DETERMINANTAL POINT PROCESSES AND APPLICATIONS
PIERRE-LOIC MELIOT

AssTRACT. The purpose of this note is to present the theory of determinantal point processes, and
two of its most classical applications: the study of eigenvalues of large random matrices, and the study
of large random integer partitions.
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1. KERNELS AND DETERMINANTAL POINT PROCESSES

In this first section, we develop the general theory of determinantal point processes, following
[Sos00a; Joh05; Bor09] and [Hou+09, Chapter 4]. We voluntarily omit some technical details
related to the theory of trace class operators.

1.1. Random point processes and correlation functions. A random point process on a measurable
space X is a random sum or series ) ., dx, of Dirac masses. To define this correctly, it is convenient
to make some assumptions on the space X; thus, in the sequel, we shall assume that X is a locally
compact, complete and separable metric space, see for instance [Kal02, Chapter 12] for a general
study of random measures in a slightly broader setting. In all the applications hereafter, X will be
a subset of some real vector space R?. We endow X with its Borel o-field Z(X). A (locally finite)
atomic measure on X is a positive measure p : B(X) — N U {+oo} which takes integer values,
and such that for any compact subset K C X, u(K) < +oo. Then, there exists a countable family
(x;)ier of points in X such that
= Z 5$7’,7

icl
and such that for any compact subset K, {i|x; € K} is finite. We denote .Z**™(X) the set of
atomic measures on X, and we endow it with the smallest o-field which makes measurable the
maps i — pu(B) with B € Z(X). Then, a random point process on X is a random element in
A (X), that is to say a measurable map M from a probability space (2,.%,P) to .#*°™(X).
By definition, all the quantities M (B) with B € %(X) are then random variables with values in
NU {+o0}.

Example 1.1. Suppose that p : Z(X) — R U {+00} is a locally finite positive Borel measure on X.
A Poisson point process with intensity p on X is a random point process P, such that, for any family
(Ba)aca of disjoint Borel subsets of X, (P,(B,))aca is a family of independent Poisson variables
with parameters (1(B,). Any locally finite positive Borel measure on X gives rise to a Poisson point
process, which is unique in law in .Z?"*™(X).

In order to study a random point process M on a space X, it is natural to consider the joint
moments of the associated positive random variables M (B): they describe how many points fall
in a given Borel subset B, and the correlations of these cardinalities for distinct Borel subsets
Bi, By, ..., By,. The factorial moment measures of M will enable one to encode all these joint
moments in a convenient way. For n > 1, we first define the n-th factorial power M*" of the point
process M. Although this is not trivial, given a random point process M : (Q, #,P) — #**°™(X)
on a locally compact polish space, we can actually define on the same probability space some ran-
dom variables X; : (2,.%,P) — X U {7} fori > 1, such that:

e X; =tifand only if M(X) < +oco0andi > M(X);
o M= sz\i(f) 6Xi'

We then define M+" as the random point process on X" given by

n _
M - Z 6(X11 7Xi2 ..... in)

i1F£d0 7 Fin

1<ia<M(X)
This random point process count the sequences (X;,, X, . .., X;, ) of length n consisting in distinct
points of the random point process M. Here the word "distinct” is a bit misleading, because if
X; = X, fori # j (so, if M is not a simple random point process), then the pair (X;, X;) is allowed
to appear in a sequence (X;,, X;,, ..., X;,) counted by the factorial power M*+". The terminology
of factorial power is justified by the following computation: if B is a (relatively) compact subset of
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X, then M (B) is almost surely finite, and
M*™(B™) = number of n-sequences of distinct points in B
= M(B)(M(B) = 1)+ (M(B) = n+1) = (M(B))*".
The n-th factorial moment measure of M is the positive Borel measure 5 on X" defined by:

i1(By x By x -+ x By) = E[M*(By x By x -+ x B,)] .

Example 1.2. Forn = 1, i}; = pa is the intensity of the point process M, defined by p(B) =
E[M(B)].

Example 1.3. Consider a Poisson point process P on X with intensity p, and some disjoint locally
compact subsets By, ..., B, in X. A way to construct the restriction of the Poisson point process
Pto B =|]['_, B, is as follows: we first take a Poisson random variable N with parameter p(B),

and we then set
N
P|B = Z 5X¢7
i—1

where the X;’s are independent random variables in B with law %, and are independent of N.
We then have:
n o - . - M(B(l> n] -
pp(Bix Byx - x By)=E| > |([]lxues || = HM(B) E[N"] =[] w(B.).
a=1 a=1 a=1

i1¢i27£"'7éin
1<ia <N

By additivity, we conclude that ;2" = p®". This identity encodes the independence of the restric-
tions of the Poisson point process P to disjoint subsets.

Example 1.4. The factorial powers and the factorial moment measures are related to the computa-
tion of products

T+ £(x)),

i€l
where f : X — C is some bounded measurable function with compact support, and the random
point process M is given by M = )., dx,, I being a random interval [1, M(X)] C N. Indeed,
since f is supported by a compact, we can assume without loss of generality that M (X) is finite
almost surely, and then,

[To+rcn=1+3 2 TIre ) =143 S arngen,
el n=1 \1<i;<ig<-<in<M(X) a=1 n=1

In many cases, given a random point process M on a locally compact polish space X, there exists
a reference Radon measure (locally finite Borel positive measure) A on X such that for any n > 1,
the factorial moment measure 17 is absolutely continuous with respect to A*™. In this situation,
the density
()
d(A®n)
is called the n-th correlation function of the random point process. In particular, if X = Z? or
X = RY, we shall take for reference measure A the counting measure or the standard Lebesgue
measure. The determinantal point processes will be the random point processes whose correlation
functions write as

pn(x17~--7xn) = (l’l,..-,l’n)

pn(l’l, N ,I’n) = det(K(xl, :L‘j))lgi,jgn
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for some adequate kernel K which does not depend on n.

Theorem 1.5 (Correlation functions). Let M be a random point process on a locally compact polish
space X. We suppose that there exists a reference Radon measure X on X such that the correlation functions
pn, with respect to M and X are all well-defined. Then:

(1) The correlation functions are symmetric: for any o € S(n),
Pn@l’ <o 7xn) = pn(xa(l)a oo axa(n))~

(2) The correlation functions are positive, in the following sense: for any set (¢o, ¢1,...,¢n) of
compactly supported measurable functions ¢y, : X¥ — R such that

N
¢0+Z Z S(Tiy, - -, x3,) >0,

k=1 i1 #ig# - Fiy
1<io <N

we also have
N
¢0+Z/k br(1, . wp) pr(ze, .., ) A¥F(day - - - day,) > 0.
k=17 X"

Conwversely, given a family of locally integrable positive functions (p,)nen which satisfy the two con-
ditions above, one can define a random point process M on X with these correlation functions. This
random point process M is unigue in law if and only if the random variables M (B) with B € #(X)
are determined by their moments.

This result is due to Lenard, see [Len73; Len75].

1.2. Locally trace class Hermitian kernels. In this paragraph, we fix a locally compact polish
space X, and a reference Radon measure A on X. We denote -£*(X, \) the Hilbert space of square-
integrable functions on X; by [Coh13, Proposition 3.4.5], Z?(X, \) is separable. We recall that a
trace class operator on a separable Hilbert space H is a bounded linear operator A : H — H such
that, given an orthonormal basis (e;);e; of H, we have

Z (e; | (A*A)1/2(61)>H < +oo

icl
the index set I being finite if H is finite-dimensional, and infinite countable if H is infinite-dimen-
sional. The rrace of the operator A is then defined by the aboslutely convergent series

tr(A) = (ei| Aled))y s
i€l
this does not depend on the choice of the orthonormal basis. In the same setting, a bounded linear
operator A : H — H is called Hilbert-Schmidt it A*A is a trace class operator; equivalently,

(1Alns)* = tr(A"A) = Y~ (A(e:) | Alei))y < +o0
i€l
for any orthonormal basis (e;);cr of H. We have the following inclusions of ideals of the Banach
algebra of bounded linear operators on H:
{finite rank} C {trace class} C {Hilbert-Schmidt} C {compact}.

If H = £%(X,)\), then its Hilbert-Schmidt operators are given by square-integrable kernels.
Thus, if 7 : Z%(X,\) — Z£?(X,\) is Hilbert-Schmidt, then there exists a unique kernel K €
L2(X% X\*?) such that

(HF)(x) = / K () £(4) (dy).
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The map K — ¢ isan isometry between .2?(X?, A*?) and the space of Hilbert-Schmidt operators
HS(£?(X,)\)) [GGKOO, Chapter IV, Theorem 7.7]. Moreover, if X = R% )\ is the Lebesgue

measure, % is a trace class operator and if K is continuous at (z, z) for A-almost any z, then

tr() = /xK(x,x))\(dr),

see [Bri91, Corollary 3.2]. In a more general setting, for instance if the kernel K is not continuous,
then as an element of .Z?%(X?, A\®?), it might not be well defined on the diagonal. However, there
is a general averaging process which yields A\-almost everywhere a value of K (x, x) such that the
relation above holds; see again [Bri91].

Given a trace class operator A on a separable Hilbert space H, we can also define the Fredholm de-

terminant det(I+ A). Denote \* H the k-th exterior power of H, which is the Hilbert completion
of the algebraic k-th exterior power for the scalar product

<'Ul VAL WANEEIIVAN Vi | wg Awg A=+ A U}k>/\kH = det((vz | wj>H)1Si’j§k.

It is again a separable Hilbert space, and if (e;);c; is an orthonormal basis of H with I C N, then

(€5, A€y A+ A€ )iy<ipenciper is an orthonormal basis of A" H. Now, the k-th exterior power
of A defined by extension of the rule

(/\’“A) (01 Ava A~ Avg) = A(vr) A A(vs) A -+ A A(uy)

is again a trace class operator. Indeed, given A of trace class, consider an orthonormal basis (e;);e;
of diagonalisation of the compact self-adjoint operator |A| = (A*A)'/2, with |A|(e;) = \; e;. Each
A; 1s a non-negative real number, and || A|[; = tr(JA|) = >,.; Ai. We then have:

Z <ei1/\€i2/\"'/\eik ‘/\kA‘(eil/\eiZ/\~--/\eik)> A

i <ig<- < N H
= D len Aew Ao A | |Al(en) AlAl(en) A ALAI(es)) gk gy
i <dg <<k
1 1 .
= D Ay, = 7 > N A < 7 (Er(A4D)%,
11 <ta<-ip 11 Fi0F Fig

so A" Ais of trace class, with H A" AH1 < W. The Fredholm determinant is defined by:

det(I+A) =1+ tr </\kA> :
k=1
by the previous calculation, the series is convergent and |det(/ + A)| < el4li. We recover the
traditional determinant when H is finite-dimensional. On the other hand, if 7 is a trace class
operator on .Z?(X, \) associated to a kernel K € £?(%?, \?), then its Fredholm determinant is
given by:

det(I + ) =1+ i tr (/\kxf) 1+ i % / det (K (25, ;) 1<ij<n Adzy) - - - A(dzy).
k=1 k=1 X

This is the Fredholm formula; as before, it is a bit ambiguous if for instance X = R and K is
not a continuous kernel, but it can still be given a sense even in this case. We refer to [GGKO0O,
Section 1.6] for a proof in the easy case where % has finite rank, and to [loc. cit., Section 4.5] for
an extension to general integral operators. This problem is also discussed in details at the beginning
of [Sos002] in the framework of determinantal point processes.

In the following, we consider a linear operator ¢ : £?(X,\) — £*(X, \) which is:
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(1) Hermitian and non-negative: for f,g € L*(X,\), (f | #(9)) p2x0y = (Z ()] 9) 2020
and <f | %(f))gQ(x)\) Z 0

(2) locally of trace class: for any relatively compact subset B C X, %5 = 15.%# 15 is a trace class
operator on .£%(B, \p).

This implies the existence of a unique measurable function K : ¥* — C such that:
o K(z,y) = K(y, ).
o det(K(z;,2;))1<ij<n > 0 for A¥"-almost any family of points zy, ..., .

o [ |K(x,y)> X(dz) X(dy) < +oo for any relatively compact subset B C X.

Theorem 1.6 (Determinantal point process associated to a Hermitian kernel). Suppose that K is
the kernel of a Hermitian non-negative locally trace class operator & on L?(X, \).

(1) The spectrum of & (set of complex numbers such that zI — J¢ is not invertible) is included
in [0,1] if and only if, for any relatively compact subset B C X, the spectrum of the restricted
operator K is included in [0, 1].

