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The results presented in this talk are taken from my two recent
papers : Higher algebra of A∞ and ΩBAs-algebras in Morse theory

I (arXiv:2102.06654) and Higher algebra of A∞ and ΩBAs-algebras
in Morse theory II (arxiv:2102.08996).

The talk will be divided in three parts : quick recollections on
A∞-algebras and A∞-morphisms ; de�nition of higher morphisms

between A∞-algebras, or n − A∞-morphisms, and their properties ;
de�nition of the n-multiplihedra, which are new families of
polytopes generalizing the standard multiplihedra and which encode
n − A∞-morphisms between A∞-algebras.
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Suspension : Let A be a graded Z-module. We denote sA, the
suspension of A to be the graded Z-module de�ned by
(sA)i := Ai−1. In other words, for a ∈ A, |sa| = |a| − 1.
For instance, a degree 2− n map A⊗n → A is equivalent to a
degree +1 map (sA)⊗n → sA.

Cohomological conventions : di�erentials will have degree +1.
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De�nition

Let A be a dg-Z-module with di�erential m1. An A∞-algebra
structure on A is the data of a collection of maps of degree 2− n

mn : A⊗n −→ A , n > 1,

extending m1 and which satisfy

[m1,mn] =
∑

i1+i2+i3=n
26i26n−1

±mi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3).

These equations are called the A∞-equations.
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Representing mn as
12 n

, these equations can be written as

[m1,
1 2 n

] =
∑

h+k=n+1

26h6n−1
16i6k

± 1 d1
k

1 d2

.
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In particular,

[m1,m2] = 0 ,

[m1,m3] = m2(id⊗m2 −m2 ⊗ id) ,

implying that m2 descends to an associative product on H∗(A). An
A∞-algebra is thus simply a correct notion of a dg-algebra whose
product is associative up to homotopy.

The operations mn are the higher coherent homotopies which keep
track of the fact that the product is associative up to homotopy.
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Using the universal property of the bar construction, we have the
following one-to-one correspondence

collections of morphisms of degree 2− n
mn : A⊗n → A , n > 1,

satisfying the A∞-equations


←→

{
coderivations D of degree +1 of T (sA)

such that D2 = 0

}
.
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De�nition

An A∞-morphism between two A∞-algebras A and B is a
dg-coalgebra morphism F : (T (sA),DA)→ (T (sB),DB) between
their shifted bar constructions.

As previously, the universal property of the bar construction yields
an equivalent de�nition in terms of operations.
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De�nition

An A∞-morphism between two A∞-algebras A and B is a family of
maps fn : A⊗n → B of degree 1− n satisfying

[m1, fn] =
∑

i1+i2+i3=n
i2>2

±fi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)

+
∑

i1+···+is=n
s>2

±ms(fi1 ⊗ · · · ⊗ fis ) .
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Representing the operations fn as , the operations mA
n in red

and the operations mB
n in blue, these equations read as

[
∂,

]
=

∑
h+k=n+1

16i6k
h>2

± 1 k
i

1 h

+
∑

i1+···+is=n
s>2

±

1 isi11

.
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We check that [∂, f2] = f1m
A
2
−mB

2
(f1 ⊗ f1) .

An A∞-morphism between A∞-algebras induces a morphism of
associative algebras on the level of cohomology, and is a correct
notion of morphism which preserves the product up to homotopy.
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Given two coalgebra morphisms F : TV → TW and
G : TW → TZ , the family of morphisms associated to G ◦ F is
given by

(G ◦ F )n :=
∑

i1+···+is=n

±gs(fi1 ⊗ · · · ⊗ fis ) .

This formula de�nes the composition of A∞-morphisms. Hence,
A∞-algebras together with A∞-morphisms form a category,
denoted A∞ − alg. This category can be seen as a full subcategory
of dg− Cogc of cocomplete dg-coalgebras, using the shifted bar
construction viewpoint.
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The category A∞ − alg provides a framework that behaves well
with respect to homotopy-theoretic constructions, when studying
homotopy theory of associative algebras. See for instance [LH02]
and [Val20].
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It is because this category is encoded by the two-colored operad

A2
∞ := F( , , , · · · , , , , · · · , , , , , · · · ) .

