 .839015607171651
.839057847518972 .839100079492552
$0.8391423030 \quad 93207$

Introduction

Elementary and Special Functions

D-Finite Functions

An analytic function $y(z): \mathbb{C} \rightarrow \mathbb{C}$ is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

$$
a_{r}(z) y^{(r)}(z)+\cdots+a_{1}(z) y^{\prime}(z)+a_{0}(z) y(z)=0, \quad a_{j} \in \mathbb{K}[z] .
$$

- The sequence of Taylor coefficients of a D-finite functions obeys a linear recurrence relation with polynomial coefficients.

Example: $\quad y(z)=\sin z$

$$
y^{\prime \prime}(z)+y(z)=0 \quad y(0)=0, \quad y^{\prime}(0)=1
$$

D-Finite Functions

An analytic function $y(z): \mathbb{C} \rightarrow \mathbb{C}$ is said to be D-finite (holonomic) iff it satisfies a linear (homogeneous) ODE with polynomial coefficients:

$$
a_{r}(z) y^{(r)}(z)+\cdots+a_{1}(z) y^{\prime}(z)+a_{0}(z) y(z)=0, \quad a_{j} \in \mathbb{K}[z] .
$$

- The sequence of Taylor coefficients of a D-finite functions obeys a linear recurrence relation with polynomial coefficients.

Example: $y(z)=K_{0}(z) \quad$ (modified Bessel function)

$$
z y^{\prime \prime}(z)+y^{\prime}(z)-z y(z)=0
$$

Elementary and Special Functions

Elementary and Special Functions

Elementary and Special Functions

A Dictionary of D-Finite Functions

Dynamic Dictionary of Mathematical Functions

$W^{\text {elcome to this interactive site }}$ on Mathematical Functions, with properties, truncated expansions, numerical evaluations, plots, and more. The functions currently presented are elementary functions and special functions of a single variable. More functions - special functions with parameters, orthogonal polynomials, sequences - will be added with the project advances.

Select a special function from the list

- Help on selecting and configuring the mathematical rendering
- DDMF developers list
- Motivation of the nroiect

Contents
-The inverse cosecant $\operatorname{arccsc}(x)$

- The inverse cosine $\arccos (x)$
- The inverse cotangent $\operatorname{arccot}(x)$
- The inverse hyperbolic cosecant $\operatorname{arccsch}(x)$
- The Airy function of the first kind $\mathrm{Ai}(x)$
- The inverse secant $\operatorname{arcsec}(x)$
- The inverse sine $\arcsin (x)$
-The inverse tangent $\arctan (x)$
-The Airy function (of the second kind) $\operatorname{Bi}(x)$
- The hyperbolic cosine integral $\operatorname{Chi}(x)$
- The cosine integral $\mathrm{Ci}(x)$
- The cosine $\cos (x)$
-The exponential integral $\mathrm{Ei}(x)$
- The error function erf (x)
-The complementary error function erfc (x)
- Tho imaninary orrar firnotinn arfi (m)

A Dictionary of D-Finite Functions

F Dynamic Dictionary of Mothematical Functig Eile Edit View History Bookmarks scrap
 http://ddmf.msr-inria.inria.fr

- [01] Dynamic Dictionary of Ma... \#

Dynamic Dictionary of Mathematical Functions

Welcome to this interactive site on Mathematical Functions, with properties, truncated expansions, numerical evaluations, plots, and more. The functions currently presented are elementary functions and special functions of a single variable. More functions - special functions with parameters, orthogonal polynomials, sequences - will be added with the project advances.

Benoit, Chyzak, Darrasse, Gerhold, M. \& Salvy (2010) + Grégoire, Henriot, Koutschan

- טणागा पeveivpeis ist
- Motivation of the nroiert

Contents

-The inverse cosecant $\operatorname{arccsc}(x)$

- The inverse cosine $\arccos (x)$
- The inverse cotangent $\operatorname{arccot}(x)$
- The inverse hyperbolic cosecant $\operatorname{arccsch}(x)$
- The Airy function of the first kind $\mathrm{Ai}(x)$
- The inverse secant $\operatorname{arcsec}(x)$
- The inverse sine $\arcsin (x)$
-The inverse tangent $\arctan (x)$
-The Airy function (of the second kind) $\operatorname{Bi}(x)$
- The hyperbolic cosine integral Chi (x)
- The cosine integral $\mathrm{Ci}(x)$
- The cosine $\cos (x)$
-The exponential integral $\mathrm{Ei}(x)$
-The error function erf (x)
-The complementary error function erfc (x)
- Tho imaninary orrar firnotinn arfi (m)

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

File Edit View History Bookmarks ScrapBaak Tools Help

$$
\min =\sqrt{-10} \quad \max =\sqrt{10} \quad \text { Submit Query }
$$

3. Numerical Evaluation

$$
\operatorname{Ai}(1 / 4+1 / 4 i) \approx 0.28881085-0.06285935 i
$$

(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=1 / 4+1 / 4 *_{i} \text { precision }=8 \quad \text { Submit Query }
$$

4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=1 / 4+1 / 4 *_{i} \text { precision }=80 \quad \text { Submit Query }
$$

4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

A Dictionary of D-Finite Functions

(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=1 / 4+1 / 4 *_{i} \text { precision }=80 \quad \text { Submit Query }
$$

4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

$$
\min =-10 \quad \max =10
$$

- computed from the ODE
- rigorous error bounds
- arbitrary precision

3. Numerical Evaluation

$\mathrm{Ai}(1 / 4+1 / 4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647$
(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=1 / 4+1 / 4 * \text { i } \text { precision }=80 \quad \text { Submit Query }
$$

