
DETERMINANTAL POINT PROCESSES AND APPLICATIONS

PIERRE-LOÏC MÉLIOT

Abstract. The purpose of this note is to present the theory of determinantal point processes, and
two of its most classical applications: the study of eigenvalues of large randommatrices, and the study
of large random integer partitions.
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1. Kernels and determinantal point processes

In this first section, we develop the general theory of determinantal point processes, following
[Sos00a; Joh05; Bor09] and [Hou+09, Chapter 4]. We voluntarily omit some technical details
related to the theory of trace class operators.

1.1. Random point processes and correlation functions. A random point process on ameasurable
spaceX is a random sum or series

∑
i∈I δXi of Dirac masses. To define this correctly, it is convenient

to make some assumptions on the space X; thus, in the sequel, we shall assume that X is a locally
compact, complete and separable metric space, see for instance [Kal02, Chapter 12] for a general
study of random measures in a slightly broader setting. In all the applications hereafter, X will be
a subset of some real vector space Rd. We endow X with its Borel σ-field B(X). A (locally finite)
atomic measure on X is a positive measure µ : B(X) → N t {+∞} which takes integer values,
and such that for any compact subset K ⊂ X, µ(K) < +∞. Then, there exists a countable family
(xi)i∈I of points in X such that

µ =
∑
i∈I

δxi ,

and such that for any compact subset K, {i |xi ∈ K} is finite. We denote M atom(X) the set of
atomic measures on X, and we endow it with the smallest σ-field which makes measurable the
maps µ 7→ µ(B) with B ∈ B(X). Then, a random point process on X is a random element in
M atom(X), that is to say a measurable map M from a probability space (Ω,F ,P) to M atom(X).
By definition, all the quantities M(B) with B ∈ B(X) are then random variables with values in
N t {+∞}.

Example 1.1. Suppose that µ : B(X)→ R t {+∞} is a locally finite positive Borel measure on X.
A Poisson point processwith intensity µ on X is a random point process Pν such that, for any family
(Ba)a∈A of disjoint Borel subsets of X, (Pµ(Ba))a∈A is a family of independent Poisson variables
with parameters µ(Ba). Any locally finite positive Borel measure on X gives rise to a Poisson point
process, which is unique in law in M atom(X).

In order to study a random point process M on a space X, it is natural to consider the joint
moments of the associated positive random variables M(B): they describe how many points fall
in a given Borel subset B, and the correlations of these cardinalities for distinct Borel subsets
B1, B2, . . . , Bn. The factorial moment measures of M will enable one to encode all these joint
moments in a convenient way. For n ≥ 1, we first define the n-th factorial powerM↓n of the point
processM . Although this is not trivial, given a random point processM : (Ω,F ,P)→M atom(X)
on a locally compact polish space, we can actually define on the same probability space some ran-
dom variables Xi : (Ω,F ,P)→ X t {†} for i ≥ 1, such that:

• Xi = † if and only ifM(X) < +∞ and i > M(X);

• M =
∑M(X)

i=1 δXi .
We then defineM↓n as the random point process on Xn given by

M↓n =
∑

i1 6=i2 6=···6=in
1≤ia≤M(X)

δ(Xi1 ,Xi2 ,...,Xin ).

This randompoint process count the sequences (Xi1 , Xi2 , . . . , Xin) of length n consisting in distinct
points of the random point process M . Here the word "distinct" is a bit misleading, because if
Xi = Xj for i 6= j (so, ifM is not a simple random point process), then the pair (Xi, Xj) is allowed
to appear in a sequence (Xi1 , Xi2 , . . . , Xin) counted by the factorial powerM↓n. The terminology
of factorial power is justified by the following computation: if B is a (relatively) compact subset of
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X, thenM(B) is almost surely finite, and

M↓n(Bn) = number of n-sequences of distinct points in B

= M(B)(M(B)− 1) · · · (M(B)− n+ 1) = (M(B))↓n.

The n-th factorial moment measure ofM is the positive Borel measure µ↓nM on Xn defined by:

µ↓nM (B1 ×B2 × · · · ×Bn) = E
[
M↓n(B1 ×B2 × · · · ×Bn)

]
.

Example 1.2. For n = 1, µ↓1M = µM is the intensity of the point process M , defined by µM(B) =
E[M(B)].

Example 1.3. Consider a Poisson point process P on X with intensity µ, and some disjoint locally
compact subsets B1, . . . , Bn in X. A way to construct the restriction of the Poisson point process
P to B =

⊔n
a=1Ba is as follows: we first take a Poisson random variable N with parameter µ(B),

and we then set

P|B =
N∑
i=1

δXi ,

where the Xi’s are independent random variables in B with law µ(·)
µ(B)

, and are independent of N .
We then have:

µ↓nP (B1 ×B2 × · · · ×Bn) = E

 ∑
i1 6=i2 6=···6=in

1≤ia≤N

(
n∏
a=1

1Xia∈Ba

) =

(
n∏
a=1

µ(Ba)

µ(B)

)
E
[
N↓n

]
=

n∏
a=1

µ(Ba).

By additivity, we conclude that µ↓nP = µ⊗n. This identity encodes the independence of the restric-
tions of the Poisson point process P to disjoint subsets.

Example 1.4. The factorial powers and the factorial moment measures are related to the computa-
tion of products ∏

i∈I

(1 + f(Xi)),

where f : X → C is some bounded measurable function with compact support, and the random
point process M is given by M =

∑
i∈I δXi , I being a random interval [[1,M(X)]] ⊂ N. Indeed,

since f is supported by a compact, we can assume without loss of generality that M(X) is finite
almost surely, and then,∏

i∈I

(1 + f(Xi)) = 1 +
∞∑
n=1

 ∑
1≤i1<i2<···<in≤M(X)

n∏
a=1

f(Xia)

 = 1 +
∞∑
n=1

1

n!
M↓n(f⊗n).

In many cases, given a random point processM on a locally compact polish space X, there exists
a reference Radon measure (locally finite Borel positive measure) λ on X such that for any n ≥ 1,
the factorial moment measure µ↓nM is absolutely continuous with respect to λ⊗n. In this situation,
the density

ρn(x1, . . . , xn) =
d(µ↓nM )

d(λ⊗n)
(x1, . . . , xn)

is called the n-th correlation function of the random point process. In particular, if X = Zd or
X = Rd, we shall take for reference measure λ the counting measure or the standard Lebesgue
measure. The determinantal point processes will be the random point processes whose correlation
functions write as

ρn(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n
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for some adequate kernel K which does not depend on n.

Theorem 1.5 (Correlation functions). LetM be a random point process on a locally compact polish
spaceX. We suppose that there exists a reference Radonmeasureλ onX such that the correlation functions
ρn with respect toM and λ are all well-defined. Then:

(1) The correlation functions are symmetric: for any σ ∈ S(n),
ρn(x1, . . . , xn) = ρn(xσ(1), . . . , xσ(n)).

(2) The correlation functions are positive, in the following sense: for any set (φ0, φ1, . . . , φN) of
compactly supported measurable functions φk : Xk → R such that

φ0 +
N∑
k=1

∑
i1 6=i2 6=···6=ik

1≤ia≤N

φk(xi1 , . . . , xik) ≥ 0,

we also have

φ0 +
N∑
k=1

∫
Xk
φk(x1, . . . , xk) ρk(x1, . . . , xk)λ

⊗k(dx1 · · · dxk) ≥ 0.

Conversely, given a family of locally integrable positive functions (ρn)n∈N which satisfy the two con-
ditions above, one can define a random point process M on X with these correlation functions. This
random point processM is unique in law if and only if the random variablesM(B) with B ∈ B(X)
are determined by their moments.

This result is due to Lenard, see [Len73; Len75].

1.2. Locally trace class Hermitian kernels. In this paragraph, we fix a locally compact polish
space X, and a reference Radon measure λ on X. We denote L 2(X, λ) the Hilbert space of square-
integrable functions on X; by [Coh13, Proposition 3.4.5], L 2(X, λ) is separable. We recall that a
trace class operator on a separable Hilbert space H is a bounded linear operator A : H → H such
that, given an orthonormal basis (ei)i∈I of H, we have∑

i∈I

〈
ei
∣∣ (A∗A)1/2(ei)

〉
H
< +∞

the index set I being finite if H is finite-dimensional, and infinite countable if H is infinite-dimen-
sional. The trace of the operator A is then defined by the aboslutely convergent series

tr(A) =
∑
i∈I

〈ei | A(ei)〉H ;

this does not depend on the choice of the orthonormal basis. In the same setting, a bounded linear
operator A : H → H is called Hilbert–Schmidt if A∗A is a trace class operator; equivalently,

(‖A‖HS)2 = tr(A∗A) =
∑
i∈I

〈A(ei) | A(ei)〉H < +∞

for any orthonormal basis (ei)i∈I of H. We have the following inclusions of ideals of the Banach
algebra of bounded linear operators on H:

{finite rank} ⊂ {trace class} ⊂ {Hilbert–Schmidt} ⊂ {compact}.
If H = L 2(X, λ), then its Hilbert–Schmidt operators are given by square-integrable kernels.
Thus, if K : L 2(X, λ) → L 2(X, λ) is Hilbert–Schmidt, then there exists a unique kernel K ∈
L 2(X2, λ⊗2) such that

(K f)(x) =

∫
X

K(x, y) f(y)λ(dy).
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ThemapK 7→ K is an isometry betweenL 2(X2, λ⊗2) and the space ofHilbert–Schmidt operators
HS(L 2(X, λ)) [GGK00, Chapter IV, Theorem 7.7]. Moreover, if X = Rd, λ is the Lebesgue
measure, K is a trace class operator and if K is continuous at (x, x) for λ-almost any x, then

tr(K ) =

∫
X

K(x, x)λ(dx),

see [Bri91, Corollary 3.2]. In a more general setting, for instance if the kernelK is not continuous,
then as an element of L 2(X2, λ⊗2), it might not be well defined on the diagonal. However, there
is a general averaging process which yields λ-almost everywhere a value of K(x, x) such that the
relation above holds; see again [Bri91].

Given a trace class operatorA on a separable Hilbert spaceH, we can also define the Fredholm de-
terminant det(I+A). Denote

∧kH the k-th exterior power ofH, which is the Hilbert completion
of the algebraic k-th exterior power for the scalar product

〈v1 ∧ v2 ∧ · · · ∧ vk | w1 ∧ w2 ∧ · · · ∧ wk〉∧kH = det(〈vi | wj〉H)1≤i,j≤k.

It is again a separable Hilbert space, and if (ei)i∈I is an orthonormal basis of H with I ⊂ N, then
(ei1 ∧ ei2 ∧ · · · ∧ eik)i1<i2<···<ik∈I is an orthonormal basis of

∧kH. Now, the k-th exterior power
of A defined by extension of the rule(∧kA

)
(v1 ∧ v2 ∧ · · · ∧ vk) = A(v1) ∧ A(v2) ∧ · · · ∧ A(vk)

is again a trace class operator. Indeed, given A of trace class, consider an orthonormal basis (ei)i∈I
of diagonalisation of the compact self-adjoint operator |A| = (A∗A)1/2, with |A|(ei) = λi ei. Each
λi is a non-negative real number, and ‖A‖1 = tr(|A|) =

∑
i∈I λi. We then have:∑

i1<i2<···<ik

〈
ei1 ∧ ei2 ∧ · · · ∧ eik

∣∣∣ ∣∣∣∧kA
∣∣∣ (ei1 ∧ ei2 ∧ · · · ∧ eik)〉∧kH

=
∑

i1<i2<···<ik

〈ei1 ∧ ei2 ∧ · · · ∧ eik | |A|(ei1) ∧ |A|(ei2) ∧ · · · ∧ |A|(eik)〉∧kH
=

∑
i1<i2<···ik

λi1λi2 · · ·λik =
1

k!

∑
i1 6=i2 6=···6=ik

λi1λi2 · · ·λik ≤
1

k!
(tr(|A|))k,

so
∧k A is of trace class, with

∥∥∥∧k A
∥∥∥
1
≤ (‖A‖1)k

k!
. The Fredholm determinant is defined by:

det(I + A) = 1 +
∞∑
k=1

tr
(∧kA

)
;

by the previous calculation, the series is convergent and | det(I + A)| ≤ e‖A‖1 . We recover the
traditional determinant when H is finite-dimensional. On the other hand, if K is a trace class
operator on L 2(X, λ) associated to a kernel K ∈ L 2(X2, λ2), then its Fredholm determinant is
given by:

det(I + K ) = 1 +
∞∑
k=1

tr
(∧kK

)
= 1 +

∞∑
k=1

1

k!

∫
Xk

det(K(xi, xj))1≤i,j≤k λ(dx1) · · ·λ(dxk).

This is the Fredholm formula; as before, it is a bit ambiguous if for instance X = Rd and K is
not a continuous kernel, but it can still be given a sense even in this case. We refer to [GGK00,
Section 1.6] for a proof in the easy case where K has finite rank, and to [loc. cit., Section 4.5] for
an extension to general integral operators. This problem is also discussed in details at the beginning
of [Sos00a] in the framework of determinantal point processes.

In the following, we consider a linear operator K : L 2(X, λ)→ L 2(X, λ) which is:
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(1) Hermitian and non-negative: for f, g ∈ L 2(X, λ), 〈f |K (g)〉L 2(X,λ) = 〈K (f) | g〉L 2(X,λ)

and 〈f |K (f)〉L 2(X,λ) ≥ 0.

(2) locally of trace class: for any relatively compact subset B ⊂ X, KB = 1BK 1B is a trace class
operator on L 2(B, λ|B).

This implies the existence of a unique measurable function K : X2 → C such that:

• K(x, y) = K(y, x).
• det(K(xi, xj))1≤i,j≤n ≥ 0 for λ⊗n-almost any family of points x1, . . . , xn.
•
∫
B2 |K(x, y)|2 λ(dx)λ(dy) < +∞ for any relatively compact subset B ⊂ X.

Theorem 1.6 (Determinantal point process associated to a Hermitian kernel). Suppose that K is
the kernel of a Hermitian non-negative locally trace class operator K on L 2(X, λ).

(1) The spectrum of K (set of complex numbers such that zI − K is not invertible) is included
in [0, 1] if and only if, for any relatively compact subset B ⊂ X, the spectrum of the restricted
operator KB is included in [0, 1].

(2) If the condition Spec(K ) ⊂ [0, 1] is satisfied, then there exists a random point processM on X
whose correlation functions with respect to λ are given by:

ρn(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n.

This random point process is unique in law; equivalently, all the random variablesM(B) with
B relatively compact are determined by their moments (actually, they have subexponential tails).

(3) Suppose conversely given a determinantal point processM whose correlations are associated to
the kernel K of a Hermitian non-negative locally trace class operator K on L 2(X, λ). Then,
Spec(K ) ⊂ [0, 1].