(2) If the condition Spec(£") C [0, 1] is satisfied, then there exists a random point process M on X
whose correlation functions with respect to X are given by:

Pn(T1, .. Tn) = det(K (24, 75))1<i j<n-

This random point process is unique in law; equivalently, all the random variables M (B) with
B relatively compact are determined by their moments (actually, they have subexponential tails).

(3) Suppose conversely given a determinantal point process M whose correlations are associated to
the kernel K of a Hermitian non-negative locally trace class operator & on L*(X,\). Then,
Spec(£") C [0, 1].

We refer to [Sos00a, Theorem 3] for a proof of this result; see also [Hou+09, Section 4.5]. The
determinantal point processes can be defined under weaker assumptions (for instance, with non-
Hermitian kernels), but in the sequel we shall stick to the setting of Theorem 1.6. Note that in the
first item of the theorem, a restricted operator %5 is trace class hence compact, so

Spec(#p) U {0} = {eigenvalues of #5} U {0}.

The non-zero eigenvalues of %3 will be involved in a precise description of the law of the random
variable M (B), where M is a determinantal point process with kernel K.

1.3. Observables of determinantal point processes. Given a determinantal point process M with
kernel K, let us see how to use this kernel in order to obtain information on M.

Total number of particles. Consider as above a non-negative Hermitian and locally trace class
operator & : ZL*(X,\) — Z*(X,\). One can define the trace of the whole operator ¥~ by
taking the supremum of the traces of the restricted operators #5:

tr(H) = (/xz((x,xn(dx)) € R, U {+o0}.

Suppose from now on that we have a determinantal point process M with such a kernel K. Then,
M(X) = +oo with probability 0 if tr(.#") < 400, and with probability 1 if tr(.#") = 400 [Sos00a,

Theorem 4]. In the first case, we have:
e P[M(X) < n] = 11if and only if rank(.#") < n. If rank(#) = n, then there exists a
family of n orthonormal functions ¥, ..., in £?(X,\) and eigenvalues A, ..., \, in
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(0, 1] such that
K(z,y) = Z&W@(y)

e P[M(X) = n|] = 1 if and only if rank(.#") = n and % is the orthogonal projection on a
vector space with rank n. Then, in the decomposition above, all the \;’s are equal to 1.

Density of particles. In the same setting, the first correlation function p;(z) = K(z, z) gives the
expected density of particles: for any relatively compact subset B,

E[M(B)] = /B K(z,2) \dz).

Later, we shall consider sequences of determinantal point processes (My)nen with My (X) = N
almost surely. In this setting, a very simple criterion on the Hermitian kernels K of the point
processes My allows one to prove the convergence of the renormalised empirical densities of par-
ticles:

Proposition 1.7 (Limiting density of particles). We write My = SV 0x,, and we consider the
random probability measures

We assume that:

(1) M\-almost everywhere, w converges to a density function f(x) with [, f(x) Mdzr) = 1.

(2) the reference measure \ satisfies some mild regularity assumption: one can find a countable famaily
(B;) e of relatively compact open subsets of X, such that any open subset B C X writes as the
union of some B;’s, and such that all the B;’s satisfy N(0B;) = 0.

Then, with respect to the topology of convergence in law on .#*(X), the random distribution vy con-
verges in probability towards the deterministic distribution v = f(x) \(dx).

Note that the Lebesgue measure on R? trivially satisfies the regularity assumption. Besides, if
(B;)jeJ 1s an adequate countable family of relatively compact open subsets, then without loss of
generality, we can assume that any open subset B C X writes as B = |J, .y B;, for some increasing
sequence (B, Jnen. Indeed, starting from an adequate family (B;) e, the larger family formed by
the finite unions of B;’s is also countable, and it also consists of relatively compact open subsets
whose boundaries have a vanishing A\-measure. In the sequel, we add this property with increasing
sequences to the definition of an adequate family.

Proof of Proposition 1.7. We fix:

e a probability space (©2,.%,P) on which all the random point processes My are defined,;

e an adequate family (B;);e; of relatively compact open subsets of X.
Suppose that we can prove that for any j € J, vy (B;) converges in probability towards v(B;). The
convergence in probability is equivalent to the almost sure convergence of a subsubsequence of any
given subsequence of the sequence of random variables. Therefore, if (vy(n))ven is a subsequence
of (vn)nen, then by diagonal extraction we can find a subsubsequence (vy09(n)) vern such that

VjedJ, V¢09(N)(Bj) as. V(Bj>'

Then, with probability 1, we also have for any open subset B C X

lim inf vyop(v) (B) = sup (liNH; inf Vwoew)(Bjn)) = iggV(Bjn) =v(B).
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Therefore, by the Portmanteau theorem [Bil99, Theorem 2.1], we have the almost sure convergence
in law vyop(n) —*as. ¥, and this implies the convergence in probability vy — probability V-

So, it suffices to prove the following fact: for any B; in an adequate family, vn(B;) — probability
v(B;). This convergence in probability will be obtained by the second moment method. First, we
have

Bl (5,)] = Sl [ )

KN(muI)
N

and by assumption converges to f(z). This implies by classical arguments the convergence

in law of w A(dz) towards the probability measure v(dr) = f(x) A(dx). As a consequence,
since B; is a continuity set for A and v,

E[vn(B;)] = N-oo V(B)).
On the other hand,

. N . 2B « B
Bl - EI BB - 1) + BB, _ EDAF(E x B) , o(( L)

By definition of a determinantal point process, the leading term on the right-hand side is given by
the integral

Kn(z,2)Kn(y,y) — Kn(z,y)Kn(y, v)
(Bj)? N?

(W) A(dz) A(dy) < (E[un (B;)])

Aldr) A(dy)

— Ex (B - |

(Bj)?

Therefore, the variance of (vx(B;))? isa O(N~!); together with the convergence of the mean, this

proves the convergence in probability. O
Number of points in a relatively compact subset. If By, ..., B, is a family of disjoint relatively
compact subsets in X, the joint law of the random variables M (By), ..., M(B,) with M determi-

nantal point process with kernel K can be computed as follows. We consider the joint generating
function of these variables:

n

H(za)M(Ba)

a=1

n M(Ba)

eI (M) -

1+ Y E H(M(Ba))ima] H%

m=1mi+-+mp=m

E

The convergence of these series is ensured by the following identity: for any composition m =
my + - -+ + my, setting B = | |'_, B,, we have

n

[T(A(B.)) ™

a=1

E = E[M*"™((B)™ x -+ x (By)™)]

= / det(K(mi, xj))1§z',j§m )\(dxl) T dem)
(B1)™1 X=X (Bp)™n

=mltr (1p# 1) "™ AN (15 H 1p,)"™* A+ A (1gH 15,) ")
< (tr(AB))™.
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If @ = a; is the index of the set B, corresponding to the variable z;, then the same computation
shows that

n

ficae)

a=1

=1 + Z / det 1B ,I‘Z a- 1) K(ZL‘i,l'j) ]‘Baj (:Ej))lﬁi,jﬁm

mi+-- +mn—m

E

Adry) - - Mdm)
(ma)!-- - (mn)!

=1+ Z - / det (Z 1p(7;) (24, — 1) K (24, 25) lp,, (xj)> A(dzy) - -~ A(day).

1<i,j<m
The quantity that one obtains is a Fredholm determinant:

n

H(za)msa)] = det (I + zn: 1g (2 — 1) H 1&) .

a=1

E

Let us consider in particular the case where n = 1 and the trace class self-adjoint non-negative
operator %5 has a countable family of eigenvalues (Ap;)icr with 0 < Ap,; < 1 for any i. The
Fredholm determinant is then given by:

E[zMP)] = det( + (z — 1)#5) = [ [+ (2 = D)Ap,).
iel
This is precisely the generating series of the random variable X = ., Ber(Ap;), where all the
Bernoulli variables are assumed to be independent. This random series converges almost surely by

the two-series Kolmogorov criterion, since tr(J£p) = >..; Ap; < +0o by hypothesis. We thus
have:

Proposition 1.8 (Marginales of a determinantal point process). Given a determinantal point process
M associated to a Hermitian non-negative locally trace class operator with kernel K, for any relatively
compact subset B C X, if (Ap;)icr is the collection of eigenvalues of ¥, then the law of M (B) is the
law of a random series of independent Bernoulli variables with parameter g ;.

In particular, if tr(#") = +o00 and if we have an increasing sequence of subsets (By) yen with

() = ([ Ko@) - [ K@@ NG) ) - o
By (Bn)?
then we have the central limit theorem
M(By) — E[M(By)]

var(M (By))

4N~>+OO N(O, 1)

This theorem appears for instance in [Sos00b]; see also [Sos00a, Theorem 8]. Note that the for-
mula for var(M (B)) shows that we always have var(M(B)) < E[M(B)] for a determinantal point
process M and a relatively compact subset B.

Remark 1.9. Suppose that ¢ is the orthogonal projection from Z%(X, \) to a vector subspace
with dimension N. Then, Proposition 1.8 ensures that the associated determinantal point process
M satisfies M (X) = N almost surely, since there are N non-zero eigenvalues equal to 1. Thus, the
determinantal point processes with a fixed number of points are naturally associated to orthogonal
projections, and later we shall see the connection with orthogonal polynomials.
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Gap probabilities and simple determinantal point processes. A particular case of the Fredholm
formula for the generating series E[z"(P)] is with 2 = 0. We are then evaluating the gap probability
to not having any point of M in B:

The formula extends readily to any subset B C X such that #5 is still a trace class operator. This
formula will play an essential role in the study of extremal points of determinantal point processes.
To conclude this section, let us give a simple criterion for a determinantal point process to be simple,
that is to say that with probability 1, M =3, _, dx, with X; # X for any i # j.

Proposition 1.10 (Particles are fermions). Suppose that the reference measure \ has no atom. Then,
a determinantal point process M with Hermitian locally trace class operator associated to a kernel K is
always a simple random point process.

Proof. Consider a relatively compact subset B, and let us evaluate the expected number X (B, €) of
ordered pairs of points of M that fall in B and are at distance smaller than . This is given by:

BLX(B.0)] = [ det (5 N5 ) Lao<e M) M)

As € goes to zero, the locally integrable correlation function ps(x, y) yields an integral which goes

to 0. Since E[X (B, ¢)] > P[X(B,e) > 0] > P[M has a multiple point in B], we can conclude. [

2. EIGENVALUES OF LARGE RANDOM MATRICES

We now present some classical models of random matrices whose eigenvalues yield determinantal
point processes; and we explain how to use this structure in order to obtain information on the
asymptotic behavior of these eigenvalues when the size of the matrices goes to infinity.

2.1. The Gaussian unitary ensemble. We start with the most classical example, namely, Gaussian
matrices chosen in the vector space H(N) of Hermitian N x N square matrices. A convenient
framework is the following: Hy is a random matrix with size N x N, whose diagonal coeflicients
are independent real Gaussian variables

1
(Hn)ii = Nr <0, N> ;

and whose off-diagonal coefficients are independent complex Gaussian variables:

—_ 1 . 1
(HN)Lj = (HN)J‘J‘ = N]R (O, ﬁ) + IN]R (0, ﬁ) .

The density of the law of Hy is thus:

1 ~ &t g2 . 9N N2
e 2 I] di: J] dRe(H:;)dIm(H;;), with Zycup: = e

A
N,GUE,1 1<i<N 1<i<j<N

Denote 1 > &y > -+ > xy v the random real eigenvalues of Hy. Any Hermitian matrix H
with size N writes as H = UDU*, where U € U(N) is a unitary matrix and D = diag(z1,...,2n)
is a diagonal matrix with non-increasing real entries. Moreover, up to multiplication by a diagonal
matrix diag(el? ... eV), we can assume that all the diagonal entries of U belong to R, . Denote
U(N)p.a. the subset of U(NNV) that consists in unitary matrices with positive diagonal entries, and
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C(N) the Weyl chamber of decreasing sequences (z; > x5 > -+ > zy) of real numbers. The
smooth map

U(N)pa x C(N) = H(N)
(U,D) — UDU"

is injective, and the complement of its image has Lebesgue measure zero. Therefore, we can use a
change of variable formula to obtain the following:

Theorem 2.1 (Joint distribution of eigenvalues). The ordered random sequence (xn1 > xn2 >
- > xn ) of eigenvalues of a random Gaussian Hermitian matrix Hy admits the following density

in C(N):

1m >0> N N

N,1Z""ZZN,N —2X " )2

ENAZTEENN o= % i (@n) | | | —Z‘N7j|2 | | dry ;,
ZN,GUE,2 1<i<j<N 1Si<N

with Zy qups = (27)% N=% (N — 1)I(N — 2)I.--11.