4. Taylor exparnsion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

- computed from the ODE
- rigorous error bounds
- arbitrary precision

3. Numerical Evaluation

$\mathrm{Ai}(1 / 4+1 / 4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647$
(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=-5 \quad \text { precision }=80 \quad \text { Submit Query }
$$

4. Taylor exparision of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

- computed from the ODE
- rigorous error bounds
- arbitrary precision

3. Numerical Evaluation

$\mathrm{Ai}(1 / 4+1 / 4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647$
(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Eack z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)
4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

- computed from the ODE
- rigorous error bounds
- arbitrary precision

3. Numerical Evaluation

$\mathrm{Ai}(1 / 4+1 / 4 i) \approx 0.28881085384820872173256483671407046811262524805800436861749378392647$
(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Eack z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)
4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

A Dictionary of D-Finite Functions

3. Numerical Evaluation

$\mathrm{Ai}(-5) \approx 0.350761009024114319788016327696742221484443250893087208211128178049911192682$
(Below, path may be either a point z or a broken-line path $\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ along which to perform analytic metadata continuation of the solution of the defining differential equation. Each z_{k} should be of the form $\mathrm{x}+\mathrm{y}^{*} \mathrm{i}$.)

$$
\text { path }=-5 \quad \text { precision }=800 \quad \text { Submit Query }
$$

4. Taylor expansion of $\mathrm{Ai}(x)$ at 0

- Expansion of AiryAi at 0 :

$$
\operatorname{Ai}(x)=\sum_{n=0}^{\infty} 1 / 3 \frac{\sqrt[3]{3} x^{3 n}}{9^{n} \Gamma(n+2 / 3) n!}-1 / 9 \frac{3^{2 / 3} x^{3 n+1}}{9^{n} \Gamma(n+4 / 3) n!} .
$$

NumGfun

http://algo.inria.fr/libraries/ (GNU LGPL)
http://algo.inria.fr/libraries/papers/gfun.html
B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM TOMS, 1994.
M. Mezzarobba. NumGfun: a Package for Numerical and Analytic Computation with D-finite functions. ISSAC 2010.
T
M. Mezzarobba. Autour de l'évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique, 2011.

The Double Confluent Heun Function

$$
\left[\begin{array}{l}
>\operatorname{diffeq}:=\{\operatorname{diff}(\operatorname{diff}(y(z), z), z)+(2 * z \wedge 3- \\
\left.\quad z^{\wedge} 2 * a-2 * z-a\right) /\left((z+1)^{\wedge} 2 *(z-1)^{\wedge} 2\right) * \operatorname{diff(y(z)} \\
\quad, z)+\left(z^{\wedge} 2 * b+z * C+2 * z * a+d\right) * y(z) /\left((z-1)^{\wedge} 3 *\right. \\
\left.\left.(z+1)^{\wedge} 3\right), y(0)=1,(D(y))(0)=0\right\} ;
\end{array}\right.
$$

The Double Confluent Heun Function

$$
\begin{aligned}
& {\left[>\operatorname{diffeq}:=\left\{\operatorname{diff}(\operatorname{diff}(y(z), z), z)+\left(2 * z^{\wedge} 3-\right.\right.\right.} \\
& \left.z^{\wedge} 2 * a-2 * z-a\right) /\left((z+1)^{\wedge} 2 *(z-1)^{\wedge} 2\right) * \operatorname{diff}(y(z) \\
& , z)+\left(z^{\wedge} 2 * b+z * c+2 * z * a+d\right) * y(z) /((z-1) \wedge 3 * \\
& \left.\left.(z+1)^{\wedge} 3\right), y(0)=1,(D(y))(0)=0\right\} \text {; } \\
& \text { diffeq }:=\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)+\frac{\left(2 z^{3}-z^{2} a-2 z-a\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)}{(z+1)^{2}(z-1)^{2}}\right. \\
& \left.+\frac{\left(z^{2} b+z c+2 z a+d\right) y(z)}{(z-1)^{3}(z+1)^{3}}, y(0)=1, \mathrm{D}(y)(0)=0\right\}
\end{aligned}
$$

The Double Confluent Heun Function

$$
\begin{aligned}
& {\left[>\operatorname{diffeq}:=\left\{\operatorname{diff}(\operatorname{diff}(y(z), z), z)+\left(2 * z^{\wedge} 3-\right.\right.\right.} \\
& \left.z^{\wedge} 2 * a-2 * z-a\right) /((z+1) \wedge 2 *(z-1) \wedge 2) * \operatorname{diff}(y(z) \\
& , z)+\left(z^{\wedge} 2 * b+z * c+2 * z * a+d\right) * y(z) /((z-1) \wedge 3 * \\
& \left.\left.\left.(z+1)^{\wedge} 3\right), y(0)=1 \text {, (} \mathrm{D}(\mathrm{y})\right)(0)=0\right\} \text {; } \\
& \text { differ }:=\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d}^{2}} y(z)+\frac{\left(2 z^{3}-z^{2} a-2 z-a\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)}{(z+1)^{2}(z-1)^{2}}\right. \\
& \left.+\frac{\left(z^{2} b+z c+2 z a+d\right) y(z)}{(z-1)^{3}(z+1)^{3}}, y(0)=1, \mathrm{D}(y)(0)=0\right\} \\
& {[>a, b, c, d:=1,1 / 3,1 / 2,3 \text {; }}
\end{aligned}
$$