It is a quasi-free object in the model category of two-colored
operads in dg-Z-modules and a �brant-co�brant replacement of the
two-colored operad As2, which encodes associative algebras with
morphisms of algebras,

A2
∞−̃→As2 .
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Theorem (Homotopy transfer theorem)

Let (A, ∂A) and (H, ∂H) be two cochain complexes. Suppose that

H is a deformation retract of A, that is that they �t into a diagram

(A, ∂A) (H, ∂H) ,h
p

i

where idA − ip = [∂, h] and pi = idH . Then if (A, ∂A) is endowed

with an associative algebra structure, H can be made into an

A∞-algebra such that i and p extend to A∞-morphisms, that are

then A∞-quasi-isomorphisms.
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Our goal now : study the higher algebra of A∞-algebras.

Considering two A∞-morphisms F ,G , we would like �rst to
determine a notion giving a satisfactory meaning to the sentence
"F and G are homotopic". Then, A∞-homotopies being de�ned,
what is now a good notion of a homotopy between homotopies ?
And of a homotopy between two homotopies between homotopies ?
And so on.
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Start with a notion of homotopy. Drawn from [LH02].

Take C and C ′ two dg-coalgebras, F and G morphisms C → C ′ of
dg-coalgebras. A (F ,G )-coderivation is a map H : C → C ′ such
that

∆C ′H = (F ⊗ H + H ⊗ G )∆C .

The morphisms F and G are then said to be homotopic if there
exists a (F ,G )-coderivation H of degree -1 such that

[∂,H] = G − F .
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De�ne
∆∆∆1 := Z[0]⊕ Z[1]⊕ Z[0 < 1] ,

with di�erential ∂sing

∂sing ([0 < 1]) = [1]− [0] ∂sing ([0]) = 0 ∂sing ([1]) = 0 ,

and coproduct the Alexander-Whitney coproduct

∆∆∆∆1([0 < 1]) = [0]⊗ [0 < 1] + [0 < 1]⊗ [1]

∆∆∆∆1([0]) = [0]⊗ [0]

∆∆∆∆1([1]) = [1]⊗ [1] .

The elements [0] and [1] have degree 0, and the element [0 < 1]
has degree −1.
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We check that there is a one-to-one correspondence between
(F ,G )-coderivations and morphisms of dg-coalgebras
∆∆∆1 ⊗ C −→ C ′.

De�nition

For two A∞-algebras (T (sA),DA) and (T (sB),DB) and two
A∞-morphisms F ,G : (T (sA),DA)→ (T (sB),DB), an
A∞-homotopy from F to G is de�ned to be a morphism of
dg-coalgebras

H : ∆∆∆1 ⊗ T (sA) −→ T (sB) ,

whose restriction to the [0] summand is F and whose restriction to
the [1] summand is G .
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Using the universal property of the bar construction, this de�nition
can be rephrased in terms of operations.

De�nition

An A∞-homotopy between two A∞-morphisms (fn)n>1 and (gn)n>1
is a collection of maps

hn : A⊗n −→ B ,

of degree −n, satisfying

[∂, hn] =gn − fn +
∑

i1+i2+i3=m
i2>2

±hi1+1+i3(id⊗i1 ⊗mi2 ⊗ id⊗i3)

+
∑

i1+···+is+l
+j1+···+jt=n
s+1+t>2

±ms+1+t(fi1 ⊗ · · · ⊗ fis ⊗ hl ⊗ gj1 ⊗ · · · ⊗ gjt ) .
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In symbolic formalism,

[∂,
[0 < 1]

] =
[1]

−
[0]

+
∑
±

[0 < 1]

+
∑
± [1][1][0 < 1][0][0]

[0] [1]

,

where we denote
[0]

,
[0 < 1]

and
[1]

respectively for

the fn, the hn and the gn.
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The relation being A∞-homotopic on the class of A∞-morphisms is
an equivalence relation. It is moreover stable under composition.
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Move on to n-morphisms between A∞-algebras.

De�ne ∆∆∆n the graded Z-module generated by the faces of the
standard n-simplex ∆n,

∆∆∆n =
⊕

06i1<···<ik6n

Z[i1 < · · · < ik ] .

The grading is |I | := −dim(I ) for I ⊂ ∆n.
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It has a dg-coalgebra structure, with di�erential

∂∆∆∆n([i1 < · · · < ik ]) :=
k∑

j=1

(−1)j [i1 < · · · < îj < · · · < ik ] ,

and coproduct the Alexander-Whitney coproduct

∆∆∆∆n([i1 < · · · < ik ]) :=
k∑

j=1

[i1 < · · · < ij ]⊗ [ij < · · · < ik ] .
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De�nition ([MS03])

Let I be a face of ∆n. An overlapping partition of I to be a
sequence of faces (Il)16`6s of I such that

(i) the union of this sequence of faces is I , i.e. ∪16`6s Il = I ;

(ii) for all 1 6 ` < s, max(I`) = min(I`+1).

