

Int	roduction		

Introduction

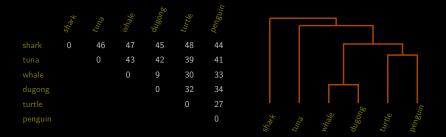
From a strict clock

The first intuition The inference framework Progress for our understanding of evolution

To more relaxed clocks

Non-auto-correlated v.s. auto-correlated relaxed clocks The inference framework Progress for our understanding of evolution

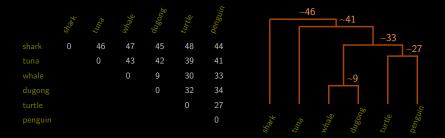
And future process-based relaxed clocks


Relevant biological knowledge to inform relaxed clocks Looking specifically for 'ecologically diverging genes' Hypothetical future progress for our understanding of evolution

Conclusion

References

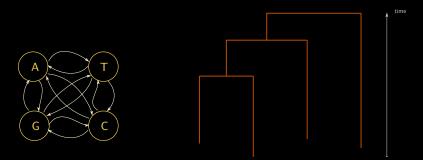
	From a strict clock ●○○○○○		
The first i	intuition	ndl and Pauling	


- ▶ Pairwise differences are compatible with branch lengths of an ultrametric tree.
- This is a fictious example. Historical data probably looked more like 'chicken, mouse, drosophilia, C. elegans'...

Mutations modeled as a Poisson process with constant rate on the tree.

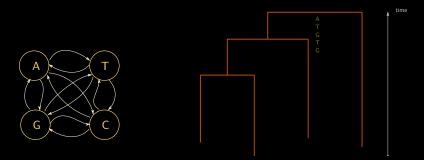
	From a strict clock		
The first i	ntuition	ndl and Pauling	

- Pairwise differences are compatible with branch lengths of an ultrametric tree.
- This is a fictious example. Historical data probably looked more like 'chicken, mouse, drosophilia, C. elegans'...

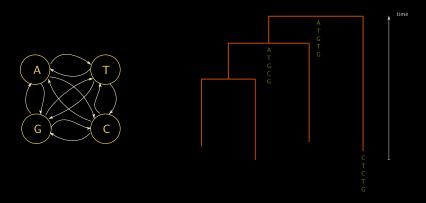


Mutations modeled as a Poisson process with constant rate on the tree.

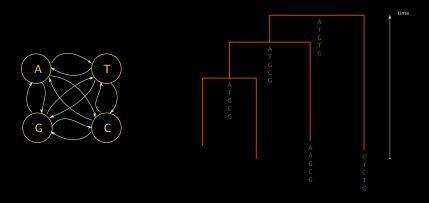
	From a strict clock O●○○○○		
The first in	tuition		


Simulation of molecular evolution

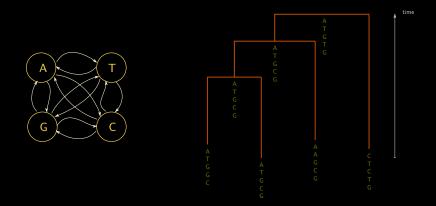
- The model comes with a transition matrix P(t) and a stationary distribution π .
- All nucleotides at the root are iid $\sim \pi$.
- The final state of each nucleotide on each branch is drawn using P(t).
- The process is copied independently on sister branches.


	From a strict clock ○●○○○○		
The first i Simulation	ntuition of molecular evolutic	'n	

- The model comes with a transition matrix P(t) and a stationary distribution π .
- All nucleotides at the root are iid $\sim \pi$.
- The final state of each nucleotide on each branch is drawn using P(t).
- The process is copied independently on sister branches.

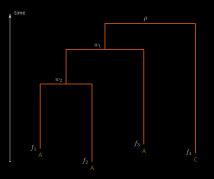

	From a strict clock ○●○○○○		
The first i Simulation	intuition of molecular evolution	n	

- The model comes with a transition matrix P(t) and a stationary distribution π .
- All nucleotides at the root are iid $\sim \pi$.
- The final state of each nucleotide on each branch is drawn using P(t).
- The process is copied independently on sister branches.