The Double Confluent Heun Function

$$
\begin{aligned}
& {\left[>\operatorname{diffeq}:=\left\{\operatorname{diff}(\operatorname{diff}(y(z), z), z)+\left(2 * z^{\wedge} 3-\right.\right.\right.} \\
& \left.z^{\wedge} 2 * a-2 * z-a\right) /\left((z+1)^{\wedge} 2 *(z-1)^{\wedge} 2\right) * \operatorname{diff}(y(z) \\
& , z)+\left(z^{\wedge} 2 * b+z * c+2 * z * a+d\right) * y(z) /((z-1) \wedge 3 * \\
& (z+1) \wedge 3), y(0)=1,(D(y))(0)=0\} \text {; } \\
& \text { differ }:=\left\{\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)+\frac{\left(2 z^{3}-z^{2} a-2 z-a\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)}{(z+1)^{2}(z-1)^{2}}\right. \\
& \left.+\frac{\left(z^{2} b+z c+2 z a+d\right) y(z)}{(z-1)^{3}(z+1)^{3}}, y(0)=1, \mathrm{D}(y)(0)=0\right\} \\
& >\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}:=1,1 / 3,1 / 2,3 \text {; } \\
& a, b, c, d:=1, \frac{1}{3}, \frac{1}{2}, 3
\end{aligned}
$$

Accuracy Issues

$[>\operatorname{evalf}[51](\operatorname{HeunD}(a, b, c, d, 1 / 3))$;

Accuracy Issues

[$>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069

Accuracy Issues

$[>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
[> myHeund := diffeqtoproc(diffeq, $y(z))$:

Accuracy Issues

$[>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
[$>$ myHeund := diffeqtoproc diffed, $y(z)$):

Accuracy Issues

$[>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
[$>$ myHeund := diffeqtoproc diffeq, $y(z)$):
[$>$ myHeund (1/3, 50);

Accuracy Issues

$\left[\begin{array}{c}>\text { evalf[51] (Heund (a, b, c, d, 1/3)); } \\ 1.23715744756395253918007831405821000395447403052069\end{array}\right.$
$[>$ myHeund := diffeqtoproc (diffeq. y(z)):
$[>$ myHeund (1/3, 50);
1.2371574456395253918007831405821000395447403052075

Accuracy Issues

[$>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
$>$ myHeunD := diffeqtoproc(diffeq, $y(z))$:
$>$ myHeund (1/3, 50);
1.23715744756395253918007831405821000395447403052075

Accuracy Issues

$[>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
[$>$ myHeund := diffeqtoproc(diffeq, $y(z)$):
$>$ myHeund (1/3, 50);
1.23715744756395253918007831405821000395447403052075
myHeund (1/3, 2000);

Accuracy Issues

$[>$ evalf[51] (Heund (a, b, c, d, 1/3)); 1.23715744756395253918007831405821000395447403052069
> myHeunD := diffeqtoproc(diffeq, $y(z))$:
$>$ myHeund (1/3, 50);
1.23715744756395253918007831405821000395447403052075
> $>$ myHeund (1/3, 2000);
(1.3 s later...)

Accuracy Issues

```
    > evalf[51](HeunD(a, b, c, d, 1/3));
    1.23715744756395253918007831405821000395447403052069
    > myHeunD := diffeqtoproc(diffeq, y(z)):
    > myHeunD (1/3, 50);
    1.23715744756395253918007831405821000395447403052075
    > myHeunD(1/3, 2000);
    1.237157447563952539180078314058210003954474030520747249\
    77368122339910479272634279104260366917046868224326693\
```


$96170152380808246265230916158732964496323766777357428 \backslash$ $28214335810166903875586333320334746574757060060591160 \backslash$ 33361999970684428816250827723506800809

Accuracy Issues

```
    > evalf[51](HeunD(a, b, c, d, 1/3));
    1.23715744756395253918007831405821000395447403052069
    > myHeunD := diffeqtoproc(diffeq, y(z)):
    > myHeunD (1/3, 50);
    1.23715744756395253918007831405821000395447403052075
    > myHeunD(1/3, 2000);
    1.237157447563952539180078314058210003954474030520747249\
    77368122339910479272634279104260366917046868224326693\
```


$96170152380808246265230916158732964496323766777357428 \backslash$ $28214335810166903875586333320334746574757060060591160 \backslash$ 33361999970684428816250827723506800809
more general code $=$ less bugs!

Approaching a Singular Point

[$>$ evalf(HeunD (a, b, c, d, -0.9));

Approaching a Singular Point

$[>$
$[>$

Approaching a Singular Point

$$
\begin{aligned}
& {\left[>\text { evalf (Heund }\left(a, b, \underset{2.695836763}{c}-\frac{d,}{}\right)\right. \text {); }} \\
& {[>\text { myHeund }(-0.9,9) ;}
\end{aligned}
$$

Approaching a Singular Point

[$>$ evalf(Heund (a, b, c, d, -0.9)); 2.695836763
 myHeund (-0.9, 9);
 2.695836219

Approaching a Singular Point

$$
\begin{aligned}
& {[>\text { evalf }(\text { Heund }(a, b, \underset{2.695836763}{c}-9)) ;} \\
& {[>\text { myHeund }(-0.9,9) ;} \\
& 2.695836219)
\end{aligned}
$$

Approaching a Singular Point

$$
\begin{aligned}
& >\text { evalf (Heund }(a, b, c, d,-0.9)) ; \\
& {[>\text { myHeund }(-0.9,9) 92636763) ;} \\
& {[>\text { evalf (Heund }(a, b, c, d,-0.99)) ;}
\end{aligned}
$$

Approaching a Singular Point

Approaching a Singular Point

```
[> evalf(HeunD (a, b, c, d, -0.9));
                                2.695836763
    > myHeunD (-0.9, 9);
                                    2.695836219
    > evalf(HeunD (a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
    is not converging
                undefined
[> myHeunD (-0.99);
```


