A general comparative phylogenetic framework for coevolving traits and coevolving lineages

Marc Manceau, Amaury Lambert, Hélène Morlon

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models	Conclusion
	000	000	0000	

How do phenotypes evolve over macroevolutionary timescale ?

Adressing biological questions with phylogenetic comparative models

- 1. Parameter inference
 - Tempo of evolution
 - Differential lability of traits
 - Correlation of traits
- 2. Evolutionary history inference
 - Ancestral state inference
 - Tree inference
- 3. Model comparison
 - Which processes are driving phenotypic evolution over long time-scales ?

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models	Conclusion
	000	000	0000	

Short background on phylogenetic comparative models Continuous traits following a Stochastic Differential Equation

$$dX_t^{(i)} = \psi(\theta - X_t^{(i)})dt + \sigma dB_t^{(i)}$$

Introduction	Leading ideas in phenotypic evolution ●○○	General framework 000	Biologically informed models	Conclusion
Some tra