We refer to [AGZ10, Theorem 2.5.2] for a detailed proof of the change of variables which yields
this joint distribution, in which the Vandermonde determinant

Ax)= [ (envi—any) = det((@n)™ )i<ijen
1<i<j<N

appears. In the sequel, we shall rather work with the unordered random sequence (z1,...,zy)
with joint distribution

1 o~ Y TN (@) H |l‘z‘_=73j|2 H dx;

Z
N,GUE 1<i<j<N 1<i<N

on RV, where Zycur = N!' Zncurs = (27r)% N_NTQ N!(N —1)!---1!. This unordered random
sequence yields a random point process My = SV dx, which is called the Gaussian unitary
ensemble (GUE), and which happens to be determinantal.

2.2. Reproducing kernels and orthogonal polynomials. The proof that My is determinantal
relies mostly on algebraic calculations, which can be in fact be performed with more general unitary
invariant probability measures on H(N). We start with the following:

Lemma 2.2 (Cauchy-Binet formula). Let (¢4, 1:)1<i<n be a double family of square-integrable func-
tions in L*(X, \). We have:

det (/ ¢i(z) j(z )>1<i,j<N

= 37 L et sisen det(i(a heisen Mdra) - N

Proof. We compute the determinant det( [, ¢;(2) 1;(x) A(dx))1<ij<n as follows:

(/ ¢z Z; 'ng () wz ( z))
UEG( 1<i<N

:/3€N Z (o) H Gi(i) Yogiy (i) | Adwy)--- Mdry)

o€&(N) 1<i<N
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N /asN det (¢ () ¥j (i) )1<ij<n Ader) - - - Adw)

/ ( H ¢Z Li ) det ¢Z(xj))1<ZJ<N /\(dxl) )\(d]}N)

j Z / ( [T ¢iaon >det(¢z(% Diigen Adey) - Mdry)
O’GG 1<i<N
Z / ( H ¢i(Ta(i) )det(¢1($3))l<u<N A(dzy) - Mdry)
' UEG XN 1<i<N
= % /xN det(¢i(75))1<ijen det(i(x))1<ijen Mdr) - - - Mday). O

In the sequel, we suppose that the ¢;’sand 1;’s are real-valued, and we set 4; ; = (Vi | ¢;) 2z ) =

Y;(x) ¢i(x) M(dw). Suppose that the determinant in the Cauchy-Binet formula is positive; then,
x j PP y P
(A; j)1<ij<n is invertible. We then define a kernel

En(zy) = Y i) (A5 ¢(1).

1<ij<N

Without loss of generality, we can assume det A = 1; this amounts to multiplying all the functions
¢; and v; by a positive constant.

Theorem 2.3 (Determinantal point process associated to a finite rank reproducing kernel). Let
(61, Yi)1<i<n beafamily of real-valued functions in L% (X, ), such that det ((di | V) g2 (x x)1<ij<n =
1. The kernel Ky is a reproducing kernel:
[ Kol 2de) =
x

[ Kot Bt 2) Ad) = Ko 2).
x
Consider random variables X1, . . ., Xn with joint distribution

ﬁ det(¢i(z)))1<ijen det(¥i(z)))i<ijen A(drr) - - Adzn),

and the associated random point process My = SN 8x.. The random point process My is determi-
nantal on (X, \), with kernel K y.

Proof. The identities satisfied by K are obtained as follows:

/XKN(x, ) Ndr) = Z (A1) (o5 Vi) g2z 0)

1<ij<N

= > (ANi4= ) 1=N

1<ij<N 1<i<N
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[ Bt Bnty ) M) = Y o) (47, ( [ oW A(dy)) (A1 n(2)

1<4,j<N
1<kI<N

= Y @) (AT AR(AT e ai(2)
S

= > i@ (A di(e) = Kn(w, 2).

1<iI<N

Let us now compute the correlation functions of M. We start by a general observation on random

point processes M = 3"V | §, defined by a symmetric density function f(z1, ..., zx) on RN (with
respect to A®Y). For any family of measurable subsets By, . .., By, we have
E(M*™N(By,...,By)l = Y _ Pi€[l,N], X, € Bi]
c€G(N)
— [ e ) M) Mdex),
Bl><~~~><BN
so the N-th correlation function of My 1s py(21,...,25) = N! f(x1,...,2x). I n > N, then
M¥" = 0,50 pp(x1,...,7,) = 0. Finally, if n < N, then we have the recurrence relations
1
MY (By,...,B,) = MY Y(By, ..., B, X);
( 1 ) ) N —n ( 1 ) ’ )7
1

J € T

T /p< T Md),

so we have the following formula for correlation functions with n < N:
pn(Il,...,ZEn): N Ninf(l'l,...,l‘]\f) /\(Cldfn_i_l))\(dl']v)
x —-n

We now use these observations in the case where N! f(z1,...,xy) is the product of determinants
of the statement of the theorem.

° Ifn = N, ,ON(ZEl, .. ,ZL‘N) = det(qbi(xj))lgi,jSN det(¢i(xj))1§i7j§N, and on the other hand,
we have

det(Kn (25, 25) )1<ijen = det ( > i) (A ¢l(%‘)>
1<ij<N

1<kI<N
= det(¢r(2:) h<ipen det A7H det(dy(2) hi<ijen,
s0 pn (21, ..., xn) = det(Kn (i, 7)) 1<ij<n since det A = det A~ = 1.
e If n > N, then

1<k,I<N

det(Kn (2, 75))1<ij<n = det ( > () (A ¢l(%‘)>
1<i,5<n

is the determinant of the product of three matrices with respective sizes n x N, N x N and
N x n. Therefore, its rank is smaller than N and the determinant vanishes. The same is
true for the correlation functions p,,(x1, . .., z,) since My consists in N points.

e Finally, for n < N, it suffices to prove that the n x n determinants of the kernel Ky satisfy
the same recurrence relation as the correlation functions p,. For any n > 0, we expand

det(Ky (w2 h<ijenn = el0) [ En(we, o) Ky, o).

ceS(n+1) ccycle of o
c=(k1,k2,....,k;)
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For each permutation o, consider the cycle C' which contains k; = n + 1. We are going to
use the identities established at the beginning of the proof. If the cycle C' consists only in
n -+ 1, then

/ I Ex(oe, o) Ky(eg, o) Ade,)

ccycleof o
=(k1,k2,....k1)

=N€(U') [T Env(e, o) Ky(aw, o),
¢ cycle of o’
c=(k1 k2. k)
where o’ is the same permutation as o, but considered in &(n). Now, if the cycle C' consists
in more than one point, then the integration x,,.; replaces Ky (x, Tpy1) Kn(2ni1, 1) by
Kn(zg,x;). This amounts to replace o by the permutation ¢’ € &(n) where n + 1 has

been removed from C; e(0’) = —¢(o) and therefore,
) [ T Kl Ky(onan) Mdo,n)
ceycleof o
c=(k1,k2,.... k)
=—c(o") ]  Enlow,aw) - Ky, o).
ccycle of o’
c=(k1,k2,0... k)

For any permutation ¢’ in &(n), there are one way to obtain it in the first case, and n ways
to obtain it in the second case. We conclude that

/ det(Kn (4, 25))1<ij<n+1 M dTni1)
x

= (N —n) Z 5(0-,) H Kn (g, Thy) -+ - K (@, Ty

o'e6(n) ccycle of o’
c=(k1,k2,....,k;)
= (N —n) det(Kn(zi, 75))1<ij<n
and this is the same recurrence relation as for correlation functions. O

In the setting of Theorem 2.3, the trace class operator % associated to K is the orthogonal
projection in .#?(X, \) onto the vector space with dimension N spanned by the functions ¢; (or
by the functions ;). An important particular case is when X = R and A is a measure with moments
of any order:

Vn e N, / |z|" A(dr) < +o0.
R

We can then take ¢; = 1; = i-th normalised orthogonal polynomial for the measure A\. Without
loss of generality, we can assume that ) is a probability measure, and on the other hand we convene
to start the indexation of the orthonormal polynomials at i = 0, so the kernel Ky is redefined as

=Y 6ol

Let us list some properties of the family of orthonormal polynomials (¢;);>0 (see [Sze39, Chapters
2 and 3]):

(1) The i-th polynomial ¢; has degree i, and [, ¢i(z) ¢;(z) A(dx) = ;.

(2) Denote k; the coefficient of x* in ¢;(z). The orthonormal polynomials satisfy the three
terms recurrence relation:

bir1(z) = (Aix + B;)gi(x) — Cj i1 ()
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i ki ki A kigikio
with Ai = ktl, B; = — ktl <5B ¢z’ | Cbi)gz(R)\) and C; = A, %

(3) For N > 1, the kernel K is given by the Christoffel-Darboux formula:

Kn(z,y) = k:;{:v]: on (1) ¢N_1(yi : jN_l(x) ¢N(y)_

Indeed, we have
po=ko=1 pr=ki(x—m) ki =0
wherem = [t A(dt) and 0* = [, (t —m)? A(dt) are the mean and variance of \. Therefore,

ko ki((@—m) x1—1x(y —m))
k1 T —y

=1= Kl(xay)

and the relation is true for N = 1. For N > 2, we use the recurrence relation and we get:

ky-1 on(®) on-1(y) — on—1(z) dn(Y)

/{ZN r—Yy
_ kn—1 AN71(SC - y) ¢N—1(5€)¢N—1(y) +Cnoy (<Z5N71(SC) ¢N72(Z/) - ¢N72(37> (bel(y))
kn r—=y
kn—2 ¢n-1(7) dn—2(y) — dn—a(z) dn_1(y)

= on-1(z) dn-a(y) +

kn-1 r—y

which is the same as for the sequence (K (z,y))n>1. With z = y, the Christoffel-Darboux
formula degenerates into:

Kn(e,7) = 0 (610 (0) dya(@) — By () b (@)).

kn
(4) The density function fy(x1,...,zy) on RY associated to the kernel Ky is
1 koki - kn_1)?
fn(zy, .. xN) = N (det(¢i(xj))iEHO,Nfl]],je[[l,N]])2 = (o by N v-1) (A(zy,...,75))?

where A(z) is the Vandermonde determinant; this follows readily from operations on rows
and columns of the matrix (¢;(z;))icfo,n—1], je1,n]- Conversely, such a density function
yields a determinantal point process with kernel K.

The next paragraph applies this theory to the case where A(dz) = /X e~ "% - de.

2

2.3. Hermite polynomials and saddle point analysis. Theorem 2.3 shows readily that the eigen-
values of a random matrix Hy of the Gaussian unitary ensemble form a determinantal point process
associated to the kernel Ky (z,y) = Zﬁv:—01 dn.i(x) dni(y), where the ¢n ;’s are the orthonormal
polynomials for the scaled normal law

1
A=Ay =Ng <O,N>.

Beware in the following that the reference measure Ay also changes with N. Let us make the
functions ¢y ; explicit. If A is given by a density w(z) dr where w satisfies a first-order differential
equation with coeflicients that are rational functions, the so-called Rodrigues’ formulas provide a
general method in order to obtain an orthogonal family with respect to the measure A. In the
setting of the normal law, we shall look at the Hermite polynomials

x

Hy(x) = (=1) e (Z; (e%) .
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Each H; isa monic polynomial with degree i, and if j < i, then an integration by parts shows that

[ e [ ()0 e (9 ()

so the H;’s are orthogonal with respect to the standard normal law. The same computation shows
that

22

/(H( _%ah: /H \;% ((Z;( )>e\;%dx=i!.

It follows that the functlons Lt \%) are orthonormal with respect to the distribution Nk (0, 1), and
that

H;(VN 1) x2 d o2
oni(T) = ( . ™) _ (. )-eN2 z‘(eiNQ )
Vil Vil N dr
In particular, the leading coefficient k; of ¢y () is 1/ 2, and we recover

N
21 NI N N2
Z = [4/= — (27)F N~F NI(N —1)!---1!.
N,GUE ( N) o v 1) (2m) ( )

In the sequel, we shall use the following recurrence relation:

Hi(z) = —e7 = (6_7 H,-(x)) = 2 Hy(z) — Hi(z) = @ Hy(z) — i Hi_, (2),
the last identity H/(z) = i H;_1(x) following from the formula H;(x) = e‘DTQ( ), where D = &
This implies that the exponential generating series H(z,z) = > 2, j, H;(z) of Hermite polyno-
mials satisfies:

d 22
EH(.T,Z) =(x—2)H(z,2) ; H(z,z)=e*"72.