Approaching a Singular Point

Approaching a Singular Point

```
[> evalf(HeunD (a, b, c, d, -0.9));
                                    2.695836763
    > myHeunD (-0.9, 9);
                                    2.695836219
    > evalf(HeunD(a, b, c, d, -0.99));
Warning, breaking after 2000 terms, the series
    is not converging
                                    undefined
    > myHeunD(-0.99);
                            4.6775585280
> myHeunD(-0.99, 500);
```


Approaching a Singular Point

```
[> evalf(HeunD (a, b, c, d, -0.9));
                                    2.695836763
    > myHeunD (-0.9, 9);
                                    2.695836219
    > evalf(HeunD(a, b, c, d, -0.99));
    Warning, breaking after 2000 terms, the series
    is not converging
                        undefined
    > myHeunD (-0.99);
                            4.6775585280
> myHeunD (-0.99, 500);
    (6.1 s later...)
```


Approaching a Singular Point

Approaching a Singular Point

A Random Example

[$>$ diffeq $:=$ random_diffeq $(3,2)$;

A Random Example

$$
\left[\begin{array}{l}
>\text { diffeq }:=\text { random_diffeq }(3,2) ; \\
\left.\quad-\frac{1}{12} z^{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)+\left(-\frac{43}{60}+\frac{49}{60} z\right. \\
\left.\quad+\frac{11}{30} z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right)+\left(-\frac{7}{12}+\frac{17}{30} z\right. \\
\left.\quad-\frac{3}{5} z^{2}\right)\left(\frac{\mathrm{d}^{3}}{\mathrm{~d} z^{3}} y(z)\right), y(0)=0, \mathrm{D}(y)(0)=\frac{7}{30}, \mathrm{D}^{(2)}(y)(0)= \\
\left.\quad-\frac{43}{60}\right\}
\end{array}\right.
$$

A Random Example

$$
\begin{aligned}
& >\text { diffeq }:=\text { random_diffeq }(3,2) ; \\
& \\
& \quad \begin{array}{l}
\text { diffeq }:=\left\{\left(\frac{13}{30}+\frac{8}{15} z+\frac{7}{30} z^{2}\right) y(z)+\left(-\frac{9}{20}+\frac{29}{30} z\right.\right. \\
\left.\quad+\frac{11}{30} z^{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)+\left(-\frac{43}{60}+\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right)+\left(-\frac{7}{12} z+\frac{17}{30} z\right. \\
\left.\quad-\frac{3}{5} z^{2}\right)\left(\frac{\mathrm{d}^{3}}{\mathrm{~d} z^{3}} y(z)\right), y(0)=0, \mathrm{D}(y)(0)=\frac{7}{30}, \mathrm{D}^{(2)}(y)(0)= \\
\left.\quad-\frac{43}{60}\right\} \\
{[>\text { evaldiffeq(diffeq, } \mathrm{y}(\mathrm{z}), \quad(1+\mathrm{I}) / 5,40) ;}
\end{array}
\end{aligned}
$$

A Random Example

$$
\begin{aligned}
& >\text { diffeq }:=\text { random_diffeq }(3,2) \text {; } \\
& \text { diffeq }:=\left\{\left(\frac{13}{30}+\frac{8}{15} z+\frac{7}{30} z^{2}\right) y(z)+\left(-\frac{9}{20}+\frac{29}{30} z\right.\right. \\
& \left.-\frac{1}{12} z^{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} z} y(z)\right)+\left(-\frac{43}{60}+\frac{49}{60} z\right. \\
& \left.+\frac{11}{30} z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right)+\left(-\frac{7}{12}+\frac{17}{30} z\right. \\
& \left.-\frac{3}{5} z^{2}\right)\left(\frac{\mathrm{d}^{3}}{\mathrm{~d} z^{3}} y(z)\right), y(0)=0, \mathrm{D}(y)(0)=\frac{7}{30}, \mathrm{D}^{(2)}(y)(0)= \\
& \left.-\frac{43}{60}\right\} \\
& >\text { evaldiffeq(diffeq, } y(z),(1+I) / 5,40) \text {; } \\
& 0.0448555748776784313189330814759311548663 \\
& +0.0199048983021280530504789772581099788282 \mathrm{I}
\end{aligned}
$$

High Precision

[> evaldiffeq(diffeq, $y(z), 1 / 5,1000000)$;

High Precision

[> evaldiffeq(diffeq, $y(z), 1 / 5,1000000)$; (29 min later...)

High Precision

$>$ evaldiffeq(diffeq, $y(z), 1 / 5,1000000)$; $0.033253281257567506772459381920024394391065961347292863 \backslash$ $13611785593075654371610784719859620906805710762776061 \backslash$ $65993844793918297941976188620650536691082179149605904 \backslash$ $31080482988558239935175505111768194891591740446771304 \backslash$ $74730251896359727561534310095807343639273056518962333 \backslash$ $97217595138842309884016425632431029577130431472108646 \backslash$ 954851.547676240242973438.515844141260562.3777191148.9680
$97933258259972366466573219602501650218139747781157348 \backslash$ 78322628655747195818205282428148240800376913561455564 $29598794491231828039584256430669932365880956101719727 \backslash$ $33806130243940574539991121877851105270752378138422728 \backslash$ $76176859592508040781771637205060431902227437673286901 \backslash$ $71292574098466950906705927590030494460150099288210121 \backslash$ 868701569

Some History

－Schroeppel（1972）－Special evaluation points
围 Brent（1976）－Special case of exp（＋variants）
击 Chudnovsky \＆Chudnovsky（1986－1988）－General method （incl．a sketch of the case of regular singular points）