	From a strict clock O●○○○○		
The first i Simulation	ntuition of molecular evolutio	n	

- The model comes with a transition matrix P(t) and a stationary distribution π .
- All nucleotides at the root are iid $\sim \pi$.
- The final state of each nucleotide on each branch is drawn using P(t).
- The process is copied independently on sister branches.

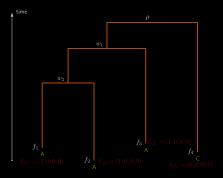
	From a strict clock O●○○○○		
The first i Simulation	ntuition of molecular evolutio	n	


- The model comes with a transition matrix P(t) and a stationary distribution π .
- All nucleotides at the root are iid $\sim \pi$.
- The final state of each nucleotide on each branch is drawn using P(t).
- The process is copied independently on sister branches.

From a strict clock			
00000	0000000	0000000	

The inference framework Likelihood computation (Felsenstein in the 80')

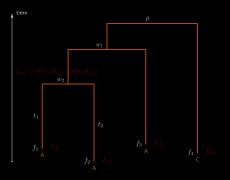
- We call X_w, the nucleotide state at node w. We further define L_w := (ℙ(tip data | X_w = i))_{i∈{A,T,G,C}}
- ▶ On a leaf f, initialize $L_f = (\mathbb{1}_{X_f=A}, \mathbb{1}_{X_f=T}, \mathbb{1}_{X_f=G}, \mathbb{1}_{X_f=C})$
- On a node (e.g. w_2) having descent f_1 and f_2 , $L_{w_2} = (P(t_1)L_{f_1}) \cdot (P(t_2)L_{f_2})$ (where \cdot is the Hadamard product)
- At the root, $L = \pi L_{\rho}$



From a strict clock ○○●○○○		

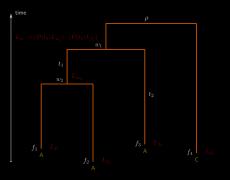
The inference framework Likelihood computation (Felsenstein in the 80')

- We call X_w, the nucleotide state at node w. We further define L_w := (ℙ(tip data | X_w = i))_{i∈{A,T,G,C}}
- On a leaf f, initialize $L_f = \overline{(\mathbbm{1}_{X_f=A}, \mathbbm{1}_{X_f=T}, \mathbbm{1}_{X_f=G}, \mathbbm{1}_{X_f=C})}$
- On a node (e.g. w_2) having descent f_1 and f_2 , $L_{w_2} = (P(t_1)L_{f_1}) \cdot (P(t_2)L_{f_2})$ (where \cdot is the Hadamard product)


• At the root,
$$L = \pi L_{\rho}$$

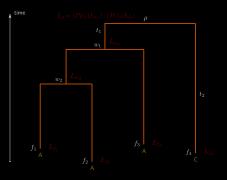
From a strict clock ○○●○○○		

The inference framework <u>Likelihood computation</u> (Felsenstein in the 80')

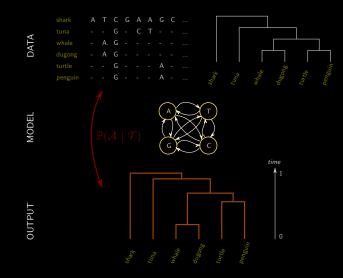

- We call X_w, the nucleotide state at node w. We further define L_w := (ℙ(tip data | X_w = i))_{i∈{A,T,G,C}}
- On a leaf f, initialize $L_f = (\mathbb{1}_{X_f=A}, \mathbb{1}_{X_f=T}, \mathbb{1}_{X_f=G}, \mathbb{1}_{X_f=C})$
- On a node (e.g. w_2) having descent f_1 and f_2 , $L_{w_2} = (P(t_1)L_{f_1}) \cdot (P(t_2)L_{f_2})$ (where \cdot is the Hadamard product)
- At the root, $L = \pi L_{\rho}$