We refer to [Sos00a, Theorem 3] for a proof of this result; see also [Hou+09, Section 4.5]. The
determinantal point processes can be defined under weaker assumptions (for instance, with non-
Hermitian kernels), but in the sequel we shall stick to the setting of Theorem 1.6. Note that in the
first item of the theorem, a restricted operator KB is trace class hence compact, so

Spec(KB) ∪ {0} = {eigenvalues of KB} ∪ {0}.

The non-zero eigenvalues of KB will be involved in a precise description of the law of the random
variableM(B), whereM is a determinantal point process with kernel K.

1.3. Observables of determinantal point processes. Given a determinantal point processM with
kernel K, let us see how to use this kernel in order to obtain information onM .

Total number of particles. Consider as above a non-negative Hermitian and locally trace class
operator K : L 2(X, λ) → L 2(X, λ). One can define the trace of the whole operator K by
taking the supremum of the traces of the restricted operators KB:

tr(K ) =

(∫
X

K(x, x)λ(dx)

)
∈ R+ t {+∞}.

Suppose from now on that we have a determinantal point processM with such a kernelK. Then,
M(X) = +∞with probability 0 if tr(K ) < +∞, and with probability 1 if tr(K ) = +∞ [Sos00a,
Theorem 4]. In the first case, we have:

• P[M(X) ≤ n] = 1 if and only if rank(K ) ≤ n. If rank(K ) = n, then there exists a
family of n orthonormal functions ψ1, . . . , ψn in L 2(X, λ) and eigenvalues λ1, . . . , λn in
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(0, 1] such that

K(x, y) =
n∑
i=1

λi ψi(x)ψi(y).

• P[M(X) = n] = 1 if and only if rank(K ) = n and K is the orthogonal projection on a
vector space with rank n. Then, in the decomposition above, all the λi’s are equal to 1.

Density of particles. In the same setting, the first correlation function ρ1(x) = K(x, x) gives the
expected density of particles: for any relatively compact subset B,

E[M(B)] =

∫
B

K(x, x)λ(dx).

Later, we shall consider sequences of determinantal point processes (MN)N∈N with MN(X) = N
almost surely. In this setting, a very simple criterion on the Hermitian kernels KN of the point
processesMN allows one to prove the convergence of the renormalised empirical densities of par-
ticles:

Proposition 1.7 (Limiting density of particles). We write MN =
∑N

i=1 δXi , and we consider the
random probability measures

νN =
MN

N
=

1

N

N∑
i=1

δXi .

We assume that:

(1) λ-almost everywhere, KN (x,x)
N

converges to a density function f(x) with
∫
X
f(x)λ(dx) = 1.

(2) the referencemeasureλ satisfies somemild regularity assumption: one can find a countable family
(Bj)j∈J of relatively compact open subsets of X, such that any open subset B ⊂ X writes as the
union of some Bj ’s, and such that all the Bj ’s satisfy λ(∂Bj) = 0.

Then, with respect to the topology of convergence in law on M 1(X), the random distribution νN con-
verges in probability towards the deterministic distribution ν = f(x)λ(dx).

Note that the Lebesgue measure on Rd trivially satisfies the regularity assumption. Besides, if
(Bj)j∈J is an adequate countable family of relatively compact open subsets, then without loss of
generality, we can assume that any open subset B ⊂ X writes as B =

⋃
n∈NBjn for some increasing

sequence (Bjn)n∈N. Indeed, starting from an adequate family (Bj)j∈J , the larger family formed by
the finite unions of Bj’s is also countable, and it also consists of relatively compact open subsets
whose boundaries have a vanishing λ-measure. In the sequel, we add this property with increasing
sequences to the definition of an adequate family.

Proof of Proposition 1.7. We fix:
• a probability space (Ω,F ,P) on which all the random point processesMN are defined;
• an adequate family (Bj)j∈J of relatively compact open subsets of X.

Suppose that we can prove that for any j ∈ J , νN(Bj) converges in probability towards ν(Bj). The
convergence in probability is equivalent to the almost sure convergence of a subsubsequence of any
given subsequence of the sequence of random variables. Therefore, if (νψ(N))N∈N is a subsequence
of (νN)N∈N, then by diagonal extraction we can find a subsubsequence (νψ◦θ(N))N∈N such that

∀j ∈ J, νψ◦θ(N)(Bj)→a.s. ν(Bj).

Then, with probability 1, we also have for any open subset B ⊂ X

lim inf
N→∞

νψ◦θ(N)(B) ≥ sup
n∈N

(
lim inf
N→∞

νψ◦θ(N)(Bjn)
)

= sup
n∈N

ν(Bjn) = ν(B).
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Therefore, by the Portmanteau theorem [Bil99, Theorem 2.1], we have the almost sure convergence
in law νψ◦θ(N) →a.s. ν, and this implies the convergence in probability νN →probability ν.

So, it suffices to prove the following fact: for any Bj in an adequate family, νN(Bj) →probability

ν(Bj). This convergence in probability will be obtained by the second moment method. First, we
have

E[νN(Bj)] =
E[MN(Bj)]

N
=

∫
Bj

KN(x, x)

N
λ(dx),

and by assumption KN (x,x)
N

converges to f(x). This implies by classical arguments the convergence
in law of KN (x,x)

N
λ(dx) towards the probability measure ν(dx) = f(x)λ(dx). As a consequence,

since Bj is a continuity set for λ and ν,

E[νN(Bj)]→N→∞ ν(Bj).

On the other hand,

E[(νN(Bj))
2] =

E[(MN(Bj))(MN(Bj)− 1)] + E[MN(Bj)]

N2
=

E[M↓2
N (Bj ×Bj)]

N2
+O

(
1

N

)
.

By definition of a determinantal point process, the leading term on the right-hand side is given by
the integral ∫

(Bj)2

KN(x, x)KN(y, y)−KN(x, y)KN(y, x)

N2
λ(dx)λ(dy)

= (E[νN(Bj)])
2 −

∫
(Bj)2

(
|KN(x, y)|

N

)2

λ(dx)λ(dy) ≤ (E[νN(Bj)])
2.

Therefore, the variance of (νN(Bj))
2 is a O(N−1); together with the convergence of the mean, this

proves the convergence in probability. �

Number of points in a relatively compact subset. If B1, . . . , Bn is a family of disjoint relatively
compact subsets in X, the joint law of the random variablesM(B1), . . . ,M(Bn) withM determi-
nantal point process with kernel K can be computed as follows. We consider the joint generating
function of these variables:

E

[
n∏
a=1

(za)
M(Ba)

]
= E

 n∏
a=1

M(Ba)∑
ma=0

(
M(Ba)

mj

)
(za − 1)ma


= 1 +

∞∑
m=1

∑
m1+···+mn=m

E

[
n∏
a=1

(M(Ba))
↓ma

]
n∏
a=1

(za − 1)ma

(ma)!
.

The convergence of these series is ensured by the following identity: for any composition m =
m1 + · · ·+mn, setting B =

⊔n
a=1Ba, we have

E

[
n∏
a=1

(M(Ba))
↓ma

]
= E[M↓m((B1)

m1 × · · · × (Bn)mn)]

=

∫
(B1)m1×···×(Bn)mn

det(K(xi, xj))1≤i,j≤m λ(dx1) · · ·λ(dxm)

= m! tr ((1BK 1B1)
∧m1 ∧ (1BK 1B2)

∧m2 ∧ · · · ∧ (1BK 1Bn)∧mn)

≤ (tr(KB))m.
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If a = aj is the index of the set Ba corresponding to the variable xj , then the same computation
shows that

E

[
n∏
a=1

(za)
M(Ba)

]

= 1 +
∑

m1+···+mn=m
m≥1

∫
Xm

det(1B(xi) (zaj − 1)K(xi, xj) 1Baj (xj))1≤i,j≤m
λ(dx1) · · ·λ(dxm)

(m1)! · · · (mn)!

= 1 +
∞∑
m=1

1

m!

∫
Xm

det

(
n∑
a=1

1B(xi) (zaj − 1)K(xi, xj) 1Baj (xj)

)
1≤i,j≤m

λ(dx1) · · ·λ(dxm).

The quantity that one obtains is a Fredholm determinant:

E

[
n∏
a=1

(za)
M(Ba)

]
= det

(
I +

n∑
a=1

1B (za − 1) K 1Ba

)
.

Let us consider in particular the case where n = 1 and the trace class self-adjoint non-negative
operator KB has a countable family of eigenvalues (λB,i)i∈I with 0 ≤ λB,i ≤ 1 for any i. The
Fredholm determinant is then given by:

E[zM(B)] = det(I + (z − 1)KB) =
∏
i∈I

(1 + (z − 1)λB,i).

This is precisely the generating series of the random variable X =
∑

i∈I Ber(λB,i), where all the
Bernoulli variables are assumed to be independent. This random series converges almost surely by
the two-series Kolmogorov criterion, since tr(KB) =

∑
i∈I λB,i < +∞ by hypothesis. We thus

have:

Proposition 1.8 (Marginales of a determinantal point process). Given a determinantal point process
M associated to a Hermitian non-negative locally trace class operator with kernelK, for any relatively
compact subset B ⊂ X, if (λB,i)i∈I is the collection of eigenvalues of KB , then the law ofM(B) is the
law of a random series of independent Bernoulli variables with parameter λB,i.

In particular, if tr(K ) = +∞ and if we have an increasing sequence of subsets (BN)N∈N with

var(M(BN)) =

(∫
BN

K(x, x)λ(dx)−
∫
(BN )2

|K(x, y)|2 λ(dx)λ(dy)

)
→ +∞,

then we have the central limit theorem
M(BN)− E[M(BN)]√

var(M(BN))
⇀N→+∞ N (0, 1).

This theorem appears for instance in [Sos00b]; see also [Sos00a, Theorem 8]. Note that the for-
mula for var(M(B)) shows that we always have var(M(B)) ≤ E[M(B)] for a determinantal point
processM and a relatively compact subset B.

Remark 1.9. Suppose that K is the orthogonal projection from L 2(X, λ) to a vector subspace
with dimension N . Then, Proposition 1.8 ensures that the associated determinantal point process
M satisfiesM(X) = N almost surely, since there are N non-zero eigenvalues equal to 1. Thus, the
determinantal point processes with a fixed number of points are naturally associated to orthogonal
projections, and later we shall see the connection with orthogonal polynomials.
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Gap probabilities and simple determinantal point processes. A particular case of the Fredholm
formula for the generating series E[zM(B)] is with z = 0. We are then evaluating the gap probability
to not having any point ofM in B:

P[M(B) = 0] = det(I −KB) = 1 +
∞∑
m=1

(−1)m

m!

∫
Bm

det(K(xi, xj))1≤i,j≤m λ(dx1) · · ·λ(dxm).

The formula extends readily to any subset B ⊂ X such that KB is still a trace class operator. This
formula will play an essential role in the study of extremal points of determinantal point processes.
To conclude this section, let us give a simple criterion for a determinantal point process to be simple,
that is to say that with probability 1,M =

∑
i∈I δXi with Xi 6= Xj for any i 6= j.

Proposition 1.10 (Particles are fermions). Suppose that the reference measure λ has no atom. Then,
a determinantal point processM with Hermitian locally trace class operator associated to a kernelK is
always a simple random point process.

Proof. Consider a relatively compact subset B, and let us evaluate the expected numberX(B, ε) of
ordered pairs of points ofM that fall in B and are at distance smaller than ε. This is given by:

E[X(B, ε)] =

∫
B2

det
(
K(x,x) K(x,y)
K(y,x) K(y,y)

)
1d(x,y)≤ε λ(dx)λ(dy).

As ε goes to zero, the locally integrable correlation function ρ2(x, y) yields an integral which goes
to 0. Since E[X(B, ε)] ≥ P[X(B, ε) > 0] ≥ P[M has a multiple point in B], we can conclude. �

2. Eigenvalues of large random matrices

Wenow present some classical models of randommatrices whose eigenvalues yield determinantal
point processes; and we explain how to use this structure in order to obtain information on the
asymptotic behavior of these eigenvalues when the size of the matrices goes to infinity.

2.1. The Gaussian unitary ensemble. We start with the most classical example, namely, Gaussian
matrices chosen in the vector space H(N) of Hermitian N × N square matrices. A convenient
framework is the following: HN is a random matrix with size N ×N , whose diagonal coefficients
are independent real Gaussian variables

(HN)i,i = NR

(
0,

1

N

)
,

and whose off-diagonal coefficients are independent complex Gaussian variables:

(HN)i,j = (HN)j,i = NR

(
0,

1

2N

)
+ iNR

(
0,

1

2N

)
.

The density of the law of HN is thus:

1

ZN,GUE,1

e−
N
2
trH2

∏
1≤i≤N

dHi,i

∏
1≤i<j≤N

dRe(Hi,j) dIm(Hi,j), with ZN,GUE,1 =

√
2NπN2

NN2 .

Denote xN,1 ≥ xN,2 ≥ · · · ≥ xN,N the random real eigenvalues of HN . Any Hermitian matrix H
with sizeN writes asH = UDU∗, where U ∈ U(N) is a unitary matrix andD = diag(x1, . . . , xN)
is a diagonal matrix with non-increasing real entries. Moreover, up to multiplication by a diagonal
matrix diag(eiθ1 , . . . , eiθN ), we can assume that all the diagonal entries of U belong to R+. Denote
U(N)p.d. the subset of U(N) that consists in unitary matrices with positive diagonal entries, and
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C(N) the Weyl chamber of decreasing sequences (x1 > x2 > · · · > xN) of real numbers. The
smooth map

U(N)p.d. × C(N)→ H(N)

(U,D) 7→ UDU∗

is injective, and the complement of its image has Lebesgue measure zero. Therefore, we can use a
change of variable formula to obtain the following:

Theorem 2.1 ( Joint distribution of eigenvalues). The ordered random sequence (xN,1 ≥ xN,2 ≥
· · · ≥ xN,N) of eigenvalues of a random Gaussian Hermitian matrix HN admits the following density
in C(N):

1xN,1≥···≥xN,N
ZN,GUE,2

e−
N
2

∑N
i=1(xN,i)

2
∏

1≤i<j≤N

|xN,i − xN,j|2
∏

1≤i≤N

dxN,i,

with ZN,GUE,2 = (2π)
N
2 N−

N2

2 (N − 1)!(N − 2)! · · · 1! .