The explicit formula for the kernel of the GUE leads to precise asymptotic results, which we
now detail. We start with the global statistical behavior of the eigenvalues:

Theorem 2.4 (Wigner). Let vy = + My = + 27 6, be the spectral measure of a random matrix
of size N x N in the GUE. As N goes to infinity, vy converges in probability towards the Wigner

semicircle law
V4 — x?

I/(dflf) = 1m€[—2,2] dr.

2

Ficure 1. Empirical distribution of the eigenvalues of a matrix of the GUE, with
N = 200.
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This law of large numbers for eigenvalues is due to Wigner, see [ Wig55]; the original proof is totally
different from the one below. By Proposition 1.7, in order to prove the convergence in probability

. Naz? .
vn — v, it suffices to control the rescaled kernel w & ¢~ "2 . By the Christoffel-Darboux

formula,

KN(ZE,J?) kN 1 ,
N ~ Ny <¢N (@) dnv-1(z) — ¢N7N,1(x) dnn(T))

]é, (Hy Hy—1 — Hy_, Hy) (\/Nx)
]\1,, ((Hy)? = Hy_y Hy11) (mx)

by using on the last line the formulas for H;(x) withi € {N — 1, N, N + 1}. We therefore need
to understand the behavior of Hy(v/Nx) as N goes to infinity, = being a fixed parameter. The
asymptotics of the classical orthogonal polynomials can be obtained by using saddle point analysis,
which is a generalisation of the steepest descent method. Two excellent references for this method are
[Brul0, Chapters 5-6] and [WonO1, Section I1.4]. We start from the following integral representa-
tion: 2
NI ez;r—%
2ir | 2N+

where the path integral runs over an arbitrary smooth curve 7 circling around 0. Since we are
interested in the asymptotics of Hy () when x is of size v/N, it is convenient to make the changes

of variables T = v Nz and Z = v/ Nz, so that
2
| Nzz—N%- |
HN(\/N.T) = N j(I{e dz = N feN(w__logz) dz

2ir Nz J 2N 2ir N z’
where the logarithm is defined on the open subset C \ R_ of the complex plane (removing the
negative real numbers does not change the value of the path integral). Set

2
f(z)=zx — % —log z.

Hy(z) = ["](H (x,2)) = dz,

In order to compute the asymptotics of an integral Iy = ¢ eN/@k(2) dz with f analytic, we
proceed as follows. Set f(z) = g¢(z) + ih(z), where the two real-valued functions g and h are
harmonic and sastisfy the Cauchy-Riemann equations 0,9 = 9,h and 9,9 = —0,h. If a path
7 is fixed, then we expect the main contribution to the integral f7 eN@k(2) dz to be provided
by the neighborhoods of points where |ef(*)| is maximal, that is to say where g(z) = Ref(z) is
maximal. Note however that if z is a point around which A(z) is not constant at first order, then
the oscillating part /V*(*) might make

/ eNf(z)k(Z> dz < O(eNg(ZO)),
neighborhood of zg

so the contribution of the neighborhood of zj to the path integral is much smaller than expected.
To avoid this phenomenon, we shall deform the path v so that it crosses (some of) the critical points
of the holomorphic function f, that is to say points 2o such that f'(z9) = 0. If 2o is a critical point,

then we have 0 = 0. f = £(9, — i9,)(f), so

0x9(z0) = —0yh(z) = —0,9(20) i 0yg(20) = Ouh(xg) = —0yg(20)

and z is also a critical point of g and of h: Vg(z9) = Vh(z) = (0,0). Moreover, the Hessian of g
satisfies

(det Hess g)(z) = 02,9(20) 3§yg(20) (82y9(20))2 =- (8;@9(»20)) (ang(ZO))z <0

so z is a saddle point of g. This means that there are orthogonal directions that intersect at z,
and such that at this critical point, ¢ attains its local minimum along one direction and its local
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maximum along the other direction. We are going to make the path ~ cross z along the direction
which corresponds to a local maximum. Intuitively, it is convenient to imagine the function |ef(*)|
as a mountainous landscape, for which we try to find a path v which is a closed loop in the holo-
morphy domain of f and k, and which stays at the lowest possible altitude. The path 7 is then
forced to cross some mountain passes, which are the critical points of f and are saddle points of
g. Of course, we shall then cross these passes in directions which correspond to local maxima (we
do not descend from a peak to attain the pass). We are indebted to [Brul0, Section 5.2] for this
intuitive description. The specific prescribed way to cross the critical points is the following. We
suppose that f”(zo) # 0, and we consider a smooth pathy : t € R +— ~(t) € C such that v(0) = z,
and 7/(0) # 0; up to local reparametrisation, we may assume that we have a unitary tangent vector
7' (0) = €. If f"(z) = Ael, then we have locally

90 (6) = 9(z0) + 3 Re(7"(z0) ((O)1) + 0{#%) = g(z0) + 1~ cos(9 +20) + o(#").

In particular, with ¢ = —%™, we obtain

At?

9(v(1) = 9(z0) — =~ + o(t?),

so g decreases at the fastest possible quadratic speed around z if one follows the path v(¢). Note that
if we replace v(t) by ¥(t) = ~(—t), this does not change the result, as ¢ = ¢ + 7 and cos(f +2¢) =
cos(0+2¢) = —1; thus, if we make the path (t) cross 2 in the direction e'? or —e'®, then g descends
at the fastest speed. Now, the condition ¢ = =% is equivalent to the following requirement on

5
(h o ~y)(t). If we use the Taylor series of & instead of g, we obtain

(D) = hz0) 5 T (z0) (7' (1)) +o() = hzo) + - sin(0+2) +0(1?) = h(z0) +o(f?).

This observation leads to the following:

Lemma 2.5 (Characterisation of the direction of steepest descent). Let f be an analytic function in
an open domain U C C, and zy be a critical point of f. If y is a smooth path such that v(0) = z, and
Im f(y(t)) = Imf(20) + o(t?), then Re f(v(t)) decreases at the fastest possible quadratic speed around

Re f((8)) = Be f(z0) — T o) 22 4 os%),

Actually, it is not necessary to cross a critical point zy of f exactly along the steepest descent
direction: it is suflicient to do so in such a way that the angle between the steepest direction and the
tangent vector of 7y at 2 is always strictly smaller than § (see Figure 2). Indeed, if this is the case,
then the expansion g(7(t)) = g(z20) + (Re(f”(20) (7/(0))?) t?)/2 + o(t?) still involves a negative
quadratic term, so we are able to use the Laplace method in order to evaluate the integral. These
observations are due to Perron, and they lead to:

Method 2.6 (Saddle point analysis). Let f and k be analytic functions on a domain U C C, and
Iy = § eNEK(2) dz be a contour integral. To obtain the asymptotics of Iy as N goes to infinity, we
deform the integration contour in order to obtain an explicit path y with the following properties:

(1) The path ~y crosses one or several critical points z1, . . ., z; of the function f, in such a way that
max Ref(z) = max Ref(z;).
2€y i€[1,l]

(2) At each critical point z;, f"(z;) # 0, and the path ~ follows around z; an adequate direction
(close to the steepest descent direction).
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steepest descent direction
(tangent at 2o of the curve Im f(z) = Im f(z))

FIGURE 2. An adequate contour of integration for the saddle point analysis crosses
the critical points with a direction close to the steepest descent direction.

If the hypotheses above are satisfied, then the Laplace method yields

l
=D °
ﬁlelghborhood of t;

i=1 " such that v(t;) = 2;

N F(z) 2m
3k V NP

where the complex square root of —(7/(;))? f”(z;) is chosen with an argument between —Z and
7. Assuming that k(z;) # 0 for all the critical points 21, . . ., 2, the asymptotic expansion above is
valid up to a multiplicative (1 + O(N')) for each term of the sum; on the other hand, the main
contribution is of course provided by the z;’s which maximise Re f(z;).

N{ fla) LD 0 @ e
(f( " ’ )k(zi)V'(tz‘)dt

We now apply this technique to the asymptotic analysis of Hermite polynomials. The critical
points of the analytic map 2 € C \ R_ ~ za — 2 — log  satisfy

0 f/( ) 1 x:l:sz—él if ‘x | > 2,
=flz)=x—2z—- ; z = . _

z 7 sV if 7] < 2.
Since it suffices to prove the convergence of the scaled kernel almost everywhere with respect to
the Lebesgue measure, the critical case |z] = 2 is not important for the global asymptotics (we shall
look at this case later when studying the edge asymptotics of the spectrum). Notice on the other
hand that Hy(—z) = (—=1)Y Hy(z), so it suffices to treat the case where z is positive. Suppose
first that © > 2. The function f has then two real critical points, and its restriction to the set of
positive real numbers is drawn in Figure 3.

We choose for 7 the circle v(¢) = rqe'®, where ry = 2=¥r"=4 — 2__ s the local minimal of

. 2 z+V22—4
the function f on R*. We then have

2x 1l — Va2 — -+ -4
e — e Y-N0) cos2¢ + log | ———— | .
T+ V12 —4 204+ V24 2

(go)(¢) =
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FiGURE 3. The map r € R% — f(r) when z > 2.

This function of ¢ is even and decreasing on [0, 7). Indeed, its derivative is

2x — Va2 —
smd)—k
r+Va? — 4 r+Vaw

_%@—(x— x2—4)cos¢> <0

Therefore, for any angle ¢, (g 0 7)(¢) < (g 0 ¥)(0). On the other hand, f”(r¢) is real, so the path
7 follows exactly at the critical point the steepest direction. By saddle point analysis and by using
the Stirling estimates of N, we conclude that if 2 = 2 cosh ¢t with ¢ > 0, then ry = e™* and

(go07)(¢) = — sin 26

1 N N(672t+t> 1
1y-1 =N 2
i) TS 1

where 1y-1 =1+ O(N~!). We obtain with the exact same method:

N! N(zx—ﬁ—logz) eit
HN_l(\/N.T)—W%e 2 dZ:—HN(\/N.I) 1N*1;

Hy(VNz) = N7 NUGo-1)

Iy-1,

2r N7z VN
N+1 z:tf—fo 2) d

HN+1(\/_x) %j{e]\“ log ) zj = \/NetHN(\/Nx) 1y-1.
iTr N2

Therefore,

Knwa) _ (H 20\
N Ni(e2—1) )’

Ky@a) [N sp o (eNome20y (e
N 2 N(e2 — 1) N |

where the constant in the O(-) can depend on ¢ (actually, it is not very hard to show that the
estimate is uniform when ¢ says in a compact subset of (0, +00)).

Proposition 2.7 (Asymptotics of the Hermite kernels for |z| > 2). Suppose |x| > 2. Then,

Ky(xz,x) | N _na?
% ge N2 — Nosoo 0.
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Let us now analyse the case where 0 < 2 < 2. We set © = 2cos@ with § € (0, §); then, the
critical points are zy = ¢, and f(z) = % — 1,50
f(ze) = €40 — 1 = 25in heFTEH0),

The steepest descent direction at 2. is thus e*i(3+%). We choose for ~ the unit circle v(¢) = e,
p . M ™
¢ € (—m, 7). The tangent vector of v at ¢ = £6 is e*(®+2), The two arguments

i(ng%) and i<0+g>

indeed differ from less than % for any 6 € (0, 7), so our path allows us to use saddle point analysis,
provided that g o 7y attains its maximum at the two parameters ¢ = +6. However,
cos2¢ 3

_ 9 _ _ 2
5 =3 (cos @ — cos ¢)”,

o2i¢

5 > = 2cosfcosp —

(gov)(¢) =Re (2 cosf e —

which clearly attains its maximum when cos ¢ = cos 6, that is when ¢ = £6. Thus, we get

N(f(z4)-1) N(f(z)-1)
Hy(VNz) = N5 c ¢ N
( ) (\/—(7’(9))2f”(Z+) i \/—(7’(—9))21“’(2—))

N7Z N5 sin 26 0 =
=2———cos| N -0 +=——=) 1y
v/2sin ( < 2 ) )

with 2 = 2 cos §. The same technique yields:

N! z:c—ﬁ—o z
HN_1<\/N'T):—NerN( 7 ~log )dZ

2imr N 2

N1< 7(6) N (=1 N v(—0) eNUE)-1) )
V-0 -GE0R )

Nz eV 5 in 20 30
IZﬁ COS<N(Sln —9> +?_£) 1N—17

N+ 1) pr— 22 _losz) d
HN+1<\/N.T):(—+N21feN( 2 ~los )_z

2

2ir N 2 z
e ( oN(f(z4)-1) oN(f(z-)-1) ) ,
= N2 + 1
V(0 /=G0 z)  A=0)/—(=0)2f () )
N% eN 3

o sin 26 0 =«
=2—— cos| N -0 —=—= Ty-1.
V2sin 6 ( ( 2 ) 2 4) N

As a consequence, setting o = N (5222 — §) + ¢ — T e have

N2

(HN(\/NQT))z . 2e 2
N! sin 027 N
HNfl(\/NQIZ) HN+1<\/N.Z') 2eN2902
= cos(a+ 0) cos(a — 0) 1y-1;
NI sinf v27 N ( ) ( ) In
Kn(z,7) 2sinfes

N B V2t N
Since 2sin f = /4 — 22, we conclude:

cos?(a) 1y-1;

—1.
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Proposition 2.8 (Asymptotics of the Hermite kernels for |z| < 2). Suppose |z| < 2. Then,

Kn(z,z) | N _na? V4 —z?
— e Sy e
N 2m 2m

The reunion of Propositions 2.7 and 2.8 implies immediately Theorem 2.4.