From a strict clock ○○●○○○		

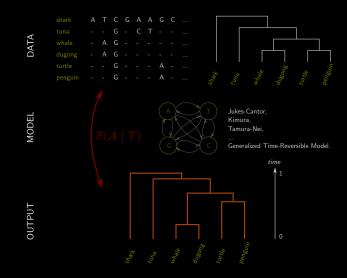
The inference framework <u>Likelihood computation</u> (Felsenstein in the 80')


- We call X_w, the nucleotide state at node w. We further define L_w := (ℙ(tip data | X_w = i))_{i∈{A,T,G,C}}
- On a leaf f, initialize $L_f = (\mathbb{1}_{X_f=A}, \mathbb{1}_{X_f=T}, \mathbb{1}_{X_f=G}, \mathbb{1}_{X_f=C})$
- On a node (e.g. w_2) having descent f_1 and f_2 , $L_{w_2} = (P(t_1)L_{f_1}) \cdot (P(t_2)L_{f_2})$ (where \cdot is the Hadamard product)
- At the root, $L = \pi L_{\rho}$

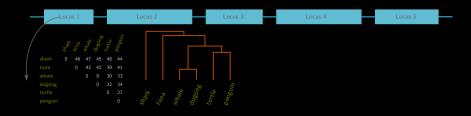
From a strict clock ○○●○○○		


The inference framework Likelihood computation (Felsenstein in the 80')

- We call X_w, the nucleotide state at node w. We further define L_w := (ℙ(tip data | X_w = i))_{i∈{A,T,G,C}}
- On a leaf f, initialize $L_f = (\mathbb{1}_{X_f=A}, \mathbb{1}_{X_f=T}, \mathbb{1}_{X_f=G}, \mathbb{1}_{X_f=C})$
- On a node (e.g. w_2) having descent f_1 and f_2 , $L_{w_2} = (P(t_1)L_{f_1}) \cdot (P(t_2)L_{f_2})$ (where \cdot is the Hadamard product)
- At the root, $L = \pi L_{\rho}$.

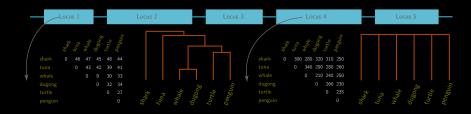

From a strict clock		
000000		

The inference framework Need for models of molecular evolution


From a strict clock			
000000	000000	000000	

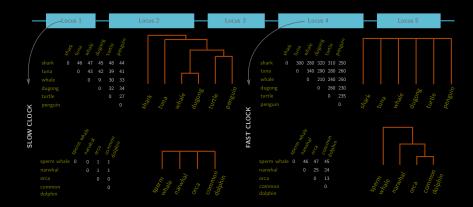
The inference framework Need for models of molecular evolution

From a strict clock		
000000		


Progress for our understanding of evolution Slow versus fast loci

- Studies on substitution rates across loci.
- Discussion on stabilizing selection and neutrality.
- Widespread tool for relative dating of phylogenies.

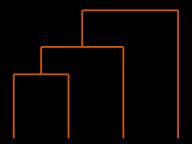
From a strict clock		
000000		


Progress for our understanding of evolution Slow versus fast loci

- Studies on substitution rates across loci.
- Discussion on stabilizing selection and neutrality.
- Widespread tool for relative dating of phylogenies.

From a strict clock		
000000		

Progress for our understanding of evolution Slow versus fast loci

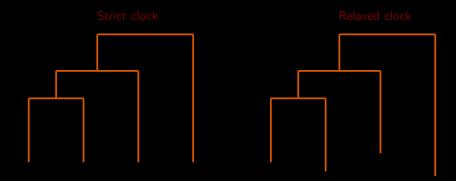


- Studies on substitution rates across loci.
- Discussion on stabilizing selection and neutrality.
- Widespread tool for relative dating of phylogenies.

From a strict clock		
000000		

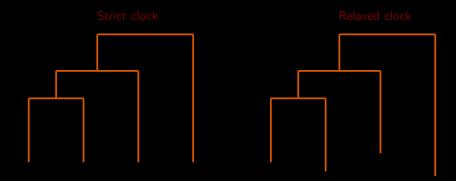

Progress for our understanding of evolution The molecular clock vs. fully relaxed clock

Strict clock



• Either all coalescence times are free parameters (n-1).