睩 van der Hoeven $(1999,2001)$－General algorithm with error bounds

目 M．－Implementation，efficiency improvements，fully automatic error control based on tighter bounds

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
2. Taylor series method for ODEs

$$
\arctan \left(\frac{5}{4}(1+i)\right)=?
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
2. Taylor series method for ODEs

$$
\begin{aligned}
& \arctan \left(\frac{5}{4}(1+i)\right)=? \\
& {\left[\begin{array}{l}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]=\left[\begin{array}{lll}
1 & 0,570 \ldots+0,220 \ldots i \\
0 & 0,728 \ldots-0,20 \ldots i
\end{array}\right]\left[\begin{array}{c}
y(0) \\
y^{\prime}(0)
\end{array}\right]}
\end{aligned}
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
2. Taylor series method for ODEs

$$
\begin{aligned}
& \arctan \left(\frac{5}{4}(1+i)\right)=? \\
& {\left[\begin{array}{l}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0,570 \ldots+0,220 \ldots i \\
0 & 0,728 \ldots-0,20 \ldots i
\end{array}\right]\left[\begin{array}{l}
y(0) \\
y^{\prime}(0)
\end{array}\right]}
\end{aligned}
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
2. Taylor series method for ODEs

$$
\begin{aligned}
& \arctan \left(\frac{5}{4}(1+i)\right)=? \\
& {\left[\begin{array}{c}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0,570 \ldots+0,220 \ldots i \\
0 & 0,728 \ldots-0,206 \ldots i
\end{array}\right]\left[\begin{array}{c}
y(0) \\
y^{\prime}(0)
\end{array}\right]} \\
& {\left[\begin{array}{c}
y\left(z_{2}\right) \\
y^{\prime}\left(z_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0,365 \ldots+0,329 \ldots i \\
0 & 0,751 \ldots-0,079 \ldots i
\end{array}\right]\left[\begin{array}{c}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]}
\end{aligned}
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
2. Taylor series method for ODEs

$$
\begin{aligned}
& \arctan \left(\frac{5}{4}(1+i)\right)=? \\
& {\left[\begin{array}{c}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0,570 \ldots+0,220 \ldots i \\
0 & 0,728 \ldots-0,206 \ldots i
\end{array}\right]\left[\begin{array}{c}
y(0) \\
y^{\prime}(0)
\end{array}\right]} \\
& {\left[\begin{array}{c}
y\left(z_{2}\right) \\
y^{\prime}\left(z_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0,365 \ldots+0,329 \ldots i \\
0 & 0,751 \ldots-0,079 \ldots i
\end{array}\right]\left[\begin{array}{c}
y\left(z_{1}\right) \\
y^{\prime}\left(z_{1}\right)
\end{array}\right]}
\end{aligned}
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting
0 . One can multiply two integers of $\leqslant n$ bits in $M(n)=O\left(n \log n 2^{O\left(\log ^{*} n\right)}\right)$ bit ops [Fürer 2007].

3 bit burst

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst

1. Within the disk of convergence of a Taylor expansion: fast series summation algorithm based on the recurrence

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst
3. High-precision inputs: use analytic continuation even if the series converges!

$$
\begin{aligned}
z_{0}=10_{2} & \rightarrow z_{1}=10,1_{2} \\
& \rightarrow z_{2}=10,101_{2} \quad \sin (e)=\sin (2,718 \ldots)=? \\
& \rightarrow z_{3}=10,1011011_{2} \\
& \rightarrow z_{4}=10,101101110010100_{2} \\
& \rightarrow \ldots \\
& \rightarrow z=10.101101110010100110000 \ldots \ldots \cdot 2 \simeq e
\end{aligned}
$$

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst

Theorem (Chudnovsky ${ }^{2}$)

The evaluation point z being fixed, one may compute $y(z)$ with error bounded by 2^{-n} in

$$
O\left(M\left(n \cdot(\log n)^{3}\right)\right)
$$

bit operations.

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst

Theorem (Chudnovsky ${ }^{2}$, van der Hoeven)

The evaluation point z being fixed, one may compute $y(z)$ with error bounded by 2^{-n} in

$$
O\left(M\left(n \cdot(\log n)^{3}(\log n)^{2} \cdot \log \log n\right)\right)
$$

bit operations.

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst

Theorem (Chudnovsky ${ }^{2}$, van der Hoeven, M.)

The evaluation point z being fixed, one may compute $y(z)$ with error bounded by 2^{-n} in

$$
O\left(M\left(n \cdot(\log \pi)^{3}(\log n)^{2} \cdot \log \log n\right)\right)
$$

bit operations.

Evaluation Algorithm [Chudnovsky \& Chudnovsky 1988]

Main Ideas

0 fast integer multiplication
1 binary splitting

2 analytic continuation
3 bit burst

Theorem (Chudnovsky ${ }^{2}$, van der Hoeven, M.)

The evaluation point z being fixed, one may compute $y(z)$ with error bounded by 2^{-n} in

$$
O\left(M\left(n \cdot(\log n)^{3}(\log n)^{2} \cdot \log \log n\right)\right)
$$

bit operations using $O(n)$ bits of memory.
\square M. Mezzarobba. A note on the space complexity of fast D-finite function evaluation. CASC 2012.