2.4. The sine and Airy kernels. The saddle point analysis of Hermite polynomials also allows
one to understand the local statistical behavior of the eigenvalues of a large random matrix in
the GUE. To make sense of the results hereafter, we first need to introduce a notion of conver-
gence for random (determinantal) point processes. Consider as in Section 1 a locally compact,
complete and separable metric space X, and a sequence of random point processes (My)nen on
X. We say that My converges to a random point process M if the law of My as a random el-
ement of .Z*°™(X) converges to the law of M. By definition of the o-field on .Z*"*™(X), this
means that for any family of measurable subsets By, ..., B, C X, we have the convergence in law
(My(B1), ..., Mn(B))) =Nooo (M(By),...,M(By)). Suppose that the random point processes
My and M are determinantal, with Hermitian kernels Ky and K with respect to a common ref-
erence measure A on X. We assume that K (z,y) is locally bounded, and that Ky (z,y) — K(z,y)
locally uniformly in  and y. Then, the correlation functions also converge locally uniformly, and
therefore, the joint moments of the vectors (My(By), ..., Mx(B,)) converge. As these moments
determine the random point processes My and M, we thus have:

Proposition 2.9 (Convergence of determinantal point processes). Suppose that M is a determinantal
point process on (X, \) with locally bounded Hermitian kernel K (x,y), and that (My) yen is a sequence
of determinantal point processes with Hermitian kernels Ky (x,y). If Kn(z,y) — K(z,y) locally
uniformly, then My — M as N goes to infinity.

Fix a point 2o € (—2,2). By Wigner’s theorem, in a small interval (z¢ — €, 2o + ), one expects

to see N X 2& X -~ 4;7(:50)2 eigenvalues of a random Hermitian matrix Hy of the GUE. Therefore,

the distance between two consecutive eigenvalues in this interval is expected to be of order

—25%52520(%>'

We denote as before 1 > xna > -+ > xy y the N eigenvalues of Hy. The previous estimate
leads one to introduce the following scaling of eigenvalues:

Ny/4 — (3170)2

o (iUN,i - 950)-

YN; =

and we set My = "N 5, . This renormalised random point process is expected to have
points spaced by a distance of order 1, and it encodes the behavior of the eigenvalues of Hy in the
neighborhood of a parameter  in the bulk of the spectrum, that is to say with —2 < 2y < 2. We
have

ocal,r 27T B
R O =]
- 0

local.z + . . . . . .
0 My“™ is again a determinantal point process. If Ky is the Hermite kernel from the previous

paragraph and
_ N N(a2+4b2)
Kx(a.b) =[5 T Ky(a,b)
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is the corresponding kernel with respect to the Lebesgue measure, then M™"™ has for kernel

2 — 21 x 2y
Klocal,xo x, — K o + T + _J
V) = N<0 NVi— (@R " NYAZ (z0)?

with respect to the Lebesgue measure. We denote a and b the two arguments of K y in the above;
let us then determine the limit of this kernel as N goes to infinity. By the Christoffe]l-Darboux
formula,

o kn-1 ¢nn(a) pnn-1(b) — ¢onn-1(a) oy (D)

Kn(a,b) = . )¢
B 1 Hy(VNa) Hy—1(VNb) — Hy_1(V'Na) Hy(VNb).
- VNIV - 1) p— 7
Kn(a,b) = 1 e—w Hy(VNa) Hy_1(VNb) — Hy_1(v/Na) Hy(vVND)

(N-1)! or a—>b '

If ¢ = 2 cos ¢, then we have seen in the previous paragraph that

N\ _NTCZHN<\/NC> B 1 sin 2¢, b T _
(%) e m = —7-(- Sinqﬁc COS(N( 9 - ¢c> + E - Z) 1N*17

N\' w2 Hyo(VNe) 1 v (529 30 7Y,
(%)e \AN—M“WGE%“”(( 2 _¢J+’2_Z)Nl

where 1y-1 = 1+ O(N™!). These estimates are uniform if ¢ stays in a compact interval of (-2, 2);

in particular, they are valid if we take ¢ equal to a or b. In the sequel, we set ¢ = arccos %2,

¢a = arccos § and ¢, = arccos % Given an angle ¢, we write

0 — N (sin;gbc B ch) N de

Then,
K]lf}cal’xo(x,y) _ Iy-1 cos(ag) cos.(ozb + ¢b) — 1{V—1 cos(g + Pg) Cos(ab)'
N sin ¢ /sin ¢, sin ¢y, (a — b)

Notice that the angles ¢, ¢, and ¢ all differ by a O(+), where the constant in the O(-) only depends
on zg, x and y. Indeed, we have

o T i . L Y i
b= 2Nsin2¢+O(N2> =0 2N(sin2¢)+O<N2)'

This enables the following simplifications:

1n-1 cos(ay) cos(ap + ¢p) — Ly-1 cos(a + ¢q) cos(ay)
N sin® ¢ (a — b)

_ cos(ay) cos(ay + @) — cos(a, + ¢q) cos(ay) 0 1

] 7 (ing) (= — y) ~o(5)

~cos(ag — ap — Pp) — cos(Pa + g — ) 1

- 2 (s d) (« — ) +o(x)

sin (oza —ap + %;d)b) sin (d’“;”ﬁ”) (l)
Y I R

K}\(}cal,zo (ZE, y) _

N

(S 2 ma)) (1)
m(r —y)

N
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. t —t .
since cos s cost = w and cos s — cost = —2 sin(

Sin22¢a - Sin22¢b + ¢b — gba = COS(¢a + be) Sin(gba - ¢b) + ¢b - ¢a

stt

1) sin(%5%). Finally, we have

= (costgn-+ 00) — w00 + 0 3
= 2 sin? (% ;L ¢b> (¢5 — a) + 0(%)
=2 sin’ ¢ (¢ — ¢a) + O(%)

so we conclude that locally uniformly in z and y, Ko™ (z,y) — % We have thus
established:

Theorem 2.10 (Gaudin-Mehta). For any parameter x in the bulk of the spectrum, as N goes to infin-

ity, the rescaled local random point process M converges towards the determinantal point process

M whose kernel is the sine kernel

sin(x — y)
m(z —y)

the reference measure being the Lebesgue measure on R.

K (2,9) =

Y

0.2

VAN

e [N,
VY

FiGUure 4. The two-point correlation function of the sine-kernel, as a function of = — y.

Let us make several remarks on the limiting determinantal point process. First, since K*"¢(z, ) =
1 for every x € R, we have E[M(B)] = Leb(B) for any measurable subset B C R; this is because
we have rescaled the random point processes My in order to have an expected spacing of points
equal to 1. On the other hand, K*™°(z, y) is invariant by translation of the variables z and y, so
the law of M is translation invariant. Notice also that this limiting process M does not depend on
the choice of the parameter x¢; so, the density of eigenvalues in a neighborhood of z depends on
xo via the semicircle function, but the local structure is independent of z once this density has
been taken into account. Finally, the Hermitian and locally trace class operator % associated to
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the sine kernel can be made entirely explicit by using the Fourier transform of square integrable
functions. Indeed,

sinm(x — y)

(HF)(x) = / f(y) dy = ((sine(m ) = f) (),

g Tz —y)
where * denotes the convolution of functions. Going to the Fourier space, we obtain:

o — ~

HF(€) = sine(r)(€) f(€),

and the Fourier transform of the function z — sinc(mx) is 1j¢j<~. Consequently, %" is the orthog-
onal projection in .Z?*(R, dzr) onto the subspace of functions with Fourier transform compactly
supported in [—, 7].

A similar study can be performed at the edge of the spectrum, that is to say in the neighborhood
of zg = 2 or —2; by symmetry, it suffices to look at the right-side edge. If x = 2 — ¢ with ¢ small,
then the density of eigenvalues at z is of order v/%, so we can expect to see

O (N /Ot\/ﬂdu) = O (Nt*/?)

eigenvalues in the interval (2 — ¢,2). To see a O(1) number of eigenvalues, it is thus natural to
choose t = O(N~3); equivalently, we can expect the spacing of eigenvalues in the neighborhood of
2o = 2 to be of order N~5 (instead of N~! in the bulk of the spectrum). We therefore rescale the
eigenvalues of a matrix Hy of the GUE as follows: we set z; = N 3 (zn;—2)and M]e\;lge = Zfil Oz
In other words,

My#(B) = My (2+ N3B)

The reasoning that leads to the choice of the scaling N3 is really not rigorous: as we shall see later,
the z;’s are allowed to be negative or positive, whereas in our reasoning the non-vanishing density
could only be considered with ¢ > 0; however, the scaling order which we obtained is correct. The
rescaled random point process ME #° is again a determinantal point process on R; its kernel is

1 —
KN<2+—“2,2+ 4 )
N3

d
K](ifge(uu) - z z

_N@E?+y?)
4

Hy(VNz) Hy_1(VNy) — Hy_1(V/Nz) Hy(VNy)
V21 (N —1)! t—u

where 2 = 2+ tN=5, y = 2 + uN~3 and the reference measure is the Lebesgue measure on R.
Denote

nto) = (&) o )

These normalised oscillator wave-functions form an orthonormal basis of -#?(R, dz), and they sat-
isfy the following differential equation:

Uie(a) =~ () + (L)}* - NHN?N'U

o = —5 ¢N($) + \/N'Lb]v_l(]?).
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Therefore,

_ N(22+44?)
4

(S HN<\/NLL’)HN,1(\/N:U)—HN,1(\/NI> HN<\/Ny)
V21 (N —1)! =y
on(VNz) (U3 (VNY) + B2 en (V) ) = on (V) (e (V) + 5=y (VIVY))
— -
N NV Ny) — Ny) (VN N

— ¥n(VN2) wN(fyx) — Z)N(\/_y) Y (V) - \/2_ Un(VNz) ¥y (VNY).
We are then led to the asymptotic study of Hy(v/Nz) and ¢n(v/Nz) when z is very close to 2.
This is the critical case of the saddle point analysis of the integral representations of the Hermite
polynomials, and we shall modify accordingly the method in order to make it work also in this

case. For a general treatment of the asymptotics of integrals with two critical points that depend
on a parameter = and that coalesce at © = ¢, see [Won01, Section VIL.4]. In the sequel, we fix

© =2+ tN~3, where t is a real parameter. We have

Niyn(VNz) = (£>4 o —HN(\/Nx) - (ﬁ)4 v eN(“_%_é_logz) &

o VNI 2r) 2%ixN7% z
_ \/N1N71/3 %eN%t(Zl)+N(§+22zj10gz) %
211 z

where 1y-1/s = 1+ O(N~3). The function f(z) = 2z — % — log z has a unique critical point at
z =1, and we have f”(1) = 0, so in a neighborhood of the critical point, if z =1+ N ~3y, then
1 3 22 y® 3
p(z,N) = Nst(z—1)+ N —§+22—5—10gz :—ty—gjto(y ).
In this expansion, in order to make the term —% decrease as fast as possible, we need to take
arg(y) € {0, %, -2}, Recall that for # < 2, the contour chosen for the saddle point analysis was

) 3
the unit circle.

FiGURE 5. Deformation of the contour of integration for the saddle point analysis
. .« . 2
in the critical case x = 2 + t N3,

For x ~ 2, we slightly deform this contour as follows:
e Around 1, we take the union of the two segments

z:l—i—N’%ei%u, 0<u<N*®

: 1 1
Wlth§<€<é.
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e We join the endpoints of these two segments by the circle with center 0 and radius

1 2im 1 1 2
Py = |1 N = N g SN ro(nEE).