An overlapping 6-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .
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Overlapping partitions are the collection of faces which naturally
arise in the Alexander-Whitney coproduct.

The element ∆∆∆∆n(I ) corresponds to the sum of all overlapping
2-partitions of I . Iterating s times ∆∆∆∆n yields the sum of all
overlapping (s + 1)-partitions of I .
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We have seen that A∞-morphisms correspond to the set

Homdg−Cogc(T (sA),T (sB))

and A∞-homotopies correspond to the set

Homdg−Cogc(∆∆∆
1 ⊗ T (sA),T (sB)) ,

De�nition ([Maz21b])

We de�ne the set of n-morphisms between A and B as

HOMA∞−alg(A,B)n := Homdg−Cogc(∆∆∆
n ⊗ T (sA),T (sB)) .
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Using the universal property of the bar construction, n-morphisms
admit a nice combinatorial description in terms of operations.

De�nition ([Maz21b])

A n-morphism from A to B is de�ned to be a collection of maps

f
(m)
I : A⊗m −→ B of degree 1−m + |I | for I ⊂ ∆n and m > 1,
that satisfy

[
∂, f

(m)
I

]
=

dim(I )∑
j=0

(−1)j f
(m)
∂j I

+
∑

i1+···+is=m
I1∪···∪Is=I

s>2

±ms(f
(i1)
I1
⊗ · · · ⊗ f

(is)
Is

)

+ (−1)|I |
∑

i1+i2+i3=m
i2>2

±f (i1+1+i3)
I (id⊗i1 ⊗mi2 ⊗ id⊗i3) .
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Equivalently and more visually, a collection of maps I satisfying

[∂, I ] =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.
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The dg-coalgebras ∆∆∆• := {∆∆∆n}n>0 naturally form a cosimplicial
dg-coalgebra.

The sets HOMA∞−alg(A,B)n then �t into a HOM-simplicial set
HOMA∞−alg(A,B)•. This HOM-simplicial set provides a
satisfactory framework to study the higher algebra of A∞-algebras.

Theorem ([Maz21b])

For A and B two A∞-algebras, the simplicial set HOMA∞(A,B)• is
a Kan complex.
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Proof : Let C be a model category and C ∈ C. A cosimplicial

resolution of C is de�ned to be a co�brant approximation CCC of
const∗C in the Reedy model category C∆.

In other words, it is the data of a cosimplicial object CCC := {Cn}n>0
of C together with a cosimplicial morphism CCC → const∗C , such
that the maps Cn → C are weak equivalences in C and the latching
maps LnCCC → Cn are co�brations in C.
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Lemma (Lemma 16.5.3 of [Hir03])

If CCC → const∗C is a cosimplicial resolution in C and D is a �brant

object of C, then the simplicial set C(CCC ,D) is a Kan complex.
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It is thus enough to prove that the cosimplicial cocomplete
dg-coalgebra CCC := {∆∆∆n ⊗ T (sA)}n>0 is a cosimplicial replacement
of T (sA) and then apply the previous lemma in the model category
dg − Cogc de�ned in [LH02].

In other words, we have to prove that :

(i) the latching maps LnCCC → Cn = ∆∆∆n ⊗ T (sA) are co�brations,
i.e. they are injective ;

(ii) the maps p ⊗ IdT (sA) : ∆∆∆n ⊗ T (sA)→∆∆∆0 ⊗ T (sA) = T (sA)
are weak equivalences in the model category dg − Cogc , where
p : ∆∆∆n →∆∆∆0 is the map collapsing the simplex ∆n on one of
its vertices.
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Proposition

For every inner horn Λk
n ⊂ ∆n, there is a one-to-one correspondence

�llers

Λk
n HOMA∞(A,B)•

∆n


←→

{
families of maps of degree 1−m − n

f
(m)

∆n : A⊗m → B, m > 1

}
.
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An inner horn Λk
n → HOMA∞(A,B)• corresponds to a collection of

degree 1−m − dim(I ) morphisms f
(m)
I : A⊗m −→ B for I ⊂ Λk

n

which satisfy the A∞-equations for higher morphisms.