We refer to [AGZ10, Theorem 2.5.2] for a detailed proof of the change of variables which yields
this joint distribution, in which the Vandermonde determinant

∆(x) =
∏

1≤i<j≤N

(xN,i − xN,j) = det((xN,i)
N−j)1≤i,j≤N

appears. In the sequel, we shall rather work with the unordered random sequence (x1, . . . , xN)
with joint distribution

1

ZN,GUE

e−
N
2

∑N
i=1(xi)

2
∏

1≤i<j≤N

|xi − xj|2
∏

1≤i≤N

dxi

on RN , where ZN,GUE = N !ZN,GUE,2 = (2π)
N
2 N−

N2

2 N !(N − 1)! · · · 1! . This unordered random
sequence yields a random point process MN =

∑N
i=1 δXi which is called the Gaussian unitary

ensemble (GUE), and which happens to be determinantal.

2.2. Reproducing kernels and orthogonal polynomials. The proof that MN is determinantal
relies mostly on algebraic calculations, which can be in fact be performedwithmore general unitary
invariant probability measures on H(N). We start with the following:

Lemma 2.2 (Cauchy–Binet formula). Let (φi, ψi)1≤i≤N be a double family of square-integrable func-
tions in L 2(X, λ). We have:

det

(∫
X

φi(x)ψj(x)λ(dx)

)
1≤i,j≤N

=
1

N !

∫
XN

det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N λ(dx1) · · ·λ(dxN).

Proof. We compute the determinant det(
∫
X
φi(x)ψj(x)λ(dx))1≤i,j≤N as follows:∑

σ∈S(N)

ε(σ)
∏

1≤i≤N

(∫
X

φi(xi)ψσ(i)(xi)λ(dxi)

)

=

∫
XN

 ∑
σ∈S(N)

ε(σ)
∏

1≤i≤N

φi(xi)ψσ(i)(xi)

 λ(dx1) · · ·λ(dxN)
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=

∫
XN

det(φi(xi)ψj(xi))1≤i,j≤N λ(dx1) · · ·λ(dxN)

=

∫
XN

( ∏
1≤i≤N

φi(xi)

)
det(ψi(xj))1≤i,j≤N λ(dx1) · · ·λ(dxN)

=
1

N !

∑
σ∈S(N)

∫
XN

( ∏
1≤i≤N

φi(xσ(i))

)
det(ψi(xσ(j)))1≤i,j≤N λ(dx1) · · ·λ(dxN)

=
1

N !

∑
σ∈S(N)

∫
XN
ε(σ)

( ∏
1≤i≤N

φi(xσ(i))

)
det(ψi(xj))1≤i,j≤N λ(dx1) · · ·λ(dxN)

=
1

N !

∫
XN

det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N λ(dx1) · · ·λ(dxN). �

In the sequel, we suppose that theφi’s andψj’s are real-valued, andwe setAi,j = 〈ψi | φj〉L 2(X,λ) =∫
X
ψi(x)φj(x)λ(dx). Suppose that the determinant in the Cauchy–Binet formula is positive; then,

(Ai,j)1≤i,j≤N is invertible. We then define a kernel

KN(x, y) =
∑

1≤i,j≤N

ψi(x) (A−1)i,j φj(y).

Without loss of generality, we can assume detA = 1; this amounts to multiplying all the functions
φi and ψj by a positive constant.

Theorem 2.3 (Determinantal point process associated to a finite rank reproducing kernel). Let
(φi, ψi)1≤i≤N be a family of real-valued functions inL 2(X, λ), such that det(〈φi | ψj〉L 2(X,λ))1≤i,j≤N =

1. The kernelKN is a reproducing kernel:

∫
X

KN(x, x)λ(dx) = N ;∫
X

KN(x, y)KN(y, z)λ(dy) = KN(x, z).

Consider random variablesX1, . . . , XN with joint distribution

1

N !
det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N λ(dx1) · · ·λ(dxN),

and the associated random point process MN =
∑N

i=1 δXi . The random point process MN is determi-
nantal on (X, λ), with kernelKN .

Proof. The identities satisfied by KN are obtained as follows:

∫
X

KN(x, x)λ(dx) =
∑

1≤i,j≤N

(A−1)i,j 〈φj | ψi〉L 2(X,λ)

=
∑

1≤i,j≤N

(A−1)i,jAj,i =
∑

1≤i≤N

1 = N ;
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X

KN(x, y)KN(y, z)λ(dy) =
∑

1≤i,j≤N
1≤k,l≤N

ψi(x) (A−1)i,j

(∫
X

φj(y)ψk(y)λ(dy)

)
(A−1)k,l φl(z)

=
∑

1≤i,j≤N
1≤k,l≤N

ψi(x) (A−1)i,jAj,k(A
−1)k,l φl(z)

=
∑

1≤i,l≤N

ψi(x) (A−1)i,l φl(z) = KN(x, z).

Let us now compute the correlation functions ofMN . We start by a general observation on random
point processesM =

∑N
i=1 δXi defined by a symmetric density function f(x1, . . . , xN) onRN (with

respect to λ⊗N ). For any family of measurable subsets B1, . . . , BN , we have

E[M↓N(B1, . . . , BN)] =
∑

σ∈S(N)

P[∀i ∈ [[1, N ]] , Xσ(i) ∈ Bi]

=

∫
B1×···×BN

f(x1, . . . , xN)λ(dx1) · · ·λ(dxN),

so the N -th correlation function of MN is ρN(x1, . . . , xN) = N ! f(x1, . . . , xN). If n > N , then
M↓n = 0, so ρn(x1, . . . , xn) = 0. Finally, if n < N , then we have the recurrence relations

M↓n(B1, . . . , Bn) =
1

N − n
M↓n+1(B1, . . . , Bn,X);

ρn(x1, . . . , xn) =
1

N − n

∫
X

ρn+1(x1, . . . , xn+1)λ(dxn+1),

so we have the following formula for correlation functions with n < N :

ρn(x1, . . . , xn) =

∫
XN−n

N↓n f(x1, . . . , xN) λ(dxn+1) · · ·λ(dxN).

We now use these observations in the case where N ! f(x1, . . . , xN) is the product of determinants
of the statement of the theorem.

• If n = N , ρN(x1, . . . , xN) = det(φi(xj))1≤i,j≤N det(ψi(xj))1≤i,j≤N , and on the other hand,
we have

det(KN(xi, xj))1≤i,j≤N = det

( ∑
1≤k,l≤N

ψk(xi) (A−1)k,l φl(xj)

)
1≤i,j≤N

= det(ψk(xi))1≤i,k≤N detA−1 det(φl(xj))1≤i,j≤N ,

so ρN(x1, . . . , xN) = det(KN(xi, xj))1≤i,j≤N since detA = detA−1 = 1.
• If n > N , then

det(KN(xi, xj))1≤i,j≤n = det

( ∑
1≤k,l≤N

ψk(xi) (A−1)k,l φl(xj)

)
1≤i,j≤n

is the determinant of the product of three matrices with respective sizes n×N , N ×N and
N × n. Therefore, its rank is smaller than N and the determinant vanishes. The same is
true for the correlation functions ρn(x1, . . . , xn) sinceMN consists in N points.
• Finally, for n < N , it suffices to prove that the n×n determinants of the kernelKN satisfy
the same recurrence relation as the correlation functions ρn. For any n ≥ 0, we expand

det(KN(xi, xj))1≤i,j≤n+1 =
∑

σ∈S(n+1)

ε(σ)
∏

c cycle of σ
c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1).
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For each permutation σ, consider the cycle C which contains ki = n + 1. We are going to
use the identities established at the beginning of the proof. If the cycle C consists only in
n+ 1, then

ε(σ)

∫
X

∏
c cycle of σ

c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1)λ(dxn+1)

= Nε(σ′)
∏

c cycle of σ′
c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1),

where σ′ is the same permutation as σ, but considered inS(n). Now, if the cycle C consists
in more than one point, then the integration xn+1 replaces KN(xk, xn+1)KN(xn+1, xl) by
KN(xk, xl). This amounts to replace σ by the permutation σ′ ∈ S(n) where n+ 1 has
been removed from C; ε(σ′) = −ε(σ) and therefore,

ε(σ)

∫
X

∏
c cycle of σ

c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1)λ(dxn+1)

= −ε(σ′)
∏

c cycle of σ′
c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1).

For any permutation σ′ inS(n), there are one way to obtain it in the first case, and n ways
to obtain it in the second case. We conclude that∫

X

det(KN(xi, xj))1≤i,j≤n+1 λ(dxn+1)

= (N − n)
∑

σ′∈S(n)

ε(σ′)
∏

c cycle of σ′
c=(k1,k2,...,kl)

KN(xk1 , xk2) · · ·KN(xkl , xk1)

= (N − n) det(KN(xi, xj))1≤i,j≤n,

and this is the same recurrence relation as for correlation functions. �

In the setting of Theorem 2.3, the trace class operator K associated to KN is the orthogonal
projection in L 2(X, λ) onto the vector space with dimension N spanned by the functions φi (or
by the functionsψi). An important particular case is whenX = R and λ is a measure withmoments
of any order:

∀n ∈ N,
∫
R
|x|n λ(dx) < +∞.

We can then take φi = ψi = i-th normalised orthogonal polynomial for the measure λ. Without
loss of generality, we can assume that λ is a probability measure, and on the other hand we convene
to start the indexation of the orthonormal polynomials at i = 0, so the kernel KN is redefined as

KN(x, y) =
N−1∑
i=0

φi(x)φi(y).

Let us list some properties of the family of orthonormal polynomials (φi)i≥0 (see [Sze39, Chapters
2 and 3]):

(1) The i-th polynomial φi has degree i, and
∫
X
φi(x)φj(x)λ(dx) = 1i=j .

(2) Denote ki the coefficient of xi in φi(x). The orthonormal polynomials satisfy the three
terms recurrence relation:

φi+1(x) = (Aix+Bi)φi(x)− Ci φi−1(x)
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with Ai = ki+1

ki
, Bi = −ki+1

ki
〈xφi | φi〉L 2(R,λ) and Ci = Ai

Ai−1
= ki+1ki−1

(ki)2
.

(3) For N ≥ 1, the kernel KN is given by the Christoffel–Darboux formula:

KN(x, y) =
kN−1
kN

φN(x)φN−1(y)− φN−1(x)φN(y)

x− y
.

Indeed, we have

φ0 = k0 = 1 ; φ1 = k1(x−m) ; k1 = σ−1,

wherem =
∫
X
t λ(dt) and σ2 =

∫
X
(t−m)2 λ(dt) are the mean and variance of λ. Therefore,

k0
k1

k1 ((x−m) ∗ 1− 1 ∗ (y −m))

x− y
= 1 = K1(x, y)

and the relation is true for N = 1. For N ≥ 2, we use the recurrence relation and we get:

kN−1
kN

φN(x)φN−1(y)− φN−1(x)φN(y)

x− y

=
kN−1
kN

AN−1(x− y)φN−1(x)φN−1(y) + CN−1 (φN−1(x)φN−2(y)− φN−2(x)φN−1(y))

x− y

= φN−1(x)φN−1(y) +
kN−2
kN−1

φN−1(x)φN−2(y)− φN−2(x)φN−1(y)

x− y
which is the same as for the sequence (KN(x, y))N≥1. With x = y, the Christoffel–Darboux
formula degenerates into:

KN(x, x) =
kN−1
kN

(φ′N(x)φN−1(x)− φ′N−1(x)φN(x)).

(4) The density function fN(x1, . . . , xN) on RN associated to the kernel KN is

fN(x1, . . . , xN) =
1

N !

(
det(φi(xj))i∈[[0,N−1]], j∈[[1,N ]]

)2
=

(k0 k1 · · · kN−1)2

N !
(∆(x1, . . . , xN))2

where ∆(x) is the Vandermonde determinant; this follows readily from operations on rows
and columns of the matrix (φi(xj))i∈[[0,N−1]], j∈[[1,N ]]. Conversely, such a density function
yields a determinantal point process with kernel KN .

The next paragraph applies this theory to the case where λ(dx) =
√

N
2π

e−
Nx2

2 dx.

2.3. Hermite polynomials and saddle point analysis. Theorem 2.3 shows readily that the eigen-
values of a randommatrixHN of theGaussian unitary ensemble form a determinantal point process
associated to the kernel KN(x, y) =

∑N−1
i=0 φN,i(x)φN,i(y), where the φN,i’s are the orthonormal

polynomials for the scaled normal law

λ = λN = NR

(
0,

1

N

)
.

Beware in the following that the reference measure λN also changes with N . Let us make the
functions φN,i explicit. If λ is given by a density ω(x) dx where ω satisfies a first-order differential
equation with coefficients that are rational functions, the so-called Rodrigues’ formulas provide a
general method in order to obtain an orthogonal family with respect to the measure λ. In the
setting of the normal law, we shall look at the Hermite polynomials

Hi(x) = (−1)i e
x2

2
di

dxi

(
e−

x2

2

)
.
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Each Hi is a monic polynomial with degree i, and if j < i, then an integration by parts shows that∫
R
Hi(x)xj

e−
x2

2

√
2π

dx =
(−1)i√

2π

∫
R

(
di

dxi

(
e−

x2

2

))
xj dx =

1√
2π

∫
R

(
e−

x2

2

)( di

dxi
(xj)

)
dx = 0,

so the Hi’s are orthogonal with respect to the standard normal law. The same computation shows
that ∫

R
(Hi(x))2

e−
x2

2

√
2π

dx =

∫
R
Hi(x) (−x)i

e−
x2

2

√
2π

dx =

∫
R

(
di

dxi
(xi)

)
e−

x2

2

√
2π

dx = i! .

It follows that the functions Hi(x)√
i!

are orthonormal with respect to the distribution NR(0, 1), and
that

φN,i(x) =
Hi(
√
Nx)√
i!

=
(−1)i√
i!N i

e
Nx2

2
di

dxi

(
e−

Nx2

2

)
.

In particular, the leading coefficient ki of φN,i(x) is
√

N i

i!
, and we recover

ZN,GUE =

(√
2π

N

)N
N !

(k0k1 · · · kN−1)2
= (2π)

N
2 N−

N2

2 N !(N − 1)! · · · 1! .

In the sequel, we shall use the following recurrence relation:

Hi+1(x) = − e
x2

2
d

dx

(
e−

x2

2 Hi(x)
)

= xHi(x)−H ′i(x) = xHi(x)− iHi−1(x),

the last identity H ′i(x) = iHi−1(x) following from the formula Hi(x) = e−
D2

2 (xi), where D = d
dx
.

This implies that the exponential generating series H(x, z) =
∑∞

i=0
zi

i!
Hi(x) of Hermite polyno-

mials satisfies:
d

dz
H(x, z) = (x− z)H(x, z) ; H(x, z) = ezx−

z2

2 .

The explicit formula for the kernel of the GUE leads to precise asymptotic results, which we
now detail. We start with the global statistical behavior of the eigenvalues:

Theorem 2.4 (Wigner). Let νN = 1
N
MN = 1

N

∑N
i=1 δXi be the spectral measure of a random matrix

of size N × N in the GUE. As N goes to infinity, νN converges in probability towards the Wigner
semicircle law

ν(dx) = 1x∈[−2,2]

√
4− x2
2π

dx.