Improvements Towards A Practical Algorithm

Error control

- Precision of intermediate steps
- Tight a priori bounds on truncation orders
"Constant factor"
- Structure of recurrence matrices
- Fast simultaneous computations of several derivatives

Regular singular points

- "Operator version" of the Heffter-Poole method
- Specific binary splitting algorithm (faster in "hard" cases)

Regular Singular Points

$$
\left[\begin{array}{c}
>\text { diffeq }:=\text { diffeqtohomdiffeq }(\\
\text { holexprtodiffeq }(\\
\arctan (z), Y(z)), Y(z)) ;
\end{array}\right.
$$

Regular Singular Points

$$
\begin{aligned}
& {\left[\begin{array}{r}
> \\
\quad \text { diffeq }:=\operatorname{diffeqtohomdiffeq~}(\\
\quad \text { holexprtodiffeq }(\\
\quad \arctan (z), \mathrm{y}(z)), \mathrm{y}(z)) ; \\
\text { diffeq }:=\left\{-2 z\left(\frac{\mathrm{~d}}{\mathrm{~d} z} y(z)\right)+\left(-1-z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right), y(0)=0,\right. \\
\mathrm{D}(y)(0)=1\}
\end{array}\right.} \\
& {[>}
\end{aligned}
$$

Regular Singular Points

$$
\begin{aligned}
& \text { [}>\text { diffeq }:=\text { diffeqtohomdiffeq(} \\
& \text { holexprtodiffeq(} \\
& \arctan (z), y(z)), y(z)) ; \\
& \text { diffeq }:=\left\{-2 z\left(\frac{\mathrm{~d}}{\mathrm{~d} z} y(z)\right)+\left(-1-z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right), y(0)=0\right. \text {, } \\
& \mathrm{D}(y)(0)=1\} \\
& >\text { subs(z=z-I, evaldiffeq(diffeq, } y(z) \text {, } \\
& \text { [0, I], ord=3)); }
\end{aligned}
$$

Regular Singular Points

$$
\begin{aligned}
& \text { [> diffeq := diffeqtohomdiffeq(} \\
& \text { holexprtodiffeq(} \\
& \arctan (z), \quad y(z)), \quad y(z)) ; \\
& \text { diffeq: }=\left\{-2 z\left(\frac{\mathrm{~d}}{\mathrm{~d} z} y(z)\right)+\left(-1-z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right), y(0)=0\right. \text {, } \\
& \mathrm{D}(y)(0)=1\} \\
& >\text { subs (z=z-I, evaldiffeq(diffeq, } y(z) \text {, } \\
& \text { [0, I], ord=3)); } \\
& (-0.5000000000 \mathrm{I})\left(\ln (z-\mathrm{I})+\frac{1}{2} \mathrm{I}(z-\mathrm{I})-\frac{1}{8}(z-\mathrm{I})^{2}\right) \\
& +(0.7853981634+0.3465735903 \mathrm{I})
\end{aligned}
$$

Regular Singular Points

$$
\begin{aligned}
& \text { [}>\text { diffeq }:=\text { diffeqtohomdiffeq(} \\
& \text { holexprtodiffeq(} \\
& \arctan (z), y(z)), y(z)) ; \\
& \text { diffeq: }:=\left\{-2 z\left(\frac{\mathrm{~d}}{\mathrm{~d} z} y(z)\right)+\left(-1-z^{2}\right)\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} y(z)\right), y(0)=0\right. \text {, } \\
& \mathrm{D}(y)(0)=1\} \\
& >\text { subs(} z=z-I \text {, evaldiffeq(diffeq, } y(z) \text {, } \\
& \text { [0, I], ord=3)); } \\
& (-0.5000000000 \mathrm{I})\left(\mathrm{ln} \begin{array}{l}
\text { Applications: } \\
\quad \text { Bessel Functions }
\end{array}\right. \\
& +(0.7853981634-\text { Analytic Combinatorics } \\
& \text { - Resummation, diff. Galois }
\end{aligned}
$$

Motivation (I): Numerical Evaluation

$$
\sum_{n=0}^{\infty} y_{n} z^{n}=\sum_{n=0}^{N-1} y_{n} z^{n}+\underbrace{\sum_{n=N}^{\infty} y_{n} z^{n}}_{?}
$$

Compute suitable truncation orders (and other bounds)? A priori bounds tend to be easier to use in fast algorithms.

围 Chudnovsky \& Chudnovsky - Orders of magnitude only
囯 van der Hoeven $(1999,2001,2003)$ - Cauchy-like bounds
We look for asymptotically optimal bounds

Motivation (II): Symbolic Bounds

Baxter Permutations

```
- \((n+2)(n+3) B_{n}=\left(7 n^{2}+7 n-2\right) B_{n-1}+8(n-1)(n-2) B_{n-2}\),
    \(B_{0}=B_{1}=1\)
- \(B_{n} \leqslant 2,9 \cdot 8^{n}\)
```

Chudnovsky Formula for π

- $\frac{1}{\pi}=\frac{12}{640320^{3 / 2}} \sum_{k=0}^{\infty} t_{k}$
where $\quad t_{k}=\frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k}}$
- $\left|\frac{640320^{3 / 2}}{12 \pi}-\sum_{k=0}^{n-1} t_{k}\right| \leqslant 10^{6}\left(2,3 n^{3}+13,6 n^{2}+25 n+13,6\right) \alpha^{n}$

$$
\text { where } \alpha=\frac{1}{151931373056000} \simeq 0,66 \cdot 10^{-14}
$$

"Tight" Bounds

Input Recurrence + Initial terms

$$
\left\{p_{s}(n) y_{n+s}+\cdots+p_{0}(n) y_{n}=0, \quad y_{0}=\ldots, y_{1}=\ldots\right\}
$$

Output $\left|y_{n}\right| \leqslant n!!^{p / q} \alpha^{n} \varphi(n)$
φ subexponential, i.e. $\varphi(n)=e^{o(n)}$

- rigorous bound in all cases
- for generic initial values:
optimal p / q and $\alpha\left(\right.$ or even $\varphi(n)=n^{O(1)}$)

Theorem

One may compute $p / q, \alpha, \varphi$ fulfilling these conditions.
\square M. Mezzarobba and B. Salvy. Effective bounds for P-recursive sequences. Journal of Symbolic Computation, 2010.