The previous proposition then states that �lling the horn Λk
n ⊂ ∆n

amounts to choosing an arbitrary collection of degree 1−m − n

morphisms f
(m)

∆n : A⊗m → B and that they completely determine

the collection of morphisms for the missing face f
(m)

[0<···<k̂<···<n]
.
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The simplicial homotopy groups of the Kan complex
HOMA∞(A,B)• can moreover be explicitly computed. We let
F = (F (m) : (sA)⊗m → sB)m>1 be an A∞-morphism from A to B ,
i.e. a point of HOMA∞(A,B)•.

The set of path components π0 (HOMA∞(A,B)•) corresponds to
the set of equivalence classes of A∞-morphisms from A to B under
the equivalence relation "being A∞-homotopic".
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For n > 1, the set πn (HOMA∞(A,B)•,F ) corresponds to the
equivalence classes of collections of degree −n maps

F
(m)
∆n : (sA)⊗m → sB satisfying equations

(−1)n
∑

i1+i2+i3=m

F
(i1+1+i3)
∆n

(
id⊗i1 ⊗ bi2 ⊗ id⊗i3

)
=

∑
i1+···+is+l

+j1+···+jt=m

bs+1+t

(
F (i1) ⊗ · · · ⊗ F (is) ⊗ F

(l)
∆n ⊗ F (j1) ⊗ · · · ⊗ F (jt)

)
.
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Two such collections of maps (F
(m)
∆n )m>1 and (G

(m)
∆n )m>1 are

equivalent if and only if there exists a collection of degree −(n + 1)
maps H(m) : (sA)⊗m → sB such that

G
(m)
∆n − F

(m)
∆n + (−1)n+1

∑
i1+i2+i3=m

H(i1+1+i3)(id⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+···+is+l
+j1+···+jt=m

bs+1+t(F
(i1) ⊗ · · · ⊗ F (is) ⊗ H(l) ⊗ F (j1) ⊗ · · · ⊗ F (jt)) .
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(i) The composition law on π1(HOMA∞(A,B)•,F ) is given by
the formula

G
(m)

∆1
+ F

(m)

∆1

−
∑

i1+···+is+l1
+j1+···+jt+l2
+k1+···+ku=m

bs+t+u+2(F (i1) ⊗ · · · ⊗ F (is ) ⊗ F
(l1)

∆1
⊗ F (j1) ⊗ · · · ⊗ F (jt ) ⊗ G

(l2)

∆1
⊗ F (k1) ⊗ · · · ⊗ F (ku )) .

(ii) If n > 2, the composition law on πn (HOMA∞(A,B)•,F ) is
given by the formula

G
(m)
∆n + F

(m)
∆n .
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3 The n-multiplihedra
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We would like to see the simplicial sets HOMA∞−alg(A,B)• as part
of a simplicial enrichment of the category A∞ − alg. In other
words, we would like to de�ne simplicial maps

HOMA∞−alg(A,B)n×HOMA∞−alg(B,C )n −→ HOMA∞−alg(A,C )n ,

lifting the composition on the HOM0 = Hom.

This would then endow A∞ − alg with a structure of ∞-category.
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All the natural approaches to lift the composition in A∞ − alg to
HOMA∞−alg(A,B)• fail to work. Hence, it is still an open question
to know whether these HOM-simplicial sets could �t into a
simplicial enrichment of the category A∞ − alg. In fact, it is
unclear to the author why such a statement should be true.
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We de�ne Poly to be the category of polytopes de�ned
in [MTTV19]. Its objects are standard polytopes but beware that
the morphisms of this category are not the usual a�ne maps. It
forms a monoidal category with product the usual cartesian
product, and a monoidal subcategory of CW.

The cellular chain functor C cell
∗ : Poly→ dg− Z− mod then

satis�es
C cell
∗ (P × Q) = C cell

∗ (P)⊗ C cell
∗ (Q) .

We will in fact work with the functor

C cell
−∗ : CW −→ dg− Z− mod ,

where C cell
−∗ (P) is simply the Z-module C cell

∗ (P) taken with its
opposite grading.
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De�nition

Given P and Q two operads seen as their Schur functors SP and
SQ , let R = {Rn} be a N-module of C seen as its Schur functor SR .
A (P,Q)-operadic bimodule structure on R is a (SP , SQ)-bimodule
structure λ : SP ◦ SR → SR and µ : SR ◦ SQ → SR on SR in
(End(C), ◦, IdC).