We denote v, and 7, the two parts of this new contour. Note that on the second part s, writing
2z = rye?, we have

(ry)? =1

—1
9 ogrn

3 2
Re <—§+2z— % —logz) =—(1 —TNCOS¢)2+

so this quantity decreases with 1 € (0, 7) and is always smaller than its value at z = 1+ ¢35 N3,
which is
—2N°"5 + N*75 —2log(1 — N°5 + N*75) N1

— N3571 )
1 5 o )

Therefore,

3e

1 dz N3 N
log [ — PEN 2 < 9NV — —— 4 o(N?) = —
Og(%?{f |Z>_ I 5 T o) 3

+ o(N™)

since¢ > §. This implies that the contribution to the contour integral of 7, decreases as exp(—C N*%),
so it will be negligible. On the other hand, a change of variables yields

% ep(Z,N) % = 1N571/3 N_% /ety_y;)) dy,
" z )

where the path of integration on the right-hand side is the union of the two half-lines R e’ and
2im

R,e 3 .So,ifx =2+ tN~=3, then

1 1 ]. y3 1
Niyy(VNz) = Ns (,—/etys dy) + O(N®7%).
2im Jy
The remainder is by construction a o(1), and on the other hand, the path integral is the so-called
Airy function Ai(t). This function satisfies the differential equation Ai”(t) — ¢t Ai(t) = 0, and its

graph is drawn in Figure 6. It can also be redefined as the real semi-convergent integral Ai(t) =

-0.4

FIGURE 6. Graph of the Airy function.
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L )7 cos(ty + %) dy, and its Fourier transform is

(&3

Ai(g) =e 5.

We refer to [AGZ10, Section 3.7.3] and [WonO1, Chapter II, example 7] for more details on this
entire function. We have proved above that

Nt gy <2N% + tN—%> oo Ailt).

This estimate can be made locally uniform in ¢, and it can be considered as a result of convergence
of holomorphic functions of the variable ¢. Denote the left-hand side of the asymptotic formula
above by 0x(t). We have on the one hand

VNz) Py (VNy) — on(VNy) oy (VN 1
- DT VI = NI VD) L (V) i (V)
_ 0N<t) HN(UE - QN(U) QN(t) o 1 . 9]\[(75) QN(U),

—u 2Ns
and on the other hand, 6 and all its derivatives converge locally uniformly on the complex plane
towards the Airy function and its derivatives. We have therefore established the following result:

K9 (4, 0)

Theorem 2.11 (Airy kernel). As N goes to infinity, the rescaled local random point process My ®°
converges towards the determinantal point process whose kernel is the Airy kernel

_ Ai(t) A’ (u) — Ai'(¢) Ai(u)
t—u

K Airy(t, u)

Y

the reference measure being the Lebesgue measure on R.

N

-15 -10 -5 5 10

FiGure 7. First correlation function for the Airy kernel.

In particular, the density (first correlation function) of the limiting determinantal point process is
pi(t) = (A(1))" — Ai(t) Ai"(t) = (AI'(t))* — £ (Ai(t))*,

which is drawn in Figure 7. The asymptotics of the Airy function and its derivative as ¢ goes to
+00 can again be derived by saddle point analysis of the integral representation of Ai(t). Hence,
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we have:
3

e .

8t ’
The exponential decay of p;(t) for ¢ positive leads one to guess that with high probability, there
are very few eigenvalues of Hy larger than 2, and that the largest eigenvalue x 1 of Hy writes as

ol

Nl

P1(t) s too pr(t) s oo ~—

2+ Ty N3, where Ty converges in law as N goes to infinity. The limiting distribution of T}y will
be detailed in the next paragraph.

Remark 2.12. The Airy kernel can be rewritten as
KAY(t u) = / Ai(s 4+ t) Ai(s + u) ds,
0

as can be seen by applying the differential operator £ + 2 and solving a differential equation; see
[AGZ10, Lemma 3.9.33]. This implies in partlcular that the restriction of J# A" to any subspace
ZL%([M,400), dz) is trace class, since the Airy function of a positive argument decreases exponen-
tially fast.

To close this section, let us mention another classical model of random matrices where similar
techniques can be used in order to compute the local asymptotics of eigenvalues. The circular
unitary ensemble is the random point process of the eigenvalues of a random matrix Uy chosen in
the unitary group U(N) of order N according to the Haar measure. The eigenvalues of a unitary
matrix belong to the unit circle and write as

{GIQN’I,GIHN’Q, o ,e‘eN’N}

with 0 < Oy; < -+ < Oy n < 2m. The Weyl integration formula states that if f is a function
on U(N) which is conjugacy-invariant and hence only depends on the eigenvalues of the matrices,
then the Haar integral fU( ) /() dg rewrites as an integral over the torus TV = (R/27Z)", with a

Vandermonde determinant taking into account the change of variables:

_ 1 16'1 19N 191 19N
| F0d0 = gy [ (i) (A by

We are then exactly in the situation of Theorem 2.3, with the space Z*(R/27Z, ££) and the N
orthogonal functions e*’ with k& € [0, N — 1] (the only difference with what precedes is that we

are dealing with complex-valued orthogonal functions, but this has no important consequence).
So:

Proposition 2.13 (Circular unitary ensemble). The eigenvalues of a random unitary matrix Uy €
U(N) chosen according to the Haar measure form a determinantal point process My on T with kernel

sin <—N(92_¢)>
Kn(0,¢) = Wa

the reference measure being the Lebesgue measure &2.

Indeed, one can compute

N-1  sin <w>
ok(0—0) _ o175 (0-0)

sin (52)

and one sees easily that a determinant det(K (z;,x;))1<i j<n 1s invariant by multiplication of the
kernel by ¢~ (%), Since Ky(0,0) = N for any 6, we deduce immediately from Proposition 1.7

that the eigenvalue density & 3", dg,,, converges in probability towards the uniform Lebesgue
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measure on the torus. Moreover, if one looks at the neighborhood of an angle 6, and at the scaled
local point process defined by

2rB
MR (B) = My (90 N )

for B subset of R, then it converges towards the sine kernel as N goes to infinity:

1 2 2 Si —
K = (b 5 e ) = SO
S11 T)

N N N
So, the sine kernel also appears as the limit of the local statistics of the eigenvalues of a random
unitary matrix.

S Nosoo Ksine (‘T, y> )

2.5. The Tracy-Widom distribution. An important precision of Theorem 2.11 is the following
result due to Tracy and Widom, see [ TW94].

Theorem 2.14 (Tracy-Widom). Let M be a determinantal point process with kernel K™,

(1) There is a largest random point T € M, whose distribution writes as

PIT < 1] = Fy(t) = exp (— /too(x 1) (g(2))? dx) |

where q is the unique solution of the Painlevé Il equation ¢"(x) = x q(x) + 2 (q(x))? such that
q(x) ~ Ai(x) as x goes to +oo.

FiGure 8. Density of the Tracy-Widom F5 distribution.

(2) Let T be the scaled largest eigenvalue in the Gaussian unitary ensemble:
TN = N% (LL’N’l — 2)

We have the convergence in law Ty —N_y100 1.

The cumulative distribution function F; is called the Tracy-Widom distribution, see Figure 8.
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The general Fredholm formula for gap probabilities of determinantal point processes yields:

P[T < 1] = P[M(t, +00) = 0] = det (1 — "))

[(t,400)

=1+ mZ:l ml Sy det(Ai(m;, ) 1<ijom dry - - - dTy,.

The connection between this Fredholm determinant of the Airy kernel and the Painlevé Il equation
is then detailed in [AGZ10, Section 3.8]; it is a bit mysterious.

3. LARGE RANDOM INTEGER PARTITIONS

The sine and Airy kernels introduced in the previous section also drive the local asymptotics of
large random integer partitions chosen according to certain probability measures which are related
to the representation theory of the symmetric groups. This section explains this theory, and the
asymptotic results for the so-called Plancherel measures.

3.1. Plancherel and Schur measures. Given a positive 1nteger N, recall that an integer partition
of size N is a sequence A= (A > Xy > -+ > \) of positive integers which is non-increasing
and such that [A| = 32'_ \; = N. We shall denote £ = £(\) the length of a partition, which s its
number of non-zero parts. A partition is usually represented by its Young diagram, which is the
array of boxes with A; boxes on the first row, Ay boxes on the second row, etc.; see Figure 9 for an ex-
ample. The integer partitions can be used to label many objects from algebra or combinatorics. In

FiGure 9. The Young diagram of the integer partition A = (10,6,5,5,3,1) with
size |A| = 30.

particular, the set 2)(N) of integer partitions of size N is in bijection with the conjugacy classes of
permutations of size N; indeed, two permutations in S(N) are conjugated if and only if they have
the same cycle-type (sequence of the lengths of the disjoint cycles of the permutation). By stan-
dard results from the representation theory of finite groups, the isomorphism classes of (complex,
linear) irreducible representations of G(V) are also in bijection with 2)(NV), and denoting V* the
irreducible representation with label A € Y(N) and dim A = dim¢(V?), we have the isomorphism
of (C&(N),CS&(N))-bimodules

C&(N)= P V*ac (V)
A€Y(N)
which leads to the combinatorial identity
N'= )" (dim))*.
AEY(N)

This formula has another explanation, related to the problem of the longest increasing subsequence
of a permutation. Call standard tablean of shape A a numbering of the N = || boxes of the Young
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diagram of the partition A by the integers of [1, N, such that each row and each column of the
diagram is strictly increasing. For instance,

4

8
11367

is a Young tableau of shape (4, 3,1). The study of the induction rules satisfied by the irreducible
representations of the symmetric groups leads to the identity

dim A = card (ST())),

where ST()\) denotes the set of standard tableaux with shape \; see for instance [ Mél17, Proposition
3.8]. On the other hand, one can construct a bijection between:

e the permutations 0 € G(N),
e and the pairs of standard tableaux (P, Q) with shape(P) = shape(Q) = A € Y(N).

This bijection is known as the Robinson-Schensted algorithm; see [Mél17, Section 3.2]. It yields
a combinatorial explanation of the formula N! = 37, o\ (dim A\)%. The Robinson-Schensted
algorithm has the following important property: if ¢ is a permutation and X is the shape of the
two associated standard tableaux P and @, then for any r > 1,

A+ Ao+ o+ A = max{l(wy) + L(wy) + - -+ L(w,) },

where the maximum runs over r-tuples of disjoint increasing subwords of the word of the per-
mutation o. In particular, the largest part A; is the length of a longest increasing subword in o.

The Plancherel measure of order N is the probability measure on 2)(N) given by

Pn[A] = —(Ch]%,/\) :

By the previous discussion, it is also the image of the uniform probability measure on &(N) by
the Robinson-Schensted map. The Plancherel measure is the spectral measure of the regular trace
on &(N): if x* is the normalised character of the irreducible representation V?*, then for any
permutation 0 € &(N),

> Py xM(0) = o=
AEY(N)
In order to relate the study of random partitions to the theory of determinantal point processes,
we shall need to consider Plancherel measures with a random size N, and more generally a family
of probability measures on Q) = | |y D (V) called Schur measures. Given an integer partition A
and variables 1, ..., 2y with M > ((\), we denote sy(z1, ...,z ) the Schur polynomial with
label A, which is given by

det (x-AﬁM*j)

1<4,j<M
8A<$1,...,$M): M—i
det (xl / )
1<i,j<M
Here, it is understood that \; = 0 if i > ¢(\). This definition is compatible with the addition of a
variable: sy(z1,...,2,0) = sx(z1,...,20). Therefore, we can consider s, as an element of the

algebra of symmetric functions
Sym = 1£n Sym™),

M—o0

where Sym™® is the space of symmetric polynomials in M variables (say, with real coefficients).

The projective limit is taken in the category of graded real algebras, and a Schur function s, € Sym
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can be considered as a homogeneous symmetric polynomial of degree |\| with an infinite alphabet
of variables X = {x;>;}. The Schur functions satisty the Cauchy identiry [Mél17, Theorem 2.18]:

2 a0t =]117 —11'1'3/]' - (Z YM) :

YS! ,J

where pr(X) = >,(x;)" is the k-th power sum. Suppose in particular that X = {z;>;} and
Y = {y;>1} are two sets of non-negative real numbers such that the infinite product [ [, ;- (1—2y;)
converge. Then, the formula

Pxy[A] = (H (1- xi%)) sy (X) sa(Y)

4,521

defines a probability on ) called the Schur measure with parameters X and Y. Actually, one
can consider more general parameters by using specialisations of the algebra Sym which are non-
negative on the basis of Schur functions. These positive specialisations have been classified by Thoma
[Tho64], in connection with the representation theory of the infinite symmetric group S(o0); see
[Mel17, Chapter 11] for details.