−2 −1 −0 1 2

Figure 1. Empirical distribution of the eigenvalues of a matrix of the GUE, with
N = 200.
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This law of large numbers for eigenvalues is due toWigner, see [Wig55]; the original proof is totally
different from the one below. By Proposition 1.7, in order to prove the convergence in probability
νN → ν, it suffices to control the rescaled kernel KN (x,x)

N

√
N
2π

e−
Nx2

2 . By the Christoffel–Darboux
formula,

KN(x, x)

N
=
kN−1
N kN

(φ′N,N(x)φN,N−1(x)− φ′N,N−1(x)φN,N(x))

=
1

N !
(H ′N HN−1 −H ′N−1HN)

(√
Nx
)

=
1

N !
((HN)2 −HN−1HN+1)

(√
Nx
)

by using on the last line the formulas for Hi(x) with i ∈ {N − 1, N,N + 1}. We therefore need
to understand the behavior of HN(

√
Nx) as N goes to infinity, x being a fixed parameter. The

asymptotics of the classical orthogonal polynomials can be obtained by using saddle point analysis,
which is a generalisation of the steepest descent method. Two excellent references for this method are
[Bru10, Chapters 5-6] and [Won01, Section II.4]. We start from the following integral representa-
tion:

HN(x) = [zN ](H(x, z)) =
N !

2iπ

∮
ezx−

z2

2

zN+1
dz,

where the path integral runs over an arbitrary smooth curve γ circling around 0. Since we are
interested in the asymptotics of HN(x) when x is of size

√
N , it is convenient to make the changes

of variables x =
√
Nx and z =

√
Nz, so that

HN(
√
Nx) =

N !

2iπ N
N
2

∮
eNzx−N

z2

2

zN+1
dz =

N !

2iπ N
N
2

∮
e
N
(
zx− z

2

2
−log z

)
dz

z
,

where the logarithm is defined on the open subset C \ R− of the complex plane (removing the
negative real numbers does not change the value of the path integral). Set

f(z) = zx− z2

2
− log z.

In order to compute the asymptotics of an integral IN =
∮

eNf(z)k(z) dz with f analytic, we
proceed as follows. Set f(z) = g(z) + ih(z), where the two real-valued functions g and h are
harmonic and sastisfy the Cauchy–Riemann equations ∂xg = ∂yh and ∂yg = −∂xh. If a path
γ is fixed, then we expect the main contribution to the integral

∫
γ

eNf(z)k(z) dz to be provided
by the neighborhoods of points where |ef(z)| is maximal, that is to say where g(z) = Ref(z) is
maximal. Note however that if z0 is a point around which h(z) is not constant at first order, then
the oscillating part eiNh(z) might make∫

neighborhood of z0
eNf(z)k(z) dz � O(eNg(z0)),

so the contribution of the neighborhood of z0 to the path integral is much smaller than expected.
To avoid this phenomenon, we shall deform the path γ so that it crosses (some of) the critical points
of the holomorphic function f , that is to say points z0 such that f ′(z0) = 0. If z0 is a critical point,
then we have 0 = ∂zf = 1

2
(∂x − i∂y)(f), so

∂xg(z0) = −∂yh(z0) = −∂xg(z0) ; ∂yg(z0) = ∂xh(x0) = −∂yg(z0)

and z0 is also a critical point of g and of h: ∇g(z0) = ∇h(z0) = (0, 0). Moreover, the Hessian of g
satisfies

(det Hess g)(z) = ∂2xxg(z0) ∂
2
yyg(z0)−

(
∂2xyg(z0)

)2
= −

(
∂2xxg(z0)

)2 − (∂2xyg(z0)
)2 ≤ 0,

so z is a saddle point of g. This means that there are orthogonal directions that intersect at z0,
and such that at this critical point, g attains its local minimum along one direction and its local
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maximum along the other direction. We are going to make the path γ cross z0 along the direction
which corresponds to a local maximum. Intuitively, it is convenient to imagine the function |ef(z)|
as a mountainous landscape, for which we try to find a path γ which is a closed loop in the holo-
morphy domain of f and k, and which stays at the lowest possible altitude. The path γ is then
forced to cross some mountain passes, which are the critical points of f and are saddle points of
g. Of course, we shall then cross these passes in directions which correspond to local maxima (we
do not descend from a peak to attain the pass). We are indebted to [Bru10, Section 5.2] for this
intuitive description. The specific prescribed way to cross the critical points is the following. We
suppose that f ′′(z0) 6= 0, and we consider a smooth path γ : t ∈ R 7→ γ(t) ∈ C such that γ(0) = z0
and γ′(0) 6= 0; up to local reparametrisation, we may assume that we have a unitary tangent vector
γ′(0) = eiφ. If f ′′(z0) = A eiθ, then we have locally

g(γ(t)) = g(z0) +
1

2
Re(f ′′(z0) (γ′(0)t)2) + o(t2) = g(z0) +

A t2

2
cos(θ + 2φ) + o(t2).

In particular, with φ = − θ+π
2
, we obtain

g(γ(t)) = g(z0)−
A t2

2
+ o(t2),

so g decreases at the fastest possible quadratic speed around z0 if one follows the path γ(t). Note that
if we replace γ(t) by γ(t) = γ(−t), this does not change the result, as φ = φ+π and cos(θ+ 2φ) =
cos(θ+2φ) = −1; thus, if wemake the path γ(t) cross z0 in the direction eiφ or−eiφ, then g descends
at the fastest speed. Now, the condition φ = −θ±π

2
is equivalent to the following requirement on

(h ◦ γ)(t). If we use the Taylor series of h instead of g, we obtain

h(γ(t)) = h(z0)+
1

2
Im(f ′′(z0) (γ′(0)t)2)+o(t2) = h(z0)+

A t2

2
sin(θ+2φ)+o(t2) = h(z0)+o(t2).

This observation leads to the following:

Lemma 2.5 (Characterisation of the direction of steepest descent). Let f be an analytic function in
an open domain U ⊂ C, and z0 be a critical point of f . If γ is a smooth path such that γ(0) = z0 and
Im f(γ(t)) = Imf(z0) + o(t2), then Re f(γ(t)) decreases at the fastest possible quadratic speed around
z0:

Re f(γ(t)) = Re f(z0)−
|f ′′(z0)|

2
|γ′(0)|2 t2 + o(t2).

Actually, it is not necessary to cross a critical point z0 of f exactly along the steepest descent
direction: it is sufficient to do so in such a way that the angle between the steepest direction and the
tangent vector of γ at z0 is always strictly smaller than π

4
(see Figure 2). Indeed, if this is the case,

then the expansion g(γ(t)) = g(z0) + (Re(f ′′(z0) (γ′(0))2) t2)/2 + o(t2) still involves a negative
quadratic term, so we are able to use the Laplace method in order to evaluate the integral. These
observations are due to Perron, and they lead to:

Method 2.6 (Saddle point analysis). Let f and k be analytic functions on a domain U ⊂ C, and
IN =

∮
eNf(z)k(z) dz be a contour integral. To obtain the asymptotics of IN as N goes to infinity, we

deform the integration contour in order to obtain an explicit path γ with the following properties:

(1) The path γ crosses one or several critical points z1, . . . , zl of the function f , in such a way that

max
z∈γ

Ref(z) = max
i∈[[1,l]]

Ref(zi).

(2) At each critical point zi, f ′′(zi) 6= 0, and the path γ follows around zi an adequate direction
(close to the steepest descent direction).
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steepest descent direction
(tangent at z0 of the curve Im f(z) = Im f(z0))

z0

γ

Figure 2. An adequate contour of integration for the saddle point analysis crosses
the critical points with a direction close to the steepest descent direction.

If the hypotheses above are satisfied, then the Laplace method yields

IN '
l∑

i=1

∫
neighborhood of ti
such that γ(ti) = zi

e
N

(
f(zi)+

f ′′(zi) (γ
′(ti))

2 t2

2

)
k(zi) γ

′(ti) dt

'
l∑

i=1

k(zi) γ
′(ti) eNf(zi)

√
2π

−N (γ′(ti))2 f ′′(zi)
,

where the complex square root of −(γ′(ti))
2 f ′′(zi) is chosen with an argument between −π

4
and

π
4
. Assuming that k(zi) 6= 0 for all the critical points z1, . . . , zl, the asymptotic expansion above is

valid up to a multiplicative (1 + O(N−1)) for each term of the sum; on the other hand, the main
contribution is of course provided by the zi’s which maximise Re f(zi).

We now apply this technique to the asymptotic analysis of Hermite polynomials. The critical
points of the analytic map z ∈ C \ R− 7→ zx− z2

2
− log z satisfy

0 = f ′(z) = x− z − 1

z
; z =

{
x±
√
x2−4
2

if |x| ≥ 2,
x±i
√
4−x2
2

if |x| < 2.

Since it suffices to prove the convergence of the scaled kernel almost everywhere with respect to
the Lebesgue measure, the critical case |x| = 2 is not important for the global asymptotics (we shall
look at this case later when studying the edge asymptotics of the spectrum). Notice on the other
hand that HN(−x) = (−1)N HN(x), so it suffices to treat the case where x is positive. Suppose
first that x > 2. The function f has then two real critical points, and its restriction to the set of
positive real numbers is drawn in Figure 3.

We choose for γ the circle γ(φ) = r0 eiφ, where r0 = x−
√
x2−4
2

= 2
x+
√
x2−4 is the local minimal of

the function f on R∗+. We then have

(g ◦ γ)(φ) =
2x

x+
√
x2 − 4

cosφ− 1

2

x−
√
x2 − 4

x+
√
x2 − 4

cos 2φ+ log

(
x+
√
x2 − 4

2

)
.
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f(r)

0
0

1

1

2

2

3

3

4

4

5

5

Figure 3. The map r ∈ R∗+ 7→ f(r) when x > 2.

This function of φ is even and decreasing on [0, π). Indeed, its derivative is

(g ◦ γ)′(φ) = − 2x

x+
√
x2 − 4

sinφ+
x−
√
x2 − 4

x+
√
x2 − 4

sin 2φ

= − 2 sinφ

x+
√
x2 − 4

(
x−

(
x−
√
x2 − 4

)
cosφ

)
≤ 0.

Therefore, for any angle φ, (g ◦ γ)(φ) ≤ (g ◦ γ)(0). On the other hand, f ′′(r0) is real, so the path
γ follows exactly at the critical point the steepest direction. By saddle point analysis and by using
the Stirling estimates of N !, we conclude that if x = 2 cosh t with t > 0, then r0 = e−t and

HN(
√
Nx) = N

N
2 eN(f(r0)−1)

√
1

f ′′(r0)
1N−1 = N

N
2 e

N
(

e−2t

2
+t
)√

1

e2t − 1
1N−1 ,

where 1N−1 = 1 +O(N−1). We obtain with the exact same method:

HN−1(
√
Nx) =

N !

2iπ N
N+1

2

∮
e
N
(
zx− z

2

2
−log z

)
dz =

e−t√
N
HN(
√
Nx) 1N−1 ;

HN+1(
√
Nx) =

(N + 1)!

2iπ N
N+1

2

∮
e
N
(
zx− z

2

2
−log z

)
dz

z2
=
√
N etHN(

√
Nx) 1N−1 .

Therefore,

KN(x, x)

N
= O

(
eN(e−2t+1+2t)

N
3
2 (e2t − 1)

)
;

KN(x, x)

N

√
N

2π
e−

Nx2

2 = O

(
e−N(sinh(2t)−2t)

N(e2t − 1)

)
= O

(
e−

4Nt3

3

Nt

)
,

where the constant in the O(·) can depend on t (actually, it is not very hard to show that the
estimate is uniform when t says in a compact subset of (0,+∞)).

Proposition 2.7 (Asymptotics of the Hermite kernels for |x| > 2). Suppose |x| > 2. Then,

KN(x, x)

N

√
N

2π
e−

Nx2

2 →N→∞ 0.
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Let us now analyse the case where 0 < x < 2. We set x = 2 cos θ with θ ∈ (0, π
2
); then, the

critical points are z± = e±iθ, and f ′′(z) = 1
z2
− 1, so

f ′′(z±) = e∓2iθ − 1 = 2 sin θ e∓i(
π
2
+θ).

The steepest descent direction at z± is thus e±i(
θ
2
+π

4
). We choose for γ the unit circle γ(φ) = eiφ,

φ ∈ (−π, π). The tangent vector of γ at φ = ±θ is e±i(θ+
π
2
). The two arguments

±
(
θ

2
+
π

4

)
and ±

(
θ +

π

2

)
indeed differ from less than π

4
for any θ ∈ (0, π

2
), so our path allows us to use saddle point analysis,

provided that g ◦ γ attains its maximum at the two parameters φ = ±θ. However,

(g ◦ γ)(φ) = Re

(
2 cos θ eiφ − e2iφ

2

)
= 2 cos θ cosφ− cos 2φ

2
=

3

2
− (cos θ − cosφ)2,

which clearly attains its maximum when cosφ = cos θ, that is when φ = ±θ. Thus, we get

HN(
√
Nx) = N

N
2

(
eN(f(z+)−1)√
−(γ′(θ))2f ′′(z+)

+
eN(f(z−)−1)√

−(γ′(−θ))2f ′′(z−)

)
1N−1

= 2
N

N
2 eN

cos 2θ
2

√
2 sin θ

cos

(
N

(
sin 2θ

2
− θ
)

+
θ

2
− π

4

)
1N−1

with x = 2 cos θ. The same technique yields:

HN−1(
√
Nx) =

N !

2iπ N
N+1

2

∮
e
N
(
zx− z

2

2
−log z

)
dz

= N
N−1

2

(
γ(θ) eN(f(z+)−1)√
−(γ′(θ))2f ′′(z+)

+
γ(−θ) eN(f(z−)−1)√
−(γ′(−θ))2f ′′(z−)

)
1N−1

= 2
N

N−1
2 eN

cos 2θ
2

√
2 sin θ

cos

(
N

(
sin 2θ

2
− θ
)

+
3θ

2
− π

4

)
1N−1 ;

HN+1(
√
Nx) =

(N + 1)!

2iπ N
N+1

2

∮
e
N
(
zx− z

2

2
−log z

)
dz

z2

= N
N+1

2

(
eN(f(z+)−1)

γ(θ)
√
−(γ′(θ))2f ′′(z+)

+
eN(f(z−)−1)

γ(−θ)
√
−(γ′(−θ))2f ′′(z−)

)
1N−1

= 2
N

N+1
2 eN

cos 2θ
2

√
2 sin θ

cos

(
N

(
sin 2θ

2
− θ
)
− θ

2
− π

4

)
1N−1 .