- ▶ Or all branch-lengths are parameters (2n − 3).
- The relative fit allows for the first tests of the molecular clock hypothesis.


Progress for our understanding of evolution The molecular clock vs. fully relaxed clock

- Either all coalescence times are free parameters (n-1).
- Or all branch-lengths are parameters (2n 3).
- The relative fit allows for the first tests of the molecular clock hypothesis.

Progress for our understanding of evolution The molecular clock vs. fully relaxed clock

- Either all coalescence times are free parameters (n-1).
- Or all branch-lengths are parameters (2n 3).
- ▶ The relative fit allows for the first tests of the molecular clock hypothesis.

	To more relaxed clocks	
	• o ooooo	

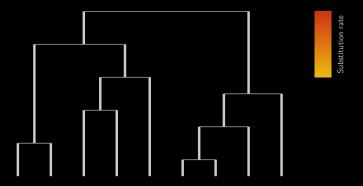
Introduction

From a strict clock

The first intuition The inference framework Progress for our understanding of evolution

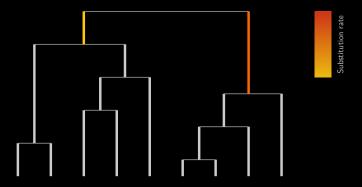
To more relaxed clocks

Non-auto-correlated v.s. auto-correlated relaxed clocks The inference framework Progress for our understanding of evolution

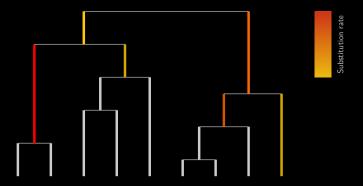

And future process-based relaxed clocks

Relevant biological knowledge to inform relaxed clocks Looking specifically for 'ecologically diverging genes' Hypothetical future progress for our understanding of evolution

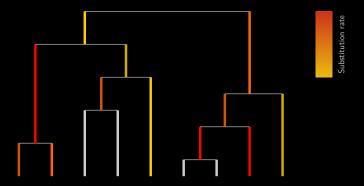
Conclusion


References

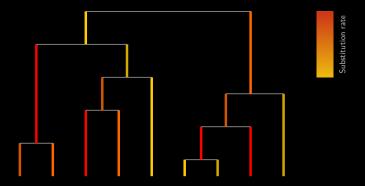
	To more relaxed clocks ○●○○○○○	


- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).
- Rate values are chosen in a fixed law, independently of the neighbouring ones.
- Rate values depend on the rate in the parent branch.

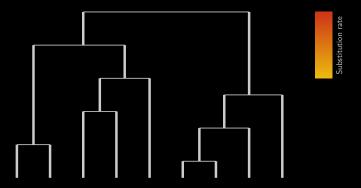
	To more relaxed clocks ○●○○○○○	


- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).
- Rate values are chosen in a fixed law, independently of the neighbouring ones.
- Rate values depend on the rate in the parent branch.

	To more relaxed clocks O●○○○○○	

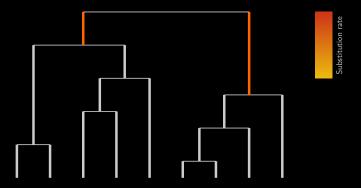

- The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).
- Rate values are chosen in a fixed law, independently of the neighbouring ones.
- Rate values depend on the rate in the parent branch.

	To more relaxed clocks O●○○○○○	


- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).
- Rate values are chosen in a fixed law, independently of the neighbouring ones.
- Rate values depend on the rate in the parent branch.

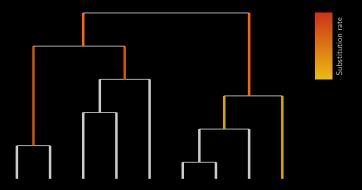
	To more relaxed clocks O●○○○○○	

- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).
- Rate values are chosen in a fixed law, independently of the neighbouring ones.
- Rate values depend on the rate in the parent branch.