Theorem 3.1 (Thoma). A morphism of algebras f € Sym — f(X) € R takes non-negative values
on any Schur functions if and only if there exists v > 0 and two non-increasing summable sequences
A ={a;>1} and B = {Bi>1} of non-negative real numbers with

pi(X) :’7‘1‘20@ +Zﬁi§
i=1 i=1

Proa(X) = (e)* + (1)) 8k

i=1 i=1

Since (pr)k>1 is an algebraic basis of Sy, these formulas entirely determine the morphism of algebras,
which is then denoted by the formal alphabet X = A+ B + ~vE.

Example 3.2. The exponential alphabet E sends p; to 1 and all the other power sums py>» to 0. On
the basis of Schur functions, one obtains

dim A\
sx(F) = W,

by using the Frobenius-Schur formula, which relates the Schur functions to the power sums and

to the characters of the irreducible representations of the symmetric groups (see Theorem 2.32 in
[Meél17]).

Given two formal alphabets X = Ax + Bx + yxE and Y = Ay + By + 9y E corresponding
to positive specialisations of Sym, the Schur measure with parameters X and Y is the probability
measure on Q) given by

Pxy[\] = exp (— 5 f%) 52(X) 5:(1).
k=1

Note that if one replaces X by ¢tX and Y by t7'Y with t € R?, then this does not change the
probability measure Pxy. An essential property of Schur measures is that they define random
point processes on Z + 3 which are determinantal; see Theorem 3.8 hereafter.
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Example 3.3. Take X = 0F and Y = E. Then, if |A\| = N, one obtains
o 0N dim \)? o 0N
Pl = () (Fr) = () 2o

which is a Poissonised Plancherel measure, with a size N distributed according to the Poisson
distribution with parameter 6.

3.2. Point processes and continuous curves associated to a partition. Given any probability
measure on Q) = | |y YD (), arandom integer partition A chosen under IP can be seen as a random
point process on Z + 3 by using the Russian convention in order to draw its Young diagram. One
rotates the Young diagram of \ by 45 degrees, and one draws it in such a way that the cells of the
Young diagram have their area equal to 2. One also adds the half-lines y = +x to this drawing, and
one projects to the z-axis the coordinates of the middles of the decreasing segments of the upper
boundary of the shape thus obtained; see Figure 10. The configuration of point M) C Z + 3 is
called the set of descent coordinates of the partition A, and it is given by the formula

1
wef )
2 i>1

The possible sets of descent coordinates are characterised by the following property: if Z/ = Z+1 =
7' U7, then

card (ZL \ (M,\ N ZL)) = card (MA N Z;) < +o00.
In the next section, we shall see that the random point process M), with A chosen according to a
Schur measure is determinantal on Z/.

Ficure 10. The point process My on X = Z + 3 associated to the integer partition
A =(10,6,5,5,3,1).

The union of the two sets My NZ/ and Z'_\ (M, NZ") is called the set of Frobenius coordinates
of \; we shall denote it F. For instance, if A = (10,6, 5,5, 3,1), then

11 7 5 135919
F)\: e DS R B i i el B
2° 2 2 2222 2
The sum of the absolute values of the Frobenius coordinates in F) is the size of the partition
A; indeed, these coordinates are the signed lengths of the rows and columns of A measured from

its diagonal. It turns out that given a random integer partition A, the random point process M
is determinantal with a Hermitian kernel if and only if F) is determmantal with a J-Hermitian
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kernel, J being the scalar product on (*(Z') = (*(Z',) ® (*(Z) associated to the infinite diagonal
matrix (J % ). This is related to some general properties of the determinantal point processes on a
discrete space X, which we now explain. Fix a countable set X, endowed with the counting measure
and with the discrete topology. Given a simple random point process F' on X and a finite subset

X C X, we set

(X)) =P F:Z@C]
p(X)= Y w(Y).

Note that if X = {x1,...,x,}, then
p(X) = E[FW({xl} X {xg} X -+ X {xn})] = pn(T1, T2, ..., 2,)

is simply the n-th correlation function with respect to the counting measure.

Proposition 3.4 (Fermionic point processes on a discrete space). Consider a trace class non-negative
Hermitian operator £ on (*(X), X being a countable set. We assume that all the restricted operators
Lx with X finite subset of X have a non-negative determinant.

(1) The formula
det .Z X

):dau+zw
defines a probability measure on the set B (X) of finite subsets of X.

(

(2) The corresponding finite simple random point process ' on X is determinantal, with kernel
H =L (1+L)"
A proof of this result is given in [[DV88, Section 5.4]; see also the discussion of [Ols98, Section 1].

Suppose now that one can split X in two parts X and X_, and that the operator .Z:

e is Hermitian with respect to the scalar product defined by the block-diagonal matrix

J:(; _OI).

e has a block decomposition of the form

3:09.
-9 0

Then, the corresponding determinantal point process satisfies card(FNX ) = card(F'NX_) almost
surely; see [Ols98, Proposition 1.7]. Moreover, the correlation kernel 7" writes then as

- I+92°9)'9*9 (I+92*9)"' 9"
~2(I+2*D)"" 29" (I1+22*)")
see [Ols98, Proposition 1.8 and Corollary 1.9].

Proposition 3.5 (Kerov’s complementation principle). Let F' be a finite determinantal point process
on the discrete space X = X U X _, with a J-Hermitian kernel #y whose block-diagonal matrix is

A A
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We define another random point process M by M = F A X_, where A is the symmetric difference of
subsets of X. Then, M is also a determinantal point process on X, with a Hermitian kernel

— ., T—H_)

Proof. We follow [BOOOO0, Proposition A.8]. Given X C X, we shall denote X, = X N X, and
X_ = X NX_. We compute by inclusion-exclusion

MX) = Y AMy)= Y Af(vax)

XcYycx Xcycx

= > PF =Y,and F. =%_\Y]
Xcycx

= Y PX,CF,andZ_=F]
Z_CX_\X_

= > (-)*'PIX,CFrandZ_ C F]
Z_CX \X_

= Z (- (X vz,
Z_CE_\X_

this identity being true for any X such that X_ \ X_ is finite. As can be seen by expanding by
multilinearity, this is precisely the determinant of J#, since #™M = ( jit:r A +(09). O

If 2T is associated to £ = ( %, %"), then A ™M writes as
M _ I+2*9) ' 9*2 (I+9*29)'D* .
2(I+2°9)7! I +22%)7!
This theory applies readily to the case where F' = F) and M = M, the set X being Z’; we shall

see in a moment what form the kernel 7 takes when ) is chosen according to a Schur measure.

In the sequel, we shall also look at scaled Young diagrams, and prove a law of large numbers
which is the pendant of Theorem 2.4 for Plancherel measures; see Theorem 3.6 below. The scaling
is performed as follows. Suppose that A is an integer partition with size N > 1. The upper
boundary of the diagram of A drawn with the Russian convention is a piecewise affine function
wy : R — R, such that:

(1) wa(s) > |s| forany s € R;
(2) wa(s) = |s| for |s| large enough;
(3) [, 26kl gs = N,

We set @y (s) = wx(v/Ns)/v/Nj; this amounts to rescaling the Young diagram of \ in both directions
by a factor |A|~z. Therefore, W, satisfies the two first properties above, and

/REA(S)Q— E ds— 1.

We introduce the space of continuous Young diagrams %
% ={w:R — R, | wis Lipschitz with constant 1, and w(s) = |s| for |s| large enough}.

The maps A — w) and A — @, allow one to embed Q) into #". We endow # with the topology of
uniform convergence on R.
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Theorem 3.6 (Logan-Shepp, Kerov-Vershik). Let Ay be a random integer partition chosen under
the Plancherel measure Py. As N goes to infinity, Wy, converges in probability towards the continuous
Young diagram

2 (sarcsin 2 + V4 —s?)  ifs| <2,
2 =10 ils] > 2.

FIGURE 11. A random integer partition of size N = 400 under the Plancherel measure.

This result is due separately to Logan and Shepp [L.S77] and to Kerov and Vershik [KV77]. We
refer to Figure 11 for a drawing of a scaled random Young diagram chosen according to Py—_4 (in
red), and of the limit shape €2 (in blue). There is a deep connection between the Logan-Shepp-
Kerov-Vershik curve  and the Wigner semicircle law, relying on the so-called Markov-Krein cor-
respondence of measures. Denote v the semicircle law, and y the signed measure given by

) = - (24

which has a density between —1 and 1 (this definition makes sense for any continuous Young
diagram). The Cauchy transform of v is

1 2
v(ds) = —————.
/RZ_S (ds) 2+ V22 —4
1+0(1)

This function is well defined on the complex upper-half plane, and at infinity, it expands as —=-.
The numerator of this expansion is in fact the exponential of the Cauchy transform of

[t =L ew ([ ).

We refer to [Mél17, Section 7.4] for details on this correspondence.

3.3. Correlation kernel of a Schur measure. In order to prove that the Schur measures yield
determinantal point processes, Okounkov used an elementary but extremely powerful representa-
tion of the Schur functions by operators on the infinite wedge space [ OkoO1a]. The space A is the
Hilbert space spanned by the orthonormal basis

Uy =L NToa AN ATy N-ev

where M = {xy > x9 > -+ > x,, > - } is an infinite decreasing sequence in Z' which contains
all the sufficiently large negative half-integers. Among these vectors, the vacuum state is
1 3 5
vp=—AN—/N—o AN

2 2 2



38 PIERRE-LOIC MELIOT

it corresponds to the empty integer partition, and more generally, we shall denote vy = vy,. The
half-integers @ € Z' act on A\ by the free fermion operators 1), and ¢?:

JxAvy itz g M ' . ) eamvmngy freM
Volon) = {0 ifxe M o Yl = {o ifx ¢ M

with the usual rules of anti-commutation for the A symbols (in order to replace z inside a decreasing
sequence), and where —¢, 5/ is the parity of the position of z in the decreasing sequence M. We
have the anti-commutation formula ¢,¢; +1%1), = idpe. The infinite wedge space is also equipped
with the charge and energy operators:

C= s = > Wit

x>0 <0
H=Y wu;—) vt
z>0 <0

Note that C(vy) = 0 and H(vy) = |A|v, for any integer partition \; the kernel of C' is exactly
the span of the vectors vy with A € ). Consider an infinite sequence of formal parameters ¢t =
(t1,t2,...), and the operator

F(t) = exp (Z tr (Ik) s with ap = Z ¢l+k1/)l*'
k=1

lez’

Proposition 3.7 (Schur functions and the infinite wedge space). Denote X the specialisation of the
algebra Sym for which t is the sequence of Miwa parameters: py(X) = kty, for any k > 1. Then, the
action of the operator I'(t) on ker C' is given by

SA\H(X ) lf 2 C )‘7
0 otherwise,

(L) (0u) [ 02) = {
where s\, is the skew Schur function associated to the pair of partitions (i C ). In particular,

L(t)(vg) = Y sx(X) vy

A€

We refer to [Kac90, Chapter 14] and [OkoOla, Appendix A] for a proof of this formula for the
operators I'(¢), and to [Mel17, Definition 2.21] for details on skew Schur functions (we shall not
use them in the sequel). Consider now two positive specialisations X and Y of the algebra Sym,
and the associated sequences of Miwa parameters tx and ty. The correlation function p™ of the
random point process M, with A ~ Py y is given by:

pM(A) = Z WM(A) = exXp <_ZktX,k ty7k> Z S,\(X) SA(Y)

ACB ACM)y

— exp (— > ktxn tng) <F(tx) (vg) (H wm;) F(ty)(v@)>
= exXp (— Z k tX,k tng <Uq) F(tx)* (H Qﬂalp;) F(ty) (U@)> .

acA
Besides, we have I'(¢)*(vg) = vg, and T'(tx)* I'(ty) = exp(D> e ktx i tve) D(ty) T(tx)*, so

,OM(A) = <Uq) (H qja\I];) (U@)> )

N——

D(tx)" T(—ty) (H Yl

acA

N———

L(ty) I'(—tx)" (U@)> = <vw
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where U, = ['(tx)*T'(—ty) ¥ T(ty) T'(—tx)*and U/ = T'(tx)* ['(—ty) ¢ ['(ty) ['(—tx)* (beware
that U/ is not the same as the adjoint operator ¥}). By using an analogue of the Wick principle,
one can rewrite the last formula in a determinantal form, see [OkoO1a, Theorem 1].