Symbolic and Numeric Bounds

Symbolic Bounds

- Readable (as far as possible!)

Bound Parameters $\kappa, \alpha, \ldots \in \mathbb{Q}$ or $\overline{\mathbb{Q}}$ s.t.

$$
\left|y_{n}\right| \leqslant n!^{\kappa} \cdot \alpha^{n} \cdot \varphi(n)
$$

Main Tools:
Cauchy majorants

+ elementary asymptotic analysis
- Asymptotically tight

Numeric Bounds

- Safe approx. of parameters
- Faster (no alg. numbers)

Outline of the Algorithm

Rigorous Polynomial Approximation

 (xativernctorts

Repeated Evaluations

$$
\begin{aligned}
& {[>\text { deq }:=\text { holexprtodiffeq (AiryAi }(z), y(z)):} \\
& {[>}
\end{aligned}
$$

Repeated Evaluations

$$
\begin{aligned}
& {[>\text { deq }:=\text { holexprtodiffeq(AiryAi }(z), y(z)):} \\
& {[>\text { myAi }:=\text { diffeqtoproc }(\operatorname{deq}, y(z),} \\
& \operatorname{prec}=12, \operatorname{disks}=[[0,6]]):
\end{aligned}
$$

Repeated Evaluations

[$>$ deq := holexprtodiffeq(AiryAi(z), $y(z))$:
$[>$ myAi := diffeqtoproc(deq, $y(z)$, prec=12, disks=[[0,6]]):
[>

Repeated Evaluations

$$
\begin{aligned}
& {[>\text { deq }:=\text { holexprtodiffeq (AiryAi }(z), y(z)):} \\
& {[>\text { myAi }:=\text { diffeqtoproc }(\operatorname{deq}, y(z),} \\
& \text { prec }=12, \text { disks }=[(0,6]]): \\
& {[>\text { plot (myAi, }-5 . .5) \text {; }}
\end{aligned}
$$

Repeated Evaluations

$[>$ deq $:=$ holexprtodiffeq(AiryAi $(z), y(z))$:
$[>$ myAi $:=$ diffeqtoproc (deq, $y(z)$, prec=12, disks=[[0,6]]):
[$>$ plot (myAi, -5..5);

Taylor Series vs. Chebyshev Series

Quasi-Minimax Approximation

For any regular enough function f,
$\left\|f-p_{d}\right\|_{\infty} \leqslant\left(\frac{4}{\pi^{2}} \log (d+1)+4\right)\left\|f-p_{d}^{*}\right\|_{\infty}$

Previous Work

－Numerical computation of Chebyshev expansions
圊 Lánczos（1938）－τ method
圊 Clenshaw（1957）－backward iterative method à la Miller
－Recurrence relation
國 Fox \＆Parker（1968）－small orders，link with Clenshaw
围 Paszkowski（1975）－general case
围 Geddes（1977），Rebillard（1998），Benoit \＆Salvy（2009）－ computer algebra
－Chebyshev expansions in Interval Analysis
國 Kaucher \＆Miranker（1984）－ultra－arithmetic
囦 Brisebarre \＆Joldeş（2010）－ChebModels

D-finite Chebyshev Series

Obstacles

- Divergent solution sequences
- Initial values $\notin \mathbb{Q}$
- Error bounds

Our approach

1. Compute the coefficients by a variant of Clenshaw's method
2. Validate the output (enclosure + fixed-pt thm)
A. Benoit, M. Joldeş and M. Mezzarobba. Rigourous uniform approximation of D-finite functions using Chebyshev expansions. In preparation.

Computing the Coefficients

Example

$$
y(x)=e^{x}=\sum_{n=-\infty}^{\infty} c_{n} T_{n}(x) \quad c_{n+1}+2 n c_{n}-c_{n-1}=0
$$

$$
\begin{array}{rlr}
u_{0} \approx-4,40 \cdot 10^{81} & c_{0} \approx 1,27 \\
u_{1} \approx 1,96 \cdot 10^{81} & c_{n}:=u_{n} / S & c_{1} \approx-5,65 \cdot 10^{-1} \\
u_{2} \approx-4,72 \cdot 10^{80} & c_{2} \approx 1,36 \cdot 10^{-1} \\
\vdots & & \vdots \\
u_{50} \approx 1,02 \cdot 10^{2} & c_{50} \approx-2,93 \cdot 10^{-80} \\
u_{51}=1 & c_{51} \approx-2,88 \cdot 10^{-82} \\
u_{52}=0 &
\end{array}
$$

$$
S=\sum_{n=-50}^{50} u_{n} T_{n}(0) \approx-3,48 \cdot 10^{81}
$$

Computing the Coefficients

Linear complexity wrt starting index N.

Theorem

The (method) error on the computed coefficients, i.e.,

$$
\max _{n=0}^{N}\left|c_{n}^{[N]}-c_{n}\right|
$$

decreases exponentially as $N \rightarrow \infty$.