Equivalently, a (P,Q)-operadic bimodule structure on R is the data
of action-composition maps

Rk ⊗ Qi1 ⊗ · · · ⊗ Qik −→µi1,...,ik

Ri1+···+ik ,

Ph ⊗ Rj1 ⊗ · · · ⊗ Rjh −→
λj1,...,jh

Rj1+···+jh ,

which are compatible with one another, with identities, and with
compositions in P and Q.
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The dg− Z− mod-operad A∞ encoding A∞-algebras stems from a
Poly-operad. This was fully proven in [MTTV19].

There exists a collection of polytopes, called the associahedra and
denoted {Kn}, endowed with a structure of operad in the
category Poly and whose image under the functor C cell

−∗ yields the
operad A∞.
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In particular Kn has a unique cell [Kn] of dimension n − 2 whose
image under ∂cell is the A∞-equation, that is such that

∂cell [Kn] =
∑
± ◦i ([Kk ]⊗ [Kh]) .

Recall that the A∞-equations read as

∂(
1 2 n

) =
∑

h+k=n+1

26h6n−1
16i6k

± 1 d1
k

1 d2

.
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Figure: The associahedra K2, K3 and K4, with cells labeled by the

operations they de�ne in A∞

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra

Operadic algebra in the category Poly

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

1 A∞-algebras and A∞-morphisms

2 Higher algebra of A∞-algebras

3 The n-multiplihedra
Operadic algebra in the category Poly

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra

Operadic algebra in the category Poly

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

De�ne A∞ −Morph to be quasi-free (A∞,A∞)-operadic bimodule
encoding A∞-morphisms between A∞-algebras

A∞ −Morph = FA∞,A∞( , , , , · · · ) .

This operadic bimodule also stems from a Poly-operadic bimodule.
Work in progress : [MMV].

There exists a collection of polytopes, called the multiplihedra and
denoted {Jn}, endowed with a structure of ({Kn}, {Kn})-operadic
bimodule, whose image under the functor C cell

−∗ yields the
(A∞,A∞)-operadic bimodule A∞ −Morph.
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Again, Jn has a unique n − 1-dimensional cell [Jn] whose image
under ∂cell is the A∞-equation for A∞-morphisms, that is such that

∂cell [Jn] =
∑
±◦i ([Jk ]⊗ [Kh]) +

∑
±µ([Ks ]⊗ [Ji1 ]⊗· · ·⊗ [Jis ]) .

Recall that the A∞-equations read as

∂( ) =
∑

h+k=n+1

16i6k
h>2

± 1 k
i

1 h

+
∑

i1+···+is=n
s>2

±

1 isi11

.
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Figure: The multiplihedra J1, J2 and J3 with cells labeled by the

operations they de�ne in A∞ −Morph
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We would like to de�ne a family of polytopes encoding
n-morphisms between A∞-algebras. These polytopes will then be
called n-multiplihedra.

We have seen that A∞-morphisms T (sA)→ T (sB) are encoded by
the multiplihedra. n-morphisms being de�ned as the set of
morphisms ∆∆∆n ⊗ T (sA)→ T (sB), a natural candidate would thus
be {∆n × Jm}m>1.
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However, ∆n × Jm does not ful�ll that property as it is. Faces
correspond to the data of a face of I ⊂ ∆n, and of a broken
two-colored tree labeling a face of Jm. This labeling is too coarse,
as it does not contain the trees

IsI1

,

that appear in the A∞-equations for n-morphisms.
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We thus want to lift the combinatorics of overlapping partitions to
the level of the n-simplices ∆n.

Proposition ([Maz21b])

For each s > 1, there exists a polytopal subdivision of the standard

n-simplex ∆n whose top-dimensional cells are in one-to-one

correspondence with all s-overlapping partitions of ∆n.
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Taking the realizations

∆n := conv{(1, . . . , 1, 0, . . . , 0) ∈ Rn}
= {(z1, . . . , zn) ∈ Rn|1 > z1 > · · · > zn > 0} ,

this polytopal subdivision can be realized as the subdivision
obtained after dividing ∆n by all hyperplanes zi = (1/2)k , for
1 6 i 6 n and 1 6 k 6 s.
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Figure: The subdivision of ∆2 by overlapping 2-partitions
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Figure: The subdivision of ∆2 by overlapping 3-partitions
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The previous issue can then be solved by constructing a thinner
polytopal subdivision of ∆n × Jm.