		To more relaxed clocks O●○○○○○		
Non-auto	-correlated v s	auto-correlated relaxe	d clocks	

- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).

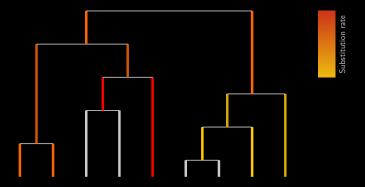
Rate values are chosen in a fixed law, independently of the neighbouring ones.


		To more relaxed clocks O●○○○○○		
Non-auto-c	orrelated v.s. a	uto-correlated relaxe	ed clocks	

- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).

Rate values are chosen in a fixed law, independently of the neighbouring ones.

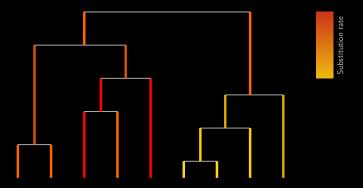
		To more relaxed clocks O●○○○○○		
Non-auto-	correlated v.s. ai	ito-correlated relax	ed clocks	



- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).

Rate values are chosen in a fixed law, independently of the neighbouring ones.

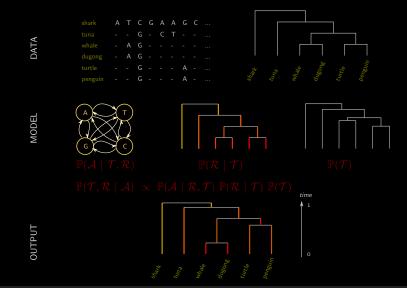
		To more relaxed clocks O●○○○○○		
Non-auto-	correlated v.s. au	ito-correlated relax	ed clocks	


The auto-correlated ones

- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).

Rate values are chosen in a fixed law, independently of the neighbouring ones.

		To more relaxed clocks O●○○○○○		
Non-auto-	correlated v.s. ai	ito-correlated relax	ed clocks	



- ▶ The substitution rate is different on each branch.
- Or the changing points are drawn first on the tree (Poisson process).

Rate values are chosen in a fixed law, independently of the neighbouring ones.

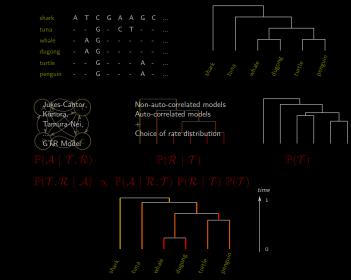
	To more relaxed clocks	
	000000	

The inference framework On a single locus first Lepage et al. (2007)

	To more relaxed clocks	
	000000	

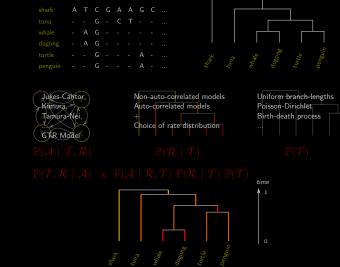
The inference framework On a single locus first Lepage et al. (2007)

ATCGAAGC... DATA AG - - -A -Jukes-Cantor MODEL Kimura, Tamura-Nei GTR Model time OUTPUT


	To more relaxed clocks ○○●○○○○	

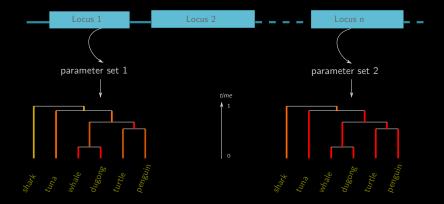
The inference framework On a single locus first Lepage et al. (2007)

DATA


	To more relaxed clocks ○○●○○○○	

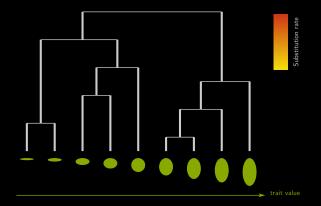
The inference framework On a single locus first Lepage et al. (2007)

DATA



From a strict clock	To more relaxed clocks	And future process-based relaxed clocks	

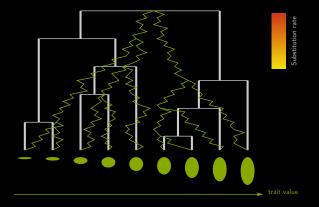
The inference framework Along the sequence


- Model parameters may change from one locus to the other.
- Each parameter set is drawn in a given distribution.
- Need for a prior on the partition of loci behaving similarly.