As a consequence, setting α = N( sin 2θ
2
− θ) + θ

2
− π

4
, we have

(HN(
√
Nx))2

N !
=

2 e
N x2

2

sin θ
√

2πN
cos2(α) 1N−1 ;

HN−1(
√
Nx)HN+1(

√
Nx)

N !
=

2 e
N x2

2

sin θ
√

2πN
cos(α + θ) cos(α− θ) 1N−1 ;

KN(x, x)

N
=

2 sin θ e
Nx2

2

√
2πN

1N−1 .

Since 2 sin θ =
√

4− x2, we conclude:
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Proposition 2.8 (Asymptotics of the Hermite kernels for |x| < 2). Suppose |x| < 2. Then,

KN(x, x)

N

√
N

2π
e−

Nx2

2 →N→∞

√
4− x2
2π

.

The reunion of Propositions 2.7 and 2.8 implies immediately Theorem 2.4.

2.4. The sine and Airy kernels. The saddle point analysis of Hermite polynomials also allows
one to understand the local statistical behavior of the eigenvalues of a large random matrix in
the GUE. To make sense of the results hereafter, we first need to introduce a notion of conver-
gence for random (determinantal) point processes. Consider as in Section 1 a locally compact,
complete and separable metric space X, and a sequence of random point processes (MN)N∈N on
X. We say that MN converges to a random point process M if the law of MN as a random el-
ement of M atom(X) converges to the law of M . By definition of the σ-field on M atom(X), this
means that for any family of measurable subsets B1, . . . , Bn ⊂ X, we have the convergence in law
(MN(B1), . . . ,MN(Bn)) ⇀N→∞ (M(B1), . . . ,M(Bk)). Suppose that the random point processes
MN andM are determinantal, with Hermitian kernels KN and K with respect to a common ref-
erence measure λ on X. We assume that K(x, y) is locally bounded, and that KN(x, y)→ K(x, y)
locally uniformly in x and y. Then, the correlation functions also converge locally uniformly, and
therefore, the joint moments of the vectors (MN(B1), . . . ,MN(Bn)) converge. As these moments
determine the random point processesMN andM , we thus have:

Proposition 2.9 (Convergence of determinantal point processes). Suppose thatM is a determinantal
point process on (X, λ)with locally boundedHermitian kernelK(x, y), and that (MN)N∈N is a sequence
of determinantal point processes with Hermitian kernels KN(x, y). If KN(x, y) → K(x, y) locally
uniformly, thenMN →M as N goes to infinity.

Fix a point x0 ∈ (−2, 2). By Wigner’s theorem, in a small interval (x0 − ε, x0 + ε), one expects

to see N × 2ε×
√

4−(x0)2
2π

eigenvalues of a random Hermitian matrix HN of the GUE. Therefore,
the distance between two consecutive eigenvalues in this interval is expected to be of order

2π√
4− (x0)2N

= O

(
1

N

)
.

We denote as before xN,1 ≥ xN,2 ≥ · · · ≥ xN,N the N eigenvalues of HN . The previous estimate
leads one to introduce the following scaling of eigenvalues:

yN,i =
N
√

4− (x0)2

2π
(xN,i − x0).

and we set M local,x0
N =

∑N
i=1 δyN,i . This renormalised random point process is expected to have

points spaced by a distance of order 1, and it encodes the behavior of the eigenvalues of HN in the
neighborhood of a parameter x0 in the bulk of the spectrum, that is to say with −2 < x0 < 2. We
have

M local,x0
N (B) = MN

(
x0 +

2π B

N
√

4− (x0)2

)
,

soM local,x0
N is again a determinantal point process. If KN is the Hermite kernel from the previous

paragraph and

KN(a, b) =

√
N

2π
e−

N(a2+b2)
4 KN(a, b)
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is the corresponding kernel with respect to the Lebesgue measure, thenM local,x0
N has for kernel

K local,x0
N (x, y) =

2π

N
√

4− (x0)2
KN

(
x0 +

2π x

N
√

4− (x0)2
, x0 +

2π y

N
√

4− (x0)2

)
with respect to the Lebesgue measure. We denote a and b the two arguments of KN in the above;
let us then determine the limit of this kernel as N goes to infinity. By the Christoffel–Darboux
formula,

KN(a, b) =
kN−1
kN

φN,N(a)φN,N−1(b)− φN,N−1(a)φN,N(b)

a− b

=
1√

N ! (N − 1)!

HN(
√
Na)HN−1(

√
Nb)−HN−1(

√
Na)HN(

√
Nb)

a− b
;

KN(a, b) =
1

(N − 1)!

e−
N(a2+b2)

4

√
2π

HN(
√
Na)HN−1(

√
Nb)−HN−1(

√
Na)HN(

√
Nb)

a− b
.

If c = 2 cosφc, then we have seen in the previous paragraph that(
N

2π

)1
4

e−
Nc2

4
HN(
√
Nc)√

N !
=

1√
π sinφc

cos

(
N

(
sin 2φc

2
− φc

)
+
φc
2
− π

4

)
1N−1 ;(

N

2π

)1
4

e−
Nc2

4
HN−1(

√
Nc)√

(N − 1)!
=

1√
π sinφc

cos

(
N

(
sin 2φc

2
− φc

)
+

3φc
2
− π

4

)
1N−1

where 1N−1 = 1 +O(N−1). These estimates are uniform if c stays in a compact interval of (−2, 2);
in particular, they are valid if we take c equal to a or b. In the sequel, we set φ = arccos x0

2
,

φa = arccos a
2
and φb = arccos b

2
. Given an angle φc, we write

αc = N

(
sin 2φc

2
− φc

)
+
φc
2
− π

4
.

Then,

K local,x0
N (x, y) =

1N−1 cos(αa) cos(αb + φb)− 1N−1 cos(αa + φa) cos(αb)

N sinφ
√

sinφa sinφb (a− b)
.

Notice that the angles φ, φa and φb all differ by aO( 1
N

), where the constant in theO(·) only depends
on x0, x and y. Indeed, we have

φa = φ− πx

2N sin2 φ
+O

(
1

N2

)
; φb = φ− πy

2N (sin2 φ)
+O

(
1

N2

)
.

This enables the following simplifications:

K local,x0
N (x, y) =

1N−1 cos(αa) cos(αb + φb)− 1N−1 cos(αa + φa) cos(αb)

N sin2 φ (a− b)

=
cos(αa) cos(αb + φb)− cos(αa + φa) cos(αb)

π (sinφ) (x− y)
+O

(
1

N

)
=

cos(αa − αb − φb)− cos(φa + αa − αb)
2π (sinφ) (x− y)

+O

(
1

N

)
=

sin
(
αa − αb + φa−φb

2

)
sin
(
φa+φb

2

)
π (sinφ) (x− y)

+O

(
1

N

)
=

sin
(
N
(
sin 2φa

2
− sin 2φb

2
+ φb − φa

))
π (x− y)

+O

(
1

N

)



24 PIERRE-LOÏC MÉLIOT

since cos s cos t = cos(s+t)+cos(s−t)
2

and cos s− cos t = −2 sin( s+t
2

) sin( s−t
2

). Finally, we have
sin 2φa

2
− sin 2φb

2
+ φb − φa = cos(φa + φb) sin(φa − φb) + φb − φa

= (cos(φa + φb)− 1)(φa − φb) +O

(
1

N2

)
= 2 sin2

(
φa + φb

2

)
(φb − φa) +O

(
1

N2

)
= 2 sin2 φ (φb − φa) +O

(
1

N2

)
=
π(x− y)

N
+O

(
1

N2

)
so we conclude that locally uniformly in x and y, K local,x0

N (x, y) → sin(π(x−y))
π(x−y) . We have thus

established:

Theorem 2.10 (Gaudin–Mehta). For any parameter x0 in the bulk of the spectrum, asN goes to infin-
ity, the rescaled local random point processM local,x0

N converges towards the determinantal point process
M whose kernel is the sine kernel

Ksine(x, y) =
sinπ(x− y)

π(x− y)
,

the reference measure being the Lebesgue measure on R.

-4 -2 2 4

-0.2

0.2

0.4

0.6

0.8

1

Figure 4. The two-point correlation function of the sine-kernel, as a function of x− y.

Let usmake several remarks on the limiting determinantal point process. First, sinceKsine(x, x) =
1 for every x ∈ R, we have E[M(B)] = Leb(B) for any measurable subset B ⊂ R; this is because
we have rescaled the random point processes MN in order to have an expected spacing of points
equal to 1. On the other hand, Ksine(x, y) is invariant by translation of the variables x and y, so
the law ofM is translation invariant. Notice also that this limiting processM does not depend on
the choice of the parameter x0; so, the density of eigenvalues in a neighborhood of x0 depends on
x0 via the semicircle function, but the local structure is independent of x0 once this density has
been taken into account. Finally, the Hermitian and locally trace class operator K associated to
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the sine kernel can be made entirely explicit by using the Fourier transform of square integrable
functions. Indeed,

(K f)(x) =

∫
R

sin π(x− y)

π(x− y)
f(y) dy =

(
(sinc(π ·)) ∗ f

)
(x),

where ∗ denotes the convolution of functions. Going to the Fourier space, we obtain:

K̂ f(ξ) = ̂sinc(π ·)(ξ) f̂(ξ),

and the Fourier transform of the function x 7→ sinc(πx) is 1|ξ|≤π. Consequently, K is the orthog-
onal projection in L 2(R, dx) onto the subspace of functions with Fourier transform compactly
supported in [−π, π].

A similar study can be performed at the edge of the spectrum, that is to say in the neighborhood
of x0 = 2 or −2; by symmetry, it suffices to look at the right-side edge. If x = 2− t with t small,
then the density of eigenvalues at x is of order

√
t, so we can expect to see

O

(
N

∫ t

0

√
u du

)
= O

(
Nt3/2

)
eigenvalues in the interval (2 − t, 2). To see a O(1) number of eigenvalues, it is thus natural to
choose t = O(N−

2
3 ); equivalently, we can expect the spacing of eigenvalues in the neighborhood of

x0 = 2 to be of order N− 2
3 (instead of N−1 in the bulk of the spectrum). We therefore rescale the

eigenvalues of a matrixHN of the GUE as follows: we set zi = N
2
3 (xN,i−2) andM edge

N =
∑N

i=1 δzi .
In other words,

M edge
N (B) = MN

(
2 +N−

2
3B
)
.

The reasoning that leads to the choice of the scaling N 2
3 is really not rigorous: as we shall see later,

the zi’s are allowed to be negative or positive, whereas in our reasoning the non-vanishing density
could only be considered with t > 0; however, the scaling order which we obtained is correct. The
rescaled random point processM edge

N is again a determinantal point process on R; its kernel is

Kedge
N (t, u) =

1

N
2
3

KN

(
2 +

u

N
2
3

, 2 +
u

N
2
3

)
=

e−
N(x2+y2)

4

√
2π (N − 1)!

HN(
√
Nx)HN−1(

√
Ny)−HN−1(

√
Nx)HN(

√
Ny)

t− u

where x = 2 + tN−
2
3 , y = 2 + uN−

2
3 and the reference measure is the Lebesgue measure on R.

Denote

ψN(x) =

(
1

2π

)1
4

e−
x2

4
HN(x)√
N !

.

These normalised oscillator wave-functions form an orthonormal basis of L 2(R, dx), and they sat-
isfy the following differential equation:

ψ′N(x) = −x
2
ψN(x) +

(
1

2π

)1
4

e−
x2

4
NHN−1(x)√

N !
= −x

2
ψN(x) +

√
N ψN−1(x).
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Therefore,

e−
N(x2+y2)

4

√
2π (N − 1)!

HN(
√
Nx)HN−1(

√
Ny)−HN−1(

√
Nx)HN(

√
Ny)

x− y

=
ψN(
√
Nx)

(
ψ′N(
√
Ny) +

√
Ny
2
ψN(
√
Ny)

)
− ψN(

√
Ny)

(
ψ′N(
√
Nx) +

√
Nx
2
ψN(
√
Ny)

)
x− y

=
ψN(
√
Nx)ψ′N(

√
Ny)− ψN(

√
Ny)ψ′N(

√
Nx)

x− y
−
√
N

2
ψN(
√
Nx)ψN(

√
Ny).

We are then led to the asymptotic study of HN(
√
Nx) and ψN(

√
Nx) when x is very close to 2.

This is the critical case of the saddle point analysis of the integral representations of the Hermite
polynomials, and we shall modify accordingly the method in order to make it work also in this
case. For a general treatment of the asymptotics of integrals with two critical points that depend
on a parameter x and that coalesce at x = x0, see [Won01, Section VII.4]. In the sequel, we fix
x = 2 + tN−

2
3 , where t is a real parameter. We have

N
1
4 ψN(

√
Nx) =

(
N

2π

)1
4

e−
Nx2

4
HN(
√
Nx)√
N !

=

(
N

2π

)1
4
√
N !

2iπ N
N
2

∮
e
N
(
zx−x

2

4
− z

2

2
−log z

)
dz

z

=

√
N 1N−1/3

2iπ

∮
e
N

1
3 t(z−1)+N

(
− 3

2
+2z− z

2

2
−log z

)
dz

z

where 1N−1/3 = 1 + O(N−
1
3 ). The function f(z) = 2z − z2

2
− log z has a unique critical point at

z = 1, and we have f ′′(1) = 0, so in a neighborhood of the critical point, if z = 1 +N−
1
3y, then

p(z,N) = N
1
3 t(z − 1) +N

(
−3

2
+ 2z − z2

2
− log z

)
= −ty − y3

3
+ o(y3).

In this expansion, in order to make the term −y3

3
decrease as fast as possible, we need to take

arg(y) ∈ {0, 2π
3
,−2π

3
}. Recall that for x < 2, the contour chosen for the saddle point analysis was

the unit circle.

2π
3

rN

Figure 5. Deformation of the contour of integration for the saddle point analysis
in the critical case x = 2 + tN−

2
3 .

For x ' 2, we slightly deform this contour as follows:
• Around 1, we take the union of the two segments

z = 1 +N−
1
3 e±

2iπ
3 u, 0 ≤ u ≤ N ε

with 1
9
< ε < 1

6
.
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• We join the endpoints of these two segments by the circle with center 0 and radius

rN =
∣∣∣1 +N ε− 1

3 e
2iπ
3

∣∣∣ =

√
1−N ε− 1

3 +N2ε− 2
3 = 1− 1

2
N ε− 1

3 +O
(
N2ε− 2

3

)
.