Computed Polynomials

Validation Step

Input A differential operator, initial values, a polynomial p of degree d, a precision ε
Output R such that

$$
\|y-p\|_{\infty} \leqslant R=O\left(\sqrt{d}\left(\left\|y^{(r-1)}-p^{(r-1)}\right\|_{\infty}+\varepsilon\right)\right)
$$

$$
\tau(y):=\left(x \mapsto y_{0}+\int_{0}^{x} \frac{a(t)}{b(t)} y(t) \mathrm{d} t\right) \quad\|\tau(f)-\tau(g)\|_{\infty} \leqslant \gamma\|f-g\|_{\infty}
$$

Validation Step

Input A differential operator, initial values, a polynomial p of degree d, a precision ε
Output R such that

$$
\|y-p\|_{\infty} \leqslant R=O\left(\sqrt{d}\left(\left\|y^{(r-1)}-p^{(r-1)}\right\|_{\infty}+\varepsilon\right)\right)
$$

$\tau(y):=\left(x \mapsto y_{0}+\int_{0}^{x} \frac{a(t)}{b(t)} y(t) \mathrm{d} t\right)$

$$
\begin{array}{r}
\|\tau(f)-\tau(g)\|_{\infty} \leqslant \gamma\|f-g\|_{\infty} \\
\gamma<1
\end{array}
$$

$$
\|p-\hat{p}\|_{\infty}+\hat{R} \leqslant R
$$

Validation Step

Input A differential operator, initial values, a polynomial p of degree d, a precision ε
Output R such that

$$
\|y-p\|_{\infty} \leqslant R=O\left(\sqrt{d}\left(\left\|y^{(r-1)}-p^{(r-1)}\right\|_{\infty}+\varepsilon\right)\right)
$$

$\tau(y):=\left(x \mapsto y_{0}+\int_{0}^{x} \frac{a(t)}{b(t)} y(t) \mathrm{d} t\right)$

$$
\begin{array}{r}
\|\tau(f)-\tau(g)\|_{\infty} \leqslant \gamma\|f-g\|_{\infty} \\
\gamma<1
\end{array}
$$

Algorithm

- Choose i large enough
- Compute $p_{i} \approx \tau^{i}(p)$
- Return $R \geqslant \frac{\left\|p-p_{i}\right\|_{\infty}+\text { (errors) }}{1-\gamma_{i}}$

Validation Step

Input A differential operator, initial values, a polynomial p of degree d, a precision ε
Output R such that

$$
\|y-p\|_{\infty} \leqslant R=O\left(\sqrt{d}\left(\left\|y^{(r-1)}-p^{(r-1)}\right\|_{\infty}+\varepsilon\right)\right)
$$

$\tau(y):=\left(x \mapsto y_{0}+\int_{0}^{x} \frac{a(t)}{b(t)} y(t) \mathrm{d} t\right)$

$$
\begin{array}{r}
\|\tau(f)-\tau(g)\|_{\infty} \leqslant \gamma\|f-g\|_{\infty} \\
\gamma<1
\end{array}
$$

Algorithm

- Choose i large enough
- Compute $p_{i} \approx \tau^{i}(p)$
$\mathrm{O}(\mathrm{d}) \mathrm{ops}$
- Return $R \geqslant \frac{\left\|p-p_{i}\right\|_{\infty}+\text { (errors) }}{1-\gamma_{i}}$
$\mathrm{O}(\mathrm{d}) \mathrm{ops}$

Quality of the Resulting Bounds

$\frac{e^{x / 2}}{\sqrt{x+16}}$	4,8	0,58	0,57			
$\frac{3 \cos x-\sin x}{2}$	3,1	3,7	4,1			
$e^{1 /\left(1+2 x^{2}\right)}$	0,57	0,56	0,56			
	degree $=30$				degree $=60$	degree $=90$

Quality: $\log _{10} \frac{B}{\|y-p\|_{\infty}}$

Summary

- D-finite functions, DDMF
compute everything we can starting from LODE + ini. cond.
- Multiple precision analytic continuation general - rigorous - fully automatic - fast
- Tight bounds symbolic + numeric - Cauchy majorant method
- Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html

Some current \& future work

- NumGfun 1.0 and beyond
- Rigorous approximations on more general bases
- Majorants vs enclosures + fixed point thms
- D-Finite functions in Computer Arithmetic, code generation

Summary

- D-finite functions, DDMF
compute everything we can starting from LODE + ini. cond.
- Multiple precision analytic continuation general - rigorous - fully automatic - fast
- Tight bounds symbolic + numeric - Cauchy majorant method
- Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html
Some current \& future work

- NumGfun 1.0 and beyond
- Rigorous ay Vielen Dank für die Aufmerksamkeit!
- Majorants
- D-Finite functions in Computer Arithmetic, code generation

Summary

- D-finite functions, DDMF
compute everything we can starting from LODE + ini. cond.
- Multiple precision analytic continuation general - rigorous - fully automatic - fast
- Tight bounds symbolic + numeric - Cauchy majorant method
- Rigorous polynomial approximations backward recurrence à la Miller/Clenshaw + fixed point theorem

Code available from

http://algo.inria.fr/libraries/papers/gfun.html

Some current \& future work

- NumGfun 1.0 and beyond
- Rigorous approximations on more general bases
- Majorants vs enclosures + fixed point thms
- D-Finite functions in Computer Arithmetic, code generation

Credits

- Tables of the error function and its derivative. US National Bureau of Standards, 1954 (public domain)
- http://commons.wikimedia.org/wiki/File: Calipers_in_physics_lab.jpg (by User:Falcorian, Creative Commons Attribution-Share Alike)
- http://commons.wikimedia.org/wiki/File: Paseky, _Havírna, _závora_u_domu_224.jpg (by User:cs:ŠJů, Creative Commons Attribution-Share Alike)
- http://en.wikipedia.org/wiki/File:Stamp_of_USSR_1047.jpg (by User:Butko, taken from http: //kolekzioner.net/modules/smartsection/item.php?itemid=211, public domain)
- Some icons used in this document are from the Oxygen icon set (http://oxygen-icons.org), licensed under the GNU Lesser General Public Licence v. 3.