		To more relaxed clocks ○○○○●○○	
Progress fo More accura	or our understanc cy in dating	ling of evolution	

- Three ways to evaluate these clocks :
- 1. Ability to retrieve known parameter values on simulations.
- 2. Goodness of fit on specific datasets.
- 3. Compatibility with known fossil dates.
- Relaxed clocks perform better than the strict one on most datasets.
- Some studies compare the distinct relaxed clocks (Lepage et al., 2007).

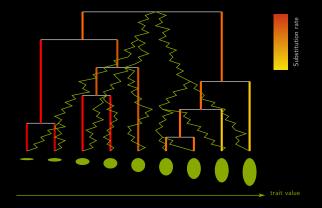
	To more relaxed clocks	
	0000000	


Progress for our understanding of evolution Correlation with phenotypic traits (Lartillot and Poujol, 2011)

- A continuous trait (like body mass) changes continuously along tree branches.
- The rate of substitution changes continuously along tree branches.
- Both are modeled jointly as a correlated diffusion process.

	To more relaxed clocks	
	0000000	

Progress for our understanding of evolution Correlation with phenotypic traits (Lartillot and Poujol, 2011)

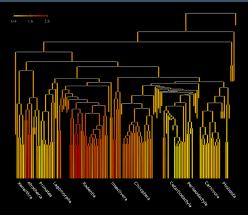


A continuous trait (like body mass) changes continuously along tree branches.

- The rate of substitution changes continuously along tree branches.
- Both are modeled jointly as a correlated diffusion process.

	To more relaxed clocks	
	0000000	

Progress for our understanding of evolution Correlation with phenotypic traits (Lartillot and Poujol, 2011)



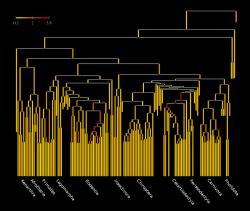
- A continuous trait (like body mass) changes continuously along tree branches.
- The rate of substitution changes continuously along tree branches.
- Both are modeled jointly as a correlated diffusion process.

	To more relaxed clocks	
	000000	

Progress for our understanding of evolution

Estimating the weight of the non-auto-correlated v.s. auto-correlated parts (Lartillot et al., 2016)

Among mammals, there is a negative correlation between :


- 1. substitution rate and body mass,
- 2. substitution rate and longevity.

Which processes are subsumed under the 'non-auto-correlated' term ?

	To more relaxed clocks	
	000000	

Progress for our understanding of evolution

Estimating the weight of the non-auto-correlated v.s. auto-correlated parts (Lartillot et al., 2016)

Among mammals, there is a negative correlation between :

1. substitution rate and body mass,

2. substitution rate and longevity.

Which processes are subsumed under the 'non-auto-correlated' term ?

	And future process-based relaxed clocks	
	• 00 0000	

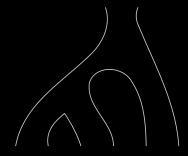
Introduction

From a strict clock

The first intuition The inference framework Progress for our understanding of evolution

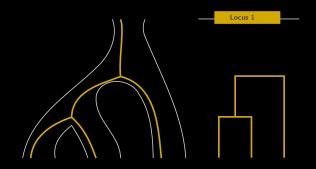
To more relaxed clocks

Non-auto-correlated v.s. auto-correlated relaxed clocks The inference framework Progress for our understanding of evolution

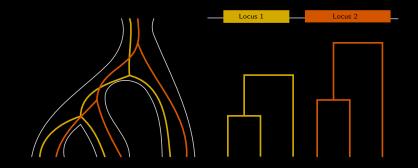

And future process-based relaxed clocks

Relevant biological knowledge to inform relaxed clocks Looking specifically for 'ecologically diverging genes' Hypothetical future progress for our understanding of evolution