We denote γ1 and γ2 the two parts of this new contour. Note that on the second part γ2, writing
z = rN eiψ, we have

Re

(
−3

2
+ 2z − z2

2
− log z

)
= −(1− rN cosψ)2 +

(rN)2 − 1

2
− log rN

so this quantity decreases with ψ ∈ (0, π) and is always smaller than its value at z = 1 + e
2iπ
3 N ε− 1

3 ,
which is

−2N ε− 1
3 +N2ε− 2

3 − 2 log(1−N ε− 1
3 +N2ε− 2

3 )

4
= −N

3ε−1

3
+ o(N3ε−1).

Therefore,

log

(
1

2π

∮
γ2

|ep(z,N)| dz
z

)
≤ 2|t|N1/3 − N3ε

3
+ o(N3ε) = −N

3ε

3
+ o(N3ε)

since ε > 1
9
. This implies that the contribution to the contour integral of γ2 decreases as exp(−CN3ε),

so it will be negligible. On the other hand, a change of variables yields∮
γ1

ep(z,N) dz

z
= 1Nε−1/3 N−

1
3

∫
ety−

y3

3 dy,

where the path of integration on the right-hand side is the union of the two half-lines R+e
2iπ
3 and

R+e−
2iπ
3 . So, if x = 2 + tN−

2
3 , then

N
1
4 ψN(

√
Nx) = N

1
6

(
1

2iπ

∫
ety−

y3

3 dy

)
+O(N ε− 1

6 ).

The remainder is by construction a o(1), and on the other hand, the path integral is the so-called
Airy function Ai(t). This function satisfies the differential equation Ai′′(t) − tAi(t) = 0, and its
graph is drawn in Figure 6. It can also be redefined as the real semi-convergent integral Ai(t) =

-15 -10 -5 5 10

-0.4

-0.2

0.2

0.4

Figure 6. Graph of the Airy function.
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1
π

∫∞
0

cos(ty + y3

3
) dy, and its Fourier transform is

Âi(ξ) = e
(iξ)3

3 .

We refer to [AGZ10, Section 3.7.3] and [Won01, Chapter II, example 7] for more details on this
entire function. We have proved above that

N
1
12 ψN

(
2N

1
2 + tN−

1
6

)
→N→∞ Ai(t).

This estimate can be made locally uniform in t, and it can be considered as a result of convergence
of holomorphic functions of the variable t. Denote the left-hand side of the asymptotic formula
above by θN(t). We have on the one hand

Kedge
N (t, u) =

ψN(
√
Nx)ψ′N(

√
Ny)− ψN(

√
Ny)ψ′N(

√
Nx)

t− u
− 1

2N
1
6

ψN(
√
Nx)ψN(

√
Ny)

=
θN(t) θ′N(u)− θN(u) θ′N(t)

t− u
− 1

2N
1
3

θN(t) θN(u),

and on the other hand, θN and all its derivatives converge locally uniformly on the complex plane
towards the Airy function and its derivatives. We have therefore established the following result:

Theorem 2.11 (Airy kernel). As N goes to infinity, the rescaled local random point process M edge
N

converges towards the determinantal point process whose kernel is the Airy kernel

KAiry(t, u) =
Ai(t) Ai′(u)− Ai′(t) Ai(u)

t− u
,

the reference measure being the Lebesgue measure on R.

-15 -10 -5 5 10

0.2

0.4

0.6

0.8

1

1.2

Figure 7. First correlation function for the Airy kernel.

In particular, the density (first correlation function) of the limiting determinantal point process is

ρ1(t) = (Ai′(t))2 − Ai(t) Ai′′(t) = (Ai′(t))2 − t (Ai(t))2,

which is drawn in Figure 7. The asymptotics of the Airy function and its derivative as t goes to
±∞ can again be derived by saddle point analysis of the integral representation of Ai(t). Hence,
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we have:

ρ1(t) 't→+∞
e−

4
3
t
3
2

8πt
; ρ1(t) 't→−∞

√
|t|
π

.

The exponential decay of ρ1(t) for t positive leads one to guess that with high probability, there
are very few eigenvalues of HN larger than 2, and that the largest eigenvalue xN,1 of HN writes as
2 +TN N

− 2
3 , where TN converges in law asN goes to infinity. The limiting distribution of TN will

be detailed in the next paragraph.

Remark 2.12. The Airy kernel can be rewritten as

KAiry(t, u) =

∫ ∞
0

Ai(s+ t) Ai(s+ u) ds,

as can be seen by applying the differential operator ∂
∂t

+ ∂
∂u

and solving a differential equation; see
[AGZ10, Lemma 3.9.33]. This implies in particular that the restriction of K Airy to any subspace
L 2([M,+∞), dx) is trace class, since the Airy function of a positive argument decreases exponen-
tially fast.

To close this section, let us mention another classical model of random matrices where similar
techniques can be used in order to compute the local asymptotics of eigenvalues. The circular
unitary ensemble is the random point process of the eigenvalues of a random matrix UN chosen in
the unitary group U(N) of order N according to the Haar measure. The eigenvalues of a unitary
matrix belong to the unit circle and write as{

eiθN,1 , eiθN,2 , . . . , eiθN,N
}

with 0 ≤ θN,1 ≤ · · · ≤ θN,N ≤ 2π. The Weyl integration formula states that if f is a function
on U(N) which is conjugacy-invariant and hence only depends on the eigenvalues of the matrices,
then the Haar integral

∫
U(N)

f(g) dg rewrites as an integral over the torus TN = (R/2πZ)N , with a
Vandermonde determinant taking into account the change of variables:∫

U(N)

f(g) dg =
1

(2π)N N !

∫
TN
f
(
diag(eiθ1 , . . . , eiθN )

) ∣∣∆(eiθ1 , . . . , eiθN )
∣∣2 dθ1 · · · dθN .

We are then exactly in the situation of Theorem 2.3, with the space L 2(R/2πZ, dθ
2π

) and the N
orthogonal functions eikθ with k ∈ [[0, N − 1]] (the only difference with what precedes is that we
are dealing with complex-valued orthogonal functions, but this has no important consequence).
So:

Proposition 2.13 (Circular unitary ensemble). The eigenvalues of a random unitary matrix UN ∈
U(N) chosen according to the Haar measure form a determinantal point processMN on T with kernel

KN(θ, φ) =
sin
(
N(θ−φ)

2

)
sin
(
θ−φ
2

) ,

the reference measure being the Lebesgue measure dθ
2π
.

Indeed, one can compute

KN(θ, φ) =
N−1∑
k=0

eik(θ−φ) = ei
N−1

2
(θ−φ)

sin
(
N(θ−φ)

2

)
sin
(
θ−φ
2

) ,

and one sees easily that a determinant det(K(xi, xj))1≤i,j≤N is invariant by multiplication of the
kernel by ei

N−1
2

(x−y). SinceKN(θ, θ) = N for any θ, we deduce immediately from Proposition 1.7
that the eigenvalue density 1

N

∑N
i=1 δθN,i converges in probability towards the uniform Lebesgue
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measure on the torus. Moreover, if one looks at the neighborhood of an angle θ0 and at the scaled
local point process defined by

M local,θ0
N (B) = MN

(
θ0 +

2πB

N

)
for B subset of R, then it converges towards the sine kernel as N goes to infinity:

K local,θ0
N (x, y) =

1

N
KN

(
θ0 +

2πx

N
, θ0 +

2πy

N

)
=

sin(π(x− y))

N sin
(
π(x−y)
N

) →N→∞ Ksine(x, y).

So, the sine kernel also appears as the limit of the local statistics of the eigenvalues of a random
unitary matrix.

2.5. The Tracy–Widom distribution. An important precision of Theorem 2.11 is the following
result due to Tracy and Widom, see [TW94].

Theorem 2.14 (Tracy–Widom). LetM be a determinantal point process with kernelKAiry.

(1) There is a largest random point T ∈M , whose distribution writes as

P[T ≤ t] = F2(t) = exp

(
−
∫ ∞
t

(x− t) (q(x))2 dx

)
,

where q is the unique solution of the Painlevé II equation q′′(x) = x q(x) + 2 (q(x))3 such that
q(x) ' Ai(x) as x goes to +∞.
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0.3

0.4

Figure 8. Density of the Tracy–Widom F2 distribution.

(2) Let TN be the scaled largest eigenvalue in the Gaussian unitary ensemble:

TN = N
2
3 (xN,1 − 2).

We have the convergence in law TN ⇀N→+∞ T .

The cumulative distribution function F2 is called the Tracy–Widom distribution, see Figure 8.
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The general Fredholm formula for gap probabilities of determinantal point processes yields:

P[T ≤ t] = P[M(t,+∞) = 0] = det
(
I −K Airy

|(t,+∞)

)
= 1 +

∞∑
m=1

(−1)m

m!

∫
(t,+∞)m

det(Ai(xi, xj))1≤i,j≤m dx1 · · · dxm.

The connection between this Fredholm determinant of the Airy kernel and the Painlevé II equation
is then detailed in [AGZ10, Section 3.8]; it is a bit mysterious.

3. Large random integer partitions

The sine and Airy kernels introduced in the previous section also drive the local asymptotics of
large random integer partitions chosen according to certain probability measures which are related
to the representation theory of the symmetric groups. This section explains this theory, and the
asymptotic results for the so-called Plancherel measures.

3.1. Plancherel and Schur measures. Given a positive integer N , recall that an integer partition
of size N is a sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`) of positive integers which is non-increasing
and such that |λ| =

∑`
i=1 λi = N . We shall denote ` = `(λ) the length of a partition, which is its

number of non-zero parts. A partition is usually represented by its Young diagram, which is the
array of boxes with λ1 boxes on the first row, λ2 boxes on the second row, etc.; see Figure 9 for an ex-
ample. The integer partitions can be used to label many objects from algebra or combinatorics. In

Figure 9. The Young diagram of the integer partition λ = (10, 6, 5, 5, 3, 1) with
size |λ| = 30.

particular, the setY(N) of integer partitions of size N is in bijection with the conjugacy classes of
permutations of size N ; indeed, two permutations inS(N) are conjugated if and only if they have
the same cycle-type (sequence of the lengths of the disjoint cycles of the permutation). By stan-
dard results from the representation theory of finite groups, the isomorphism classes of (complex,
linear) irreducible representations of S(N) are also in bijection with Y(N), and denoting V λ the
irreducible representation with label λ ∈ Y(N) and dimλ = dimC(V λ), we have the isomorphism
of (CS(N),CS(N))-bimodules

CS(N) =
⊕

λ∈Y(N)

V λ ⊗C (V λ)∗,

which leads to the combinatorial identity

N ! =
∑

λ∈Y(N)

(dimλ)2.

This formula has another explanation, related to the problem of the longest increasing subsequence
of a permutation. Call standard tableau of shape λ a numbering of the N = |λ| boxes of the Young
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diagram of the partition λ by the integers of [[1, N ]], such that each row and each column of the
diagram is strictly increasing. For instance,

4

2 5 8

1 3 6 7

is a Young tableau of shape (4, 3, 1). The study of the induction rules satisfied by the irreducible
representations of the symmetric groups leads to the identity

dimλ = card (ST(λ)),

where ST(λ) denotes the set of standard tableaux with shape λ; see for instance [Mél17, Proposition
3.8]. On the other hand, one can construct a bijection between:

• the permutations σ ∈ S(N),
• and the pairs of standard tableaux (P,Q) with shape(P ) = shape(Q) = λ ∈ Y(N).

This bijection is known as the Robinson–Schensted algorithm; see [Mél17, Section 3.2]. It yields
a combinatorial explanation of the formula N ! =

∑
λ∈Y(N)(dimλ)2. The Robinson–Schensted

algorithm has the following important property: if σ is a permutation and λ is the shape of the
two associated standard tableaux P and Q, then for any r ≥ 1,

λ1 + λ2 + · · ·+ λr = max{`(w1) + `(w2) + · · ·+ `(wr)},
where the maximum runs over r-tuples of disjoint increasing subwords of the word of the per-
mutation σ. In particular, the largest part λ1 is the length of a longest increasing subword in σ.

The Plancherel measure of order N is the probability measure on Y(N) given by

PN [λ] =
(dimλ)2

N !
.

By the previous discussion, it is also the image of the uniform probability measure on S(N) by
the Robinson–Schensted map. The Plancherel measure is the spectral measure of the regular trace
on S(N): if χλ is the normalised character of the irreducible representation V λ, then for any
permutation σ ∈ S(N), ∑

λ∈Y(N)

PN [λ] χλ(σ) = 1(σ=id).

In order to relate the study of random partitions to the theory of determinantal point processes,
we shall need to consider Plancherel measures with a random size N , and more generally a family
of probability measures on Y =

⊔
N∈N Y(N) called Schur measures. Given an integer partition λ

and variables x1, . . . , xM with M ≥ `(λ), we denote sλ(x1, . . . , xM) the Schur polynomial with
label λ, which is given by

sλ(x1, . . . , xM) =
det
(
x
λj+M−j
i

)
1≤i,j≤M

det
(
xM−ji

)
1≤i,j≤M

.

Here, it is understood that λi = 0 if i ≥ `(λ). This definition is compatible with the addition of a
variable: sλ(x1, . . . , xM , 0) = sλ(x1, . . . , xM). Therefore, we can consider sλ as an element of the
algebra of symmetric functions

Sym = lim←−
M→∞

Sym(M),

where Sym(M) is the space of symmetric polynomials in M variables (say, with real coefficients).
The projective limit is taken in the category of graded real algebras, and a Schur function sλ ∈ Sym
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can be considered as a homogeneous symmetric polynomial of degree |λ| with an infinite alphabet
of variables X = {xi≥1}. The Schur functions satisfy the Cauchy identity [Mél17, Theorem 2.18]:

∑
λ∈Y

sλ(X) sλ(Y ) =
∏
i,j

1

1− xiyj
= exp

(
∞∑
k=1

pk(X) pk(Y )

k

)
,

where pk(X) =
∑

i(xi)
k is the k-th power sum. Suppose in particular that X = {xi≥1} and

Y = {yj≥1} are two sets of non-negative real numbers such that the infinite product
∏

i,j≥1(1−xiyj)
converge. Then, the formula

PX,Y [λ] =

(∏
i,j≥1

(1− xiyj)

)
sλ(X) sλ(Y )

defines a probability on Y called the Schur measure with parameters X and Y . Actually, one
can consider more general parameters by using specialisations of the algebra Sym which are non-
negative on the basis of Schur functions. These positive specialisations have been classified by Thoma
[Tho64], in connection with the representation theory of the infinite symmetric groupS(∞); see
[Mél17, Chapter 11] for details.

Theorem 3.1 (Thoma). A morphism of algebras f ∈ Sym → f(X) ∈ R takes non-negative values
on any Schur functions if and only if there exists γ ≥ 0 and two non-increasing summable sequences
A = {αi≥1} and B = {βi≥1} of non-negative real numbers with

p1(X) = γ +
∞∑
i=1

αi +
∞∑
i=1

βi;

pk≥2(X) =
∞∑
i=1

(αi)
k + (−1)k−1

∞∑
i=1

(βi)
k.