Consider a face F of Jm, with exactly s unbroken two-colored trees
appearing in the two-colored broken tree labeling it. We re�ne the
polytopal subdivision of ∆n × F into ∆n

s × F , where ∆n
s denotes

∆n endowed with the subdivision encoding s-overlapping partitions.

This re�nement process can be done consistently for each face F of
Jm, in order to obtain a new polytopal subdivision of ∆n × Jm.
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De�nition ([Maz21b])

The n-multiplihedra are de�ned to be the polytopes ∆n × Jm
endowed with the previous polytopal subdivision. We denote them
n − Jm.
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Figure: The 1-multiplihedron ∆1 × J2
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Figure: The 2-multiplihedron ∆2 × J2
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Figure: The 1-multiplihedron ∆1 × J3
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The polytope n − Jm has a unique (n + m − 1)-dimensional cell
[n − Jm], is labeled by ∆n . By construction :

Proposition ([Maz21b])

The boundary of the cell [n − Jm] is given by

∂sing [n − Jm] ∪
⋃

h+k=m+1

16i6k
h>2

[n − Jk ]×i [Kh] ∪
⋃

i1+···+is=m
I1∪···∪Is=∆n

s>2

[Ks ]× [dim(I1)− Ji1 ]× · · · × [dim(Is)− Jis ] ,

where I1 ∪ · · · ∪ Is = ∆n is an overlapping partition of ∆n.
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Recall that the n − A∞-equations read as

∂( I ) =
k∑

j=1

(−1)j
∂
sing
j I

+
∑

I1∪···∪Is=I

±
IsI1

+
∑
±

I

.

In other words, the n-multiplihedra encode n-morphisms between

A∞-algebras.
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Let M be an oriented closed Riemannian manifold endowed with a
Morse function f together with a Morse-Smale metric. The Morse
cochains C ∗(f ) form a deformation retract of the singular cochains
C ∗sing (M) as shown in [Hut08].

(C ∗sing , ∂sing ) (C ∗(f ), ∂Morse) .h
p

i

The cup product naturally endows the singular cochains C ∗sing (M)
with a dg-algebra structure. The homotopy transfer theorem
ensures that it can be transferred to an A∞-algebra structure on
the Morse cochains C ∗(f ).
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The di�erential on the Morse cochains is de�ned by a count of
moduli spaces of gradient trajectories. Is it then possible to de�ne
higher multiplications mn on C ∗(f ) by a count of moduli spaces
such that they �t in a structure of A∞-algebra ?

Question solved for the �rst time by Abouzaid in [Abo11], drawing
from earlier works by Fukaya ([Fuk97] for instance). See
also [Mes18] and [AL18]. In [Maz21a] I prove that this A∞-algebra
structure actually stems from an ΩBAs-algebra structure, but I will
not dwell on that notion today.
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We prove in [Maz21a] and [Maz21b] that given two Morse
functions f and g , one can in fact construct n-morphisms between
their Morse cochain complexes C ∗(f ) and C ∗(g) through a count
of geometric moduli spaces of perturbed Morse gradient trees. This
gives a realization of this higher algebra of A∞-algebras in Morse
theory.

These constructions stem from the fact that the associahedra can
be realized as the compacti�ed moduli spaces of stable metric
ribbon trees and the multiplihedra can be realized as the
compacti�ed moduli spaces of stable two-colored metric ribbon
trees.
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Figure: The compacti�ed moduli space T 4
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The compacti�ed moduli space CT 3

Thibaut Mazuir Higher algebra of A∞-algebras and the n-multiplihedra



A∞-algebras and A∞-morphisms
Higher algebra of A∞-algebras

The n-multiplihedra

Operadic algebra in the category Poly

The associahedra
The multiplihedra
The n-multiplihedra
Towards Morse and Floer theory

It is also quite clear that given two compact symplectic manifolds M
and N, one should be able to construct n-morphisms between their
Fukaya categories Fuk(M) and Fuk(N) through counts of moduli
spaces of quilted disks (under the correct technical assumptions).

Links between the n-multiplihedra and the 2-associahedra of
Bottman (see [Bot19a] and [Bot19b] for instance) ? We are
currently inspecting this matter with Nate Bottman.
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Thanks for your attention !
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