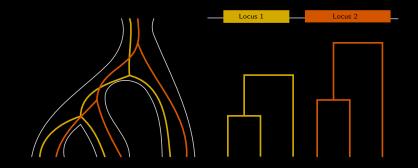
Conclusion


References

	And future process-based relaxed clocks ○●○○○○○	

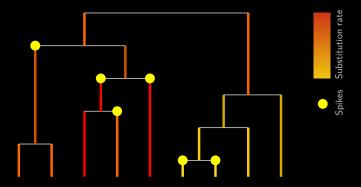

- Coalescence times vary randomly from one locus to the other. This should not be interpreted as a variation of the substitution rate. Could we inform the model with a coalescence-compatible time window ?
- Genes involved in reproductive isolation are expected to coalesce earlier. Could we look for such quickly coalescing genes ?

	And future process-based relaxed clocks	
	000000	


- Coalescence times vary randomly from one locus to the other. This should not be interpreted as a variation of the substitution rate. Could we inform the model with a coalescence-compatible time window ?
- Genes involved in reproductive isolation are expected to coalesce earlier. Could we look for such quickly coalescing genes ?

	And future process-based relaxed clocks	
	000000	

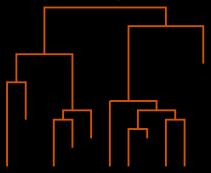
- Coalescence times vary randomly from one locus to the other. This should not be interpreted as a variation of the substitution rate. Could we inform the model with a coalescence-compatible time window ?
- Genes involved in reproductive isolation are expected to coalesce earlier. Could we look for such quickly coalescing genes ?


	And future process-based relaxed clocks	
	000000	

- Coalescence times vary randomly from one locus to the other. This should not be interpreted as a variation of the substitution rate. Could we inform the model with a coalescence-compatible time window ?
- Genes involved in reproductive isolation are expected to coalesce earlier. Could we look for such quickly coalescing genes ?

	And future process-based relaxed clocks	
	000000	

Relevant biological knowledge to inform relaxed clocks Fast divergent selection at speciation times

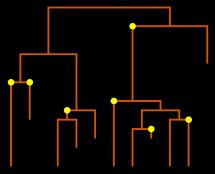


- Strong divergent selection is expected to happen at speciation.
- ▶ Concerns genes involved in ressource use, new habitat, conspecific recognition...
- Could we look for these genes ?

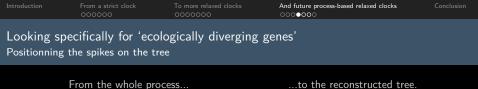
	And future process-based relaxed clocks ○○○●○○○	

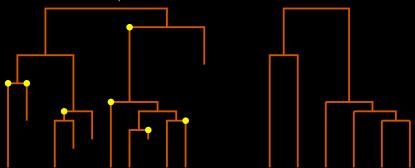
Looking specifically for 'ecologically diverging genes' Positionning the spikes on the tree

From the whole process...

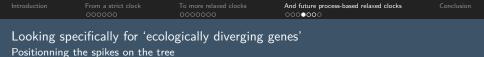

The tree follows a birth-death process.

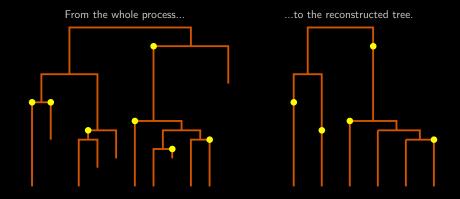
- At each branching time, a spike occurs with probability ν .
- We want to describe the process directly on the reconstructed tree.
- Spikes occur on the reconstructed tree as a time-heterogeneous Poisson process.