Since (pk)k≥1 is an algebraic basis of Sym, these formulas entirely determine the morphism of algebras,
which is then denoted by the formal alphabetX = A+B + γE.

Example 3.2. The exponential alphabet E sends p1 to 1 and all the other power sums pk≥2 to 0. On
the basis of Schur functions, one obtains

sλ(E) =
dimλ

|λ|!
,

by using the Frobenius–Schur formula, which relates the Schur functions to the power sums and
to the characters of the irreducible representations of the symmetric groups (see Theorem 2.32 in
[Mél17]).

Given two formal alphabets X = AX + BX + γXE and Y = AY + BY + γYE corresponding
to positive specialisations of Sym, the Schur measure with parameters X and Y is the probability
measure on Y given by

PX,Y [λ] = exp

(
−
∞∑
k=1

pk(X) pk(Y )

k

)
sλ(X) sλ(Y ).

Note that if one replaces X by tX and Y by t−1Y with t ∈ R∗+, then this does not change the
probability measure PX,Y . An essential property of Schur measures is that they define random
point processes on Z + 1

2
which are determinantal; see Theorem 3.8 hereafter.
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Example 3.3. Take X = θE and Y = E. Then, if |λ| = N , one obtains

PX,Y [λ] =

(
e−θ

θN

N !

)(
(dimλ)2

N !

)
=

(
e−θ

θN

N !

)
PN [λ],

which is a Poissonised Plancherel measure, with a size N distributed according to the Poisson
distribution with parameter θ.

3.2. Point processes and continuous curves associated to a partition. Given any probability
measure onY =

⊔
N∈NY(N), a random integer partition λ chosen under P can be seen as a random

point process on Z + 1
2
by using the Russian convention in order to draw its Young diagram. One

rotates the Young diagram of λ by 45 degrees, and one draws it in such a way that the cells of the
Young diagram have their area equal to 2. One also adds the half-lines y = ±x to this drawing, and
one projects to the x-axis the coordinates of the middles of the decreasing segments of the upper
boundary of the shape thus obtained; see Figure 10. The configuration of point Mλ ⊂ Z + 1

2
is

called the set of descent coordinates of the partition λ, and it is given by the formula

Mλ =

{
λi − i+

1

2

}
i≥1

.

The possible sets of descent coordinates are characterised by the following property: ifZ′ = Z+ 1
2

=
Z′− t Z′+, then

card
(
Z′− \

(
Mλ ∩ Z′−

))
= card

(
Mλ ∩ Z′+

)
< +∞.

In the next section, we shall see that the random point process Mλ with λ chosen according to a
Schur measure is determinantal on Z′.

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

Figure 10. The point processMλ on X = Z + 1
2
associated to the integer partition

λ = (10, 6, 5, 5, 3, 1).

The union of the two setsMλ ∩Z′+ and Z′− \ (Mλ ∩Z′−) is called the set of Frobenius coordinates
of λ; we shall denote it Fλ. For instance, if λ = (10, 6, 5, 5, 3, 1), then

Fλ =

(
−11

2
,−7

2
,−5

2
,−1

2
;
3

2
,
5

2
,
9

2
,
19

2

)
.

The sum of the absolute values of the Frobenius coordinates in Fλ is the size of the partition
λ; indeed, these coordinates are the signed lengths of the rows and columns of λ measured from
its diagonal. It turns out that given a random integer partition λ, the random point process Mλ

is determinantal with a Hermitian kernel if and only if Fλ is determinantal with a J -Hermitian
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kernel, J being the scalar product on `2(Z′) = `2(Z′+)⊕ `2(Z′−) associated to the infinite diagonal
matrix ( I 0

0 −I ). This is related to some general properties of the determinantal point processes on a
discrete spaceX, which we now explain. Fix a countable setX, endowed with the counting measure
and with the discrete topology. Given a simple random point process F on X and a finite subset
X ⊂ X, we set

π(X) = P

[
F =

∑
x∈X

δx

]
ρ(X) =

∑
X⊂Y⊂X

π(Y ).

Note that if X = {x1, . . . , xn}, then

ρ(X) = E
[
F ↓n({x1} × {x2} × · · · × {xn})

]
= ρn(x1, x2, . . . , xn)

is simply the n-th correlation function with respect to the counting measure.

Proposition 3.4 (Fermionic point processes on a discrete space). Consider a trace class non-negative
Hermitian operator L on `2(X), X being a countable set. We assume that all the restricted operators
LX withX finite subset of X have a non-negative determinant.

(1) The formula

π(X) =
det LX

det(I + L )

defines a probability measure on the setP<∞(X) of finite subsets of X.

(2) The corresponding finite simple random point process F on X is determinantal, with kernel

K = L (I + L )−1.

A proof of this result is given in [DV88, Section 5.4]; see also the discussion of [Ols98, Section 1].
Suppose now that one can split X in two parts X+ and X−, and that the operator L :

• is Hermitian with respect to the scalar product defined by the block-diagonal matrix

J =

(
I 0

0 −I

)
.

• has a block decomposition of the form

L =

(
0 D∗

−D 0

)
.

Then, the corresponding determinantal point process satisfies card(F∩X+) = card(F∩X−) almost
surely; see [Ols98, Proposition 1.7]. Moreover, the correlation kernel K writes then as

K =

(
(I + D∗D)−1 D∗D (I + D∗D)−1 D∗

−D (I + D∗D)−1 DD∗ (I + DD∗)−1

)
,

see [Ols98, Proposition 1.8 and Corollary 1.9].

Proposition 3.5 (Kerov’s complementation principle). Let F be a finite determinantal point process
on the discrete space X = X+ t X−, with a J -Hermitian kernel KF whose block-diagonal matrix is

K F =

(
K++ K+−

K−+ K−−

)
.
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We define another random point processM byM = F ∆ X−, where ∆ is the symmetric difference of
subsets of X. Then,M is also a determinantal point process on X, with a Hermitian kernel

K M =

(
K++ K+−

−K−+ I −K−−

)
.

Proof. We follow [BOO00, Proposition A.8]. Given X ⊂ X, we shall denote X+ = X ∩ X+ and
X− = X ∩ X−. We compute by inclusion-exclusion

ρM(X) =
∑

X⊂Y⊂X

πM(Y ) =
∑

X⊂Y⊂X

πF (Y ∆ X−)

=
∑

X⊂Y⊂X

P[F+ = Y+ and F− = X− \ Y−]

=
∑

Z−⊂X−\X−

P[X+ ⊂ F+ and Z− = F−]

=
∑

Z−⊂X−\X−

(−1)|Z−| P[X+ ⊂ F+ and Z− ⊂ F−]

=
∑

Z−⊂X−\X−

(−1)|Z−| ρF (X+ t Z−),

this identity being true for any X such that X− \ X− is finite. As can be seen by expanding by
multilinearity, this is precisely the determinant of K M

X , since K M = ( K++ K+−
−K−+ −K−−

) + ( 0 0
0 I ). �

If K F is associated to L F = ( 0 D∗
−D 0 ), then K M writes as

K M =

(
(I + D∗D)−1 D∗D (I + D∗D)−1 D∗

D (I + D∗D)−1 (I + DD∗)−1

)
.

This theory applies readily to the case where F = Fλ and M = Mλ, the set X being Z′; we shall
see in a moment what form the kernel K M takes when λ is chosen according to a Schur measure.

In the sequel, we shall also look at scaled Young diagrams, and prove a law of large numbers
which is the pendant of Theorem 2.4 for Plancherel measures; see Theorem 3.6 below. The scaling
is performed as follows. Suppose that λ is an integer partition with size N ≥ 1. The upper
boundary of the diagram of λ drawn with the Russian convention is a piecewise affine function
ωλ : R→ R+ such that:

(1) ωλ(s) ≥ |s| for any s ∈ R;

(2) ωλ(s) = |s| for |s| large enough;

(3)
∫
R
ωλ(s)−|s|

2
ds = N .

We setωλ(s) = ωλ(
√
Ns)/

√
N ; this amounts to rescaling the Young diagram of λ in both directions

by a factor |λ|− 1
2 . Therefore, ωλ satisfies the two first properties above, and∫

R

ωλ(s)− |s|
2

ds = 1.

We introduce the space of continuous Young diagrams Y :

Y = {ω : R→ R+ | ω is Lipschitz with constant 1, and ω(s) = |s| for |s| large enough}.
The maps λ 7→ ωλ and λ 7→ ωλ allow one to embedY into Y . We endow Y with the topology of
uniform convergence on R.
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Theorem 3.6 (Logan–Shepp, Kerov–Vershik). Let λN be a random integer partition chosen under
the Plancherel measure PN . AsN goes to infinity, ωλN converges in probability towards the continuous
Young diagram

Ω(s) =

{
2
π

(
s arcsin s

2
+
√

4− s2
)

if |s| < 2,

|s| if |s| ≥ 2.

−2 −1 1 20

Figure 11. A random integer partition of size N = 400 under the Plancherel measure.

This result is due separately to Logan and Shepp [LS77] and to Kerov and Vershik [KV77]. We
refer to Figure 11 for a drawing of a scaled random Young diagram chosen according to PN=400 (in
red), and of the limit shape Ω (in blue). There is a deep connection between the Logan–Shepp–
Kerov–Vershik curve Ω and the Wigner semicircle law, relying on the so-called Markov–Krein cor-
respondence of measures. Denote ν the semicircle law, and µ the signed measure given by

µ(ds) = −
(

Ω(s)− |s|
2

)′
ds,

which has a density between −1 and 1 (this definition makes sense for any continuous Young
diagram). The Cauchy transform of ν is∫

R

1

z − s
ν(ds) =

2

z +
√
z2 − 4

.

This function is well defined on the complex upper-half plane, and at infinity, it expands as 1+o(1)
z

.
The numerator of this expansion is in fact the exponential of the Cauchy transform of µ:∫

R

1

z − s
ν(ds) =

1

z
exp

(∫
R

1

z − s
µ(ds)

)
.

We refer to [Mél17, Section 7.4] for details on this correspondence.

3.3. Correlation kernel of a Schur measure. In order to prove that the Schur measures yield
determinantal point processes, Okounkov used an elementary but extremely powerful representa-
tion of the Schur functions by operators on the infinite wedge space [Oko01a]. The space

∧∞ is the
Hilbert space spanned by the orthonormal basis

vM = x1 ∧ x2 ∧ · · · ∧ xn ∧ · · · ,

whereM = {x1 > x2 > · · · > xn > · · · } is an infinite decreasing sequence in Z′ which contains
all the sufficiently large negative half-integers. Among these vectors, the vacuum state is

v∅ = −1

2
∧ −3

2
∧ −5

2
∧ · · · ;
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it corresponds to the empty integer partition, and more generally, we shall denote vλ = vMλ
. The

half-integers x ∈ Z′ act on
∧∞ by the free fermion operators ψx and ψ∗x:

ψx(vM) =

{
x ∧ vM if x /∈M
0 if x ∈M

; ψ∗x(vM) =

{
εx,M vM\{x} if x ∈M
0 if x /∈M

with the usual rules of anti-commutation for the∧ symbols (in order to replace x inside a decreasing
sequence), and where −εx,M is the parity of the position of x in the decreasing sequence M . We
have the anti-commutation formulaψxψ∗x+ψ∗xψx = id∧∞ . The infinite wedge space is also equipped
with the charge and energy operators:

C =
∑
x>0

ψxψ
∗
x −

∑
x<0

ψ∗xψx;

H =
∑
x>0

xψxψ
∗
x −

∑
x<0

xψ∗xψx.

Note that C(vλ) = 0 and H(vλ) = |λ| vλ for any integer partition λ; the kernel of C is exactly
the span of the vectors vλ with λ ∈ Y. Consider an infinite sequence of formal parameters t =
(t1, t2, . . .), and the operator

Γ(t) = exp

(
∞∑
k=1

tk αk

)
, with αk =

∑
l∈Z′

ψl+kψ
∗
l .

Proposition 3.7 (Schur functions and the infinite wedge space). Denote X the specialisation of the
algebra Sym for which t is the sequence of Miwa parameters: pk(X) = k tk for any k ≥ 1. Then, the
action of the operator Γ(t) on kerC is given by

〈Γ(t)(vµ) | vλ〉 =

{
sλ\µ(X) if µ ⊂ λ,

0 otherwise,

where sλ\µ is the skew Schur function associated to the pair of partitions (µ ⊂ λ). In particular,

Γ(t)(v∅) =
∑
λ∈Y

sλ(X) vλ.

We refer to [Kac90, Chapter 14] and [Oko01a, Appendix A] for a proof of this formula for the
operators Γ(t), and to [Mél17, Definition 2.21] for details on skew Schur functions (we shall not
use them in the sequel). Consider now two positive specialisations X and Y of the algebra Sym,
and the associated sequences of Miwa parameters tX and tY . The correlation function ρM of the
random point processMλ with λ ∼ PX,Y is given by:

ρM(A) =
∑
A⊂B

πM(A) = exp

(
−
∞∑
k=1

k tX,k tY,k

) ∑
A⊂Mλ

sλ(X) sλ(Y )

= exp

(
−
∞∑
k=1

k tX,k tY,k

) 〈
Γ(tX) (v∅)

∣∣∣∣∣
(∏
a∈A

ψaψ
∗
a

)
Γ(tY )(v∅)

〉

= exp

(
−
∞∑
k=1

k tX,k tY,k

) 〈
v∅

∣∣∣∣∣ Γ(tX)∗

(∏
a∈A

ψaψ
∗
a

)
Γ(tY ) (v∅)

〉
.

Besides, we have Γ(t)∗(v∅) = v∅, and Γ(tX)∗ Γ(tY ) = exp(
∑∞

k=1 k tX,k tY,k) Γ(tY ) Γ(tX)∗, so

ρM(A) =

〈
v∅

∣∣∣∣∣ Γ(tX)∗ Γ(−tY )

(∏
a∈A

ψaψ
∗
a

)
Γ(tY ) Γ(−tX)∗ (v∅)

〉
=

〈
v∅

∣∣∣∣∣
(∏
a∈A

ΨaΨ
′
a

)
(v∅)

〉
,
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whereΨa = Γ(tX)∗ Γ(−tY )ψa Γ(tY ) Γ(−tX)∗ andΨ′a = Γ(tX)∗ Γ(−tY )ψ∗a Γ(tY ) Γ(−tX)∗ (beware
that Ψ′a is not the same as the adjoint operator Ψ∗a). By using an analogue of the Wick principle,
one can rewrite the last formula in a determinantal form, see [Oko01a, Theorem 1].