Theorem 3.8 (Okounkov). Fix two positive specialisations X and Y of the algebra Sym. We set

K?({Y(x7y) = <U@ | ‘IJI\IJ;/(U@>> )
where U, = T(tx)"T'(—ty) o I'(ty) D(—tx)" and W, = T(tx)"T(—ty) oy D(ty) T(—tx)". The
Schur measure Px y defines a determinantal point process My on Z' with correlation functions

p"(A) = det (KX y (2, y))

T, yeA

forany A C 7! finite subset.

One can write down a very simple formula for the double generating of the kernel K}',.. Con-
sider two formal variables z and w, and the associated formal series

‘/,%/X]\?Y(’%w) - Z wa_yKé\({Y('ray)’

f(2) =3, cp 2" Yr and Y™ (w) = 3, cp w™¥ ¢y, we have
Ky (z,w) = (g | T(tx)" T(—ty) 9 (2) " (w) Tty) T(~tx)" (vo))

_ JIxy(2) x
= (v | ¥(2) ¥ (w) (vg)) ,

where

= = H(X,2)
JX’y(Z) = exXp (Z tX,k Zk — Z ty’k Z_k> = —_1
k=1 k=1 H(Y’ o )

is the Bessel function associated to the two specialisations X and Y, which comes from the gen-
erating series of homogeneous symmetric functions H (X, z) = Y ° h,(X) 2". Finally, we have
trivially

ol (e o)y = Y (2)7 = L

<Y/
so we conclude:

Corollary 3.9 (Schur measures and generalised Bessel functions). The generating series of the kernel
KY'y of the determinantal point process defined by a Schur measure with parameters X and'Y is

‘%/X]\,/[Y<Z>w): - JX7Y(Z)

z—w Jxy(w)’

_ _H(X.z)
T H(Yz71)

where Jx y ()

One can recover the coefficients K}y (z, y) of the kernel of the determinantal point process either
by using a double contour integral, or by expanding the generalised Bessel functions Jx y in Laurent
series. Hence, if Jxy(2) = >, . Jx,v,n 2", one obtains

M
KX,Y(xvy): E X vatk *LX,fYﬁyfk’
keZ!,

where —X and —Y are the specialisations of Sym with opposite Miwa parameters in comparison
to X and Y.
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Example 3.10. Consider the Poissonised Plancherel measure

= e 09N
PP(Q):Z N Py;

N=0

it is the Schur measure associated to the specialisations X = Y = +/0FE. In the sequel, we use an
index {0} for all the functions which describe the correlations of the determinantal point process

Mgy We have Hygy (X, 2) = exp(v/02), so Jigy(2) = exp(v/0(z — z71)). Hence,

NE

Hy(zw) = e (VA((z =27 = (w—w))).

We recover the value of Kgy(x,y) by taking a double contour integral along two arbitrary non-
crossing paths circling around 0:

Ky (z,y) = (2;)2 j{?{ = Ui)\/ﬁ exp (\/é(z — 2z = (w— w_1)> 27" wY dz dw.

The saddle point analysis of this formula will provide us with asymptotic results for the Poissonised
Plancherel measures. Note that a similar approach can be used in order to study any Schur measure.
The kernel Kygy(x, y) is called the discrete Bessel kernel (with parameter 6), the terminology coming
from the identity

S 1(2V0) J, 1 (2V0) = T, 1 (2v0) J,_1(2V0
Koy () = V0 1(2V0) J,,1 (2v0) 1(2v0) J,-1( )7

N|=

where

LS e
Jal2) = mz:() m!T(m+a+1) (2)
is the standard Bessel function of the first kind (see Equation (23) in [OkoO1b]). The origin of this
second formula is the following. The function Jigy(2) is here equal to >, _, J,(2V/0) ™. Therefore,
the general formula for the coefhicients Koy (z, y) yields

Koywy) = > Jorw (2\/5) J,y,k<—2\/§>.

keZ),

This can be rewritten as a Christoffel-Darboux type ratio by doing an integration by parts in
the integral formula for Kgy(x,y). On the other hand, a similar expression for the kernel of the
random point process Fygy of Frobenius coordinates can be derived by using the complementation
principle from Proposition 3.5; see Theorem 1 in [BOOOQ0].

3.4. Asymptotics of the Plancherel measures. By saddle point analysis of the discrete Bessel ker-
nel, one can compute the asymptotics of a large random integer partition chosen according to a
Poissonised Plancherel measure Ppg); a de-Poissonisation procedure yields then the corresponding
results for the Plancherel measures Py. We start from with the bulk asymptotics, and we fix a
parameter zy € (—2,2). As in Section 2, we renormalise the random point process Mgy, and we
set

M (B) = Mgy (L2oV0) + B).

. . . . local.zo - .
In opposition to the case of eigenvalues of random matrices, M;"* is a random point process on

Z' (instead of R). The limit in the sense of Proposition 2.9 will thus be a random point process on
7.
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Theorem 3.11 (Borodin-Okounkov-Olshanski). For 2y € (—2,2), we denote ¢y = arccos(%) €
(0, ). As 6 goes to infinity, M %‘;;al’xo converges towards the determinantal point process with discrete
sine kernel
Jdsine,zo (z,y) = sin ¢o( — y)’
m(z —y)
the reference measure being the counting measure on 7.

The proof of this result relies on a two-dimensional saddle point analysis, which is a common
procedure when studying random particle processes; we are indebted to [OkoO1b, Section 3] for
the details of the computation of the limit. Since the limiting kernel is translation invariant, the
theorem is equivalent to the following result: if g, yy are half-integers such that

Lo Yo
= 70— X0 3 T = 0-c0 X0 ;3 Tog— Yo =T Y,
Vo Vo

then Koy (24, Yg) —0—00 K™ (z, y). The discrete Bessel kernel writes then as

Knnn) = s F a0 (VIR (5 )~ VO (e 7)) deaw

where F(z,t) = z — 27! — t log 2, and where the double contour integral is taken for instance
over two circles with radii |z| > |w|. We start the saddle point analysis by determining the critical
points of F(+,x¢). They are given by

1z . _ wgE£iy/4— (10)?
22z ’ T 2 —°
Moreover, on the circle with radii 1, Re(F(z,z0)) = 0, and the gradient of Re(F(z, x¢)) is given
by

1+ +igo ]

V(Re F(-,10))(e?) = 2 (cos @ — cos ¢p) ug,

where g is the unit vector €'’ (perpendicular to the unit circle at z = €'%).

e_i¢0

FIGURE 12. Gradient of the function Re F(+, ) on the unit circle, and deformation
of the unit circle for the steepest descent method.

Consequently, if we have a path  which is a deformation of the unit circle crossing it at the two
points X% according to Figure 12, then the steepest descent method applies to

J(I{e‘/éF(w’m) dw,
i

and this integral goes to 0 as 6 goes to infinity. We now go back to the integral form of Kgy (s, ys),
and we start with the two following contours: |z| = 1 (path 7,) and |w| = 1 — € (path v,,). When
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we deform ,, into 7, we obtain an integral which is asymptotically small, but because of the ratio

——, we pick up a residue each time z = w. This residue is equal to
1

(2imr) zr—y+1l’

and we have to integrate it over the part of the path v, which is crossed by -y during the deformation
Yw — 7y (the part in red in Figure 13).

ei¢0

Yz ~y

eild)o

FIGURE 13. Deformation of ,, into 7, which picks up a residue m along the
red curve.

So, we conclude that

, 1 1 sin ¢o(x — y)
ell)rgo Koy (g, y0) = o j{md:e_wo iy 2o 2 = p p——
An analysis analogue to the one of Proposition 2.7 shows on the other hand that if |zo| > 2, then
the same kernel converges exponentially fast towards 0. The discrete sine kernel from Theorem
3.11 1s related to the Logan-Shepp-Kerov-Vershik curve from Theorem 3.6 by the following com-
putation. By taking xy = vy, we observe that the expected number of descent coordinates of the
random partition A ~ Pp ) in an interval of size L around x(v/0 is asymptotically equivalent

I ®o - L (xo)
— = — arccos| —
s T 2
for |zo| < 2. In terms of the random scaled diagram @), this means that
2 2
(@)(8) ~0-00 - (g — arccos(%)) == arcsin(%) :
which is exactly the derivative Q' (s); see [BOOO0O, Remark 1.7] for more details.

Remark 3.12. Theorem 3.11 can be restated as follows. Let Xy = (zn1,...,ZN.,) be a regular

. . TN.; . . . . . .
sequence of half-integers: each ratio 2 and each difference zx,; — 2v; has a finite or infinite limit.
If the differences have finite limits d;; and the ratios all converge to the same quantity z, then

sin(¢o dij))
1<i,j<n ’

s dij

p{N},n(fI;NJ, s 7'TN,n) — N—oo det (

where p{n},, 1s the n-th correlation function of the Poissonised Plancherel point process My;.
More generally, if the ratios have different limits, then one has asymptotic independence of the
corresponding parts of the point process [BOOOQO, Theorem 3]. Hence, if Xy = X} U X} with
limy oo d( Xy, X§) = 400 and | Xy | = nq, | X}| = no, then

PNt XN) 2N—s00 PNy (X) PV e (X);
indeed, the saddle point analysis yields limy_,oc Kny (2N, Tn;) = 0 if d;; = +o00.
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To prove that the non-Poissonised random partitions under the Plancherel measures Py satisfy
the same limit theorem in the bulk as their Poissonised counterparts (and therefore, the law of large
numbers 3.6 for the scaled random diagrams), we proceed to a de-Poissonisation of the correlation
functions. More precisely, given a regular sequence Xy of size n, we have
e g

k!

pioyn(Xn) = Prn(XN),

k=0

and this formula makes sense even if # is a complex number. We then recover py,.(Xx) by a
contour integration:

N! e“dz
o) = 5 P p1alX0) S

We take for contour the circle |z] = N, on which the function z — N log z admits a critical point at
z = N. A sufficient condition in order to have py,,(Xn) ~ pyny..(Xn) is given by the following:

—z k

Lemma 3.13. Let (fnx)nken be a bounded family of real numbers, and fn(z) = Y 7" o & [y
We assume that:

e max|,—y(Relog fn(2)) = O(VN).
o there exists a constant [, such that we have the following estimate:

f Z) = foo
max —| N(Vl)kM | =o(1)
‘Z—N|§N —€ eﬁ

forsomee € (0,1) and vy > 0.
Then, limy o0 fNN = foor
We refer to [BOOO00, Lemma 3.1] for a proof of this lemma, which relies on classical arguments
of asymptotic analysis of integrals. It can be applied to the family fyx = = Py Xn), with fo

given by the determinant of the discrete sine kernel; the details of this computation are not really
interesting.

Let us now look at the edge of the random point process, and consider
edge 1/6
Mg (B) = My, (2v0+ 6" B).
which is a random point process on R. The kernel of this rescaled determinantal point process is
Jr9+w01/6—% (TG) Jr9+y01/6+% (7’9) - JT9+IE091/6+% (T9> JT9+y91/6—% (TQ)
r—y ’

where 7y = 2v/0 and I(z, 0) is the indicator function of the condition 2v/8 + x60/¢ € Z'. By using
as before the integral representation

K9 (x,y) = I(z,0)1(y,0) 0/°

1 tH(z—z—1 dz
In(2t) = > jf T

and by performing a saddle point analysis with a critical point of order 2 as in the second part of
Section 2.4, one obtains the following limit formula:

lim \/5 Jrg—&-acﬂl/ﬁ—%(re) Jrg+y91/6+%(r9) - Jr9+z91/6+%(re) Jr9+y01/6—%(7ﬂ¢9)

— Airy
Jim p—y K™Y (x,y).

It follows that for any family (z1,...,z,)

o 2o (T 00) e (00,

=1

-
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In the weak sense, I(z,6) 0/¢ converges to the Lebesgue measure dr, so one is led to the following
result, which is the analogue for random partitions of Theorem 2.11:

Theorem 3.14 (Borodin-Okounkov-Olshanski). As 6 goes to infinity, Mf%ge converges towards the
Aury point process.

Again, a de-Poissonisation procedure yields the same result for
M= (B) = My (2\/N + N1/6B> :

the details of these computations are given in [BOOOQO, Section 4]. As a corollary, one obtains the
following answer to Ulam’s problem of the longest increasing subsequence in a uniform random
permutation; the result appeared first in [BD]99], and was reproved by different means in [ Oko00;
JohOt].

Corollary 3.15 (Baik-Deift-Johansson). Let A be a random partition chosen under the Plancherel
measure Pn. As N goes to infinity, the rescaled first part \1, which has the law of a longest increasing
subsequence or a random permutation in S(N), satisfies the following limit theorem:

A — 2V N
N1/6
where TW is the Tracy- Widom distribution from Theorem 2.14.

— N0 TW:
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