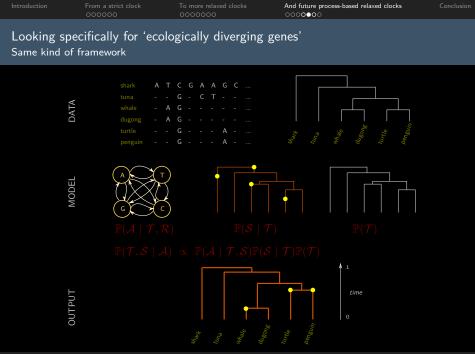

	And future process-based relaxed clocks	

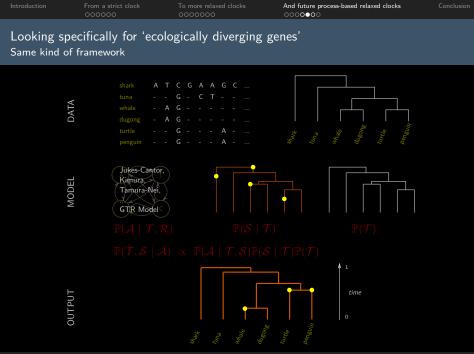

Looking specifically for 'ecologically diverging genes' Positionning the spikes on the tree

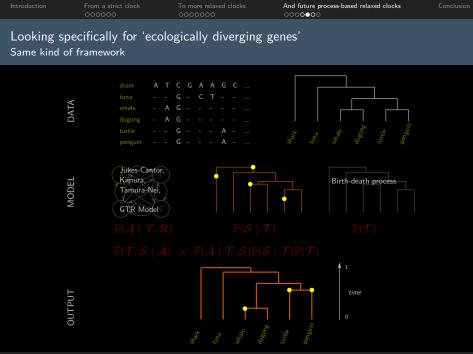
From the whole process...



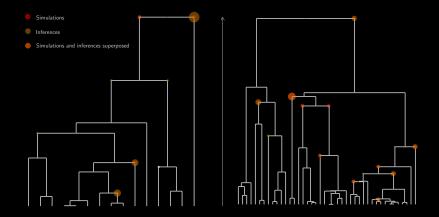

- The tree follows a birth-death process.
- At each branching time, a spike occurs with probability ν .
- We want to describe the process directly on the reconstructed tree.
- Spikes occur on the reconstructed tree as a time-heterogeneous Poisson process.

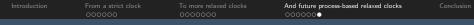



- The tree follows a birth-death process.
- At each branching time, a spike occurs with probability ν .
- We want to describe the process directly on the reconstructed tree.
- Spikes occur on the reconstructed tree as a time-heterogeneous Poisson process.

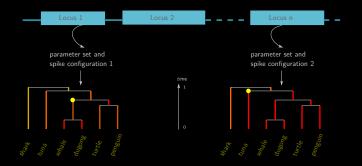


- The tree follows a birth-death process.
- At each branching time, a spike occurs with probability ν .
- We want to describe the process directly on the reconstructed tree.
- Spikes occur on the reconstructed tree as a time-heterogeneous Poisson process.





	And future process-based relaxed clocks ○○○○○●○	


Looking specifically for 'ecologically diverging genes' Where we stand

- Inferences on simulations seem to work quite well.
- We may apply this to real data in the following months.

Hypothetical future progress for our understanding of evolution

- Two main objectives :
- 1. Date the tree with a relaxed clock.
- 2. Find loci showing a different pattern of spikes.
- Further hypothesis testing ideas :
- 1. Does divergence happen symmetrically at branching events ?
- 2. Does statistical signal support spikes happening at branching events ?

Take-home message			

The strict clock hypothesis allowed the first tree dating. Revealed slow (selectively stabilized) v.s. fast (neutral) loci Relaxed clocks allow to spot acceleration/deceleration on the tree. Revealed correlations of the clock with phenotypic traits. Future clocks will hopefully be designed to bring further insights into the genomics of speciation.

Thank you for your attention !

Key references :

- Lartillot, N., Phillips, M. J., and Ronquist, F. (2016). A mixed relaxed clock model. *Phil. Trans. R. Soc. B*, 371(1699):20150132.
- Lartillot, N. and Poujol, R. (2011). A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. *Molecular biology and evolution*, 28(1):729–744.
- Lepage, T., Bryant, D., Philippe, H., and Lartillot, N. (2007). A general comparison of relaxed molecular clock models. *Molecular biology and evolution*, 24(12):2669–2680.