Theorem 3.8 (Okounkov). Fix two positive specialisationsX and Y of the algebra Sym. We set

KM
X,Y (x, y) =

〈
v∅
∣∣ ΨxΨ

′
y(v∅)

〉
,

where Ψa = Γ(tX)∗ Γ(−tY )ψa Γ(tY ) Γ(−tX)∗ and Ψ′a = Γ(tX)∗ Γ(−tY )ψ∗a Γ(tY ) Γ(−tX)∗. The
Schur measure PX,Y defines a determinantal point processMλ on Z′ with correlation functions

ρM(A) = det
(
KM
X,Y (x, y)

)
x,y∈A

for any A ⊂ Z′ finite subset.

One can write down a very simple formula for the double generating of the kernel KM
X,Y . Con-

sider two formal variables z and w, and the associated formal series

K M
X,Y (z, w) =

∑
x,y∈Z′

zxw−yKM
X,Y (x, y).

If ψ(z) =
∑

x∈Z′ z
x ψx and ψ∗(w) =

∑
y∈Z′ w

−y ψ∗y , we have

K M
X,Y (z, w) = 〈v∅ | Γ(tX)∗ Γ(−tY )ψ(z)ψ∗(w) Γ(tY ) Γ(−tX)∗ (v∅)〉

=
JX,Y (z)

JX,Y (w)
〈v∅ | ψ(z)ψ∗(w) (v∅)〉 ,

where

JX,Y (z) = exp

(
∞∑
k=1

tX,k z
k −

∞∑
k=1

tY,k z
−k

)
=

H(X, z)

H(Y, z−1)

is the Bessel function associated to the two specialisations X and Y , which comes from the gen-
erating series of homogeneous symmetric functions H(X, z) =

∑∞
n=0 hn(X) zn. Finally, we have

trivially

〈v∅ | ψ(z)ψ∗(w) (v∅)〉 =
∑
x∈Z′−

( z
w

)x
=

√
zw

z − w
,

so we conclude:

Corollary 3.9 (Schur measures and generalised Bessel functions). The generating series of the kernel
KM
X,Y of the determinantal point process defined by a Schur measure with parametersX and Y is

K M
X,Y (z, w) =

√
zw

z − w
JX,Y (z)

JX,Y (w)
,

where JX,Y (z) = H(X,z)
H(Y,z−1)

.

One can recover the coefficientsKM
X,Y (x, y) of the kernel of the determinantal point process either

by using a double contour integral, or by expanding the generalised Bessel functions JX,Y in Laurent
series. Hence, if JX,Y (z) =

∑
n∈Z JX,Y,n z

n, one obtains

KM
X,Y (x, y) =

∑
k∈Z′+

JX,Y,x+k J−X,−Y,−y−k,

where −X and −Y are the specialisations of Sym with opposite Miwa parameters in comparison
to X and Y .
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Example 3.10. Consider the Poissonised Plancherel measure

PP(θ) =
∞∑
N=0

e−θ θN

N !
PN ;

it is the Schur measure associated to the specialisations X = Y =
√
θE. In the sequel, we use an

index {θ} for all the functions which describe the correlations of the determinantal point process
M{θ}. We have H{θ}(X, z) = exp(

√
θz), so J{θ}(z) = exp(

√
θ(z − z−1)). Hence,

K{θ}(z, w) =

√
zw

z − w
exp

(√
θ((z − z−1)− (w − w−1))

)
.

We recover the value of K{θ}(x, y) by taking a double contour integral along two arbitrary non-
crossing paths circling around 0:

K{θ}(x, y) =
1

(2iπ)2

∮∮
1

(z − w)
√
zw

exp
(√

θ(z − z−1)− (w − w−1)
)
z−xwy dz dw.

The saddle point analysis of this formula will provide us with asymptotic results for the Poissonised
Plancherel measures. Note that a similar approach can be used in order to study any Schur measure.
The kernelK{θ}(x, y) is called the discrete Bessel kernel (with parameter θ), the terminology coming
from the identity

K{θ}(x, y) =
√
θ
Jx− 1

2
(2
√
θ) Jy+ 1

2
(2
√
θ)− Jx+ 1

2
(2
√
θ) Jy− 1

2
(2
√
θ)

x− y
,

where

Jα(z) =
∞∑
m=0

(−1)m

m! Γ(m+ α + 1)

(z
2

)2m+α

is the standard Bessel function of the first kind (see Equation (23) in [Oko01b]). The origin of this
second formula is the following. The function J{θ}(z) is here equal to

∑
n∈Z Jn(2

√
θ) zn.Therefore,

the general formula for the coefficients K{θ}(x, y) yields

K{θ}(x, y) =
∑
k∈Z′+

Jx+k

(
2
√
θ
)
J−y−k

(
−2
√
θ
)
.

This can be rewritten as a Christoffel–Darboux type ratio by doing an integration by parts in
the integral formula for K{θ}(x, y). On the other hand, a similar expression for the kernel of the
random point process F{θ} of Frobenius coordinates can be derived by using the complementation
principle from Proposition 3.5; see Theorem 1 in [BOO00].

3.4. Asymptotics of the Plancherel measures. By saddle point analysis of the discrete Bessel ker-
nel, one can compute the asymptotics of a large random integer partition chosen according to a
Poissonised Plancherel measure PP(θ); a de-Poissonisation procedure yields then the corresponding
results for the Plancherel measures PN . We start from with the bulk asymptotics, and we fix a
parameter x0 ∈ (−2, 2). As in Section 2, we renormalise the random point processM{θ}, and we
set

M local,x0
{θ} (B) = M{θ}

(
bx0
√
θc+B

)
.

In opposition to the case of eigenvalues of random matrices,M local,x0
{θ} is a random point process on

Z′ (instead of R). The limit in the sense of Proposition 2.9 will thus be a random point process on
Z′.
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Theorem 3.11 (Borodin–Okounkov–Olshanski). For x0 ∈ (−2, 2), we denote φ0 = arccos(x0
2

) ∈
(0, π). As θ goes to infinity,M local,x0

{θ} converges towards the determinantal point process with discrete
sine kernel

Kdsine,x0(x, y) =
sinφ0(x− y)

π(x− y)
,

the reference measure being the counting measure on Z′.

The proof of this result relies on a two-dimensional saddle point analysis, which is a common
procedure when studying random particle processes; we are indebted to [Oko01b, Section 3] for
the details of the computation of the limit. Since the limiting kernel is translation invariant, the
theorem is equivalent to the following result: if xθ, yθ are half-integers such that

xθ√
θ
→θ→∞ x0 ;

yθ√
θ
→θ→∞ x0 ; xθ − yθ = x− y,

then K{θ}(xθ, yθ)→θ→∞ Kdsine,x0(x, y). The discrete Bessel kernel writes then as

K{θ}(xθ, yθ) =
1

(2iπ)2

∮∮
1

(z − w)
√
zw

exp

(√
θ F

(
z,
xθ√
θ

)
−
√
θ F

(
w,

yθ√
θ

))
dz dw,

where F (z, t) = z − z−1 − t log z, and where the double contour integral is taken for instance
over two circles with radii |z| > |w|. We start the saddle point analysis by determining the critical
points of F (·, x0). They are given by

1 +
1

z2
=
x0
z

; z =
x0 ± i

√
4− (x0)2

2
= e±iφ0 .

Moreover, on the circle with radii 1, Re(F (z, x0)) = 0, and the gradient of Re(F (z, x0)) is given
by

∇(ReF (·, x0))(eiθ) = 2 (cos θ − cosφ0)uθ,

where uθ is the unit vector eiθ (perpendicular to the unit circle at z = eiθ ).

eiφ0

e−iφ0

γ

Figure 12. Gradient of the function ReF (·, x0) on the unit circle, and deformation
of the unit circle for the steepest descent method.

Consequently, if we have a path γ which is a deformation of the unit circle crossing it at the two
points e±iφ0 according to Figure 12, then the steepest descent method applies to∮

γ

e−
√
θ F (w,x0) dw,

and this integral goes to 0 as θ goes to infinity. We now go back to the integral form ofK{θ}(xθ, yθ),
and we start with the two following contours: |z| = 1 (path γz ) and |w| = 1− ε (path γw ). When
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we deform γw into γ, we obtain an integral which is asymptotically small, but because of the ratio
1

z−w , we pick up a residue each time z = w. This residue is equal to

1

(2iπ) zx−y+1
,

and we have to integrate it over the part of the path γz which is crossed by γ during the deformation
γw → γ (the part in red in Figure 13).

γzγw

eiφ0

e−iφ0

γ

Figure 13. Deformation of γw into γ, which picks up a residue 1
(2iπ) zx−y+1 along the

red curve.

So, we conclude that

lim
θ→∞

K{θ}(xθ, yθ) =
1

2iπ

∮
γred:e

−iφ0→ eiφ0

1

zx−y+1
dz =

sinφ0(x− y)

π(x− y)
.

An analysis analogue to the one of Proposition 2.7 shows on the other hand that if |x0| > 2, then
the same kernel converges exponentially fast towards 0. The discrete sine kernel from Theorem
3.11 is related to the Logan–Shepp–Kerov–Vershik curve from Theorem 3.6 by the following com-
putation. By taking xθ = yθ, we observe that the expected number of descent coordinates of the
random partition λ ∼ PP(θ) in an interval of size L around x0

√
θ is asymptotically equivalent

L
φ0

π
=
L

π
arccos

(x0
2

)
for |x0| < 2. In terms of the random scaled diagram ωλ, this means that

(ωλ)
′(s) 'θ→∞

2

π

(π
2
− arccos

(s
2

))
=

2

π
arcsin

(s
2

)
,

which is exactly the derivative Ω′(s); see [BOO00, Remark 1.7] for more details.

Remark 3.12. Theorem 3.11 can be restated as follows. Let XN = (xN,1, . . . , xN,n) be a regular
sequence of half-integers: each ratio xN,i√

N
and each difference xN,i− xN,j has a finite or infinite limit.

If the differences have finite limits dij and the ratios all converge to the same quantity x0, then

ρ{N},n(xN,1, . . . , xN,n)→N→∞ det

(
sin(φ0 dij)

π dij

)
1≤i,j≤n

,

where ρ{N},n is the n-th correlation function of the Poissonised Plancherel point process M{N}.
More generally, if the ratios have different limits, then one has asymptotic independence of the
corresponding parts of the point process [BOO00, Theorem 3]. Hence, if XN = X ′N tX ′′N with
limN→∞ d(X ′N , X

′′
N) = +∞ and |X ′N | = n1, |X ′′N | = n2, then

ρ{N},n(XN) 'N→∞ ρ{N},n1(X
′
N) ρ{N},n2(X

′′
N);

indeed, the saddle point analysis yields limN→∞K{N}(xN,i, xN,j) = 0 if dij = +∞.
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To prove that the non-Poissonised random partitions under the Plancherel measures PN satisfy
the same limit theorem in the bulk as their Poissonised counterparts (and therefore, the law of large
numbers 3.6 for the scaled random diagrams), we proceed to a de-Poissonisation of the correlation
functions. More precisely, given a regular sequence XN of size n, we have

ρ{θ},n(XN) =
∞∑
k=0

e−θ θk

k!
ρk,n(XN),

and this formula makes sense even if θ is a complex number. We then recover ρN,n(XN) by a
contour integration:

ρN,n(XN) =
N !

2iπ

∮
ρ{z},n(XN)

ezdz

zN+1
.

We take for contour the circle |z| = N , on which the function z−N log z admits a critical point at
z = N . A sufficient condition in order to have ρN,n(XN) ' ρ{N},n(XN) is given by the following:

Lemma 3.13. Let (fN,k)N,k∈N be a bounded family of real numbers, and fN(z) =
∑∞

k=0
e−z zk

k!
fN,k.

We assume that:
• max|z|=N(Re log fN(z)) = O(

√
N).

• there exists a constant f∞ such that we have the following estimate:

max
|z−N |≤N1−ε

|fN(z)− f∞|

e
γ|z−N|√

N

= o(1)

for some ε ∈ (0, 1) and γ > 0.
Then, limk→∞ fN,N = f∞.

We refer to [BOO00, Lemma 3.1] for a proof of this lemma, which relies on classical arguments
of asymptotic analysis of integrals. It can be applied to the family fN,k = ρ{k},n(XN), with f∞
given by the determinant of the discrete sine kernel; the details of this computation are not really
interesting.

Let us now look at the edge of the random point process, and consider

M edge
{θ} (B) = M{θ}

(
2
√
θ + θ1/6B

)
,

which is a random point process on R. The kernel of this rescaled determinantal point process is

Kedge
{θ} (x, y) = I(x, θ)I(y, θ) θ1/3

Jrθ+xθ1/6− 1
2
(rθ) Jrθ+yθ1/6+ 1

2
(rθ)− Jrθ+xθ1/6+ 1

2
(rθ) Jrθ+yθ1/6− 1

2
(rθ)

x− y
,

where rθ = 2
√
θ and I(x, θ) is the indicator function of the condition 2

√
θ+ xθ1/6 ∈ Z′. By using

as before the integral representation

Jn(2t) =
1

2iπ

∮
et(z−z

−1) dz

zn+1

and by performing a saddle point analysis with a critical point of order 2 as in the second part of
Section 2.4, one obtains the following limit formula:

lim
θ→∞

√
θ
Jrθ+xθ1/6− 1

2
(rθ) Jrθ+yθ1/6+ 1

2
(rθ)− Jrθ+xθ1/6+ 1

2
(rθ) Jrθ+yθ1/6− 1

2
(rθ)

x− y
= KAiry(x, y).

It follows that for any family (x1, . . . , xn),

ρedge{θ},n(x1, . . . , xn) 'θ→∞

(
n∏
i=1

I(xi, θ) θ
1/6

)
det
(
KAiry(xi, xj)

)
1≤i,j≤n .
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In the weak sense, I(x, θ) θ1/6 converges to the Lebesgue measure dx, so one is led to the following
result, which is the analogue for random partitions of Theorem 2.11:

Theorem 3.14 (Borodin–Okounkov–Olshanski). As θ goes to infinity,M edge
{θ} converges towards the

Airy point process.

Again, a de-Poissonisation procedure yields the same result for

M edge
N (B) = MN

(
2
√
N +N1/6B

)
;

the details of these computations are given in [BOO00, Section 4]. As a corollary, one obtains the
following answer to Ulam’s problem of the longest increasing subsequence in a uniform random
permutation; the result appeared first in [BDJ99], and was reproved by different means in [Oko00;
Joh01].

Corollary 3.15 (Baik–Deift–Johansson). Let λ be a random partition chosen under the Plancherel
measure PN . As N goes to infinity, the rescaled first part λ1, which has the law of a longest increasing
subsequence or a random permutation inS(N), satisfies the following limit theorem:

λ1 − 2
√
N

N1/6
⇀N→∞ TW,

where TW is the Tracy–Widom distribution from Theorem 2.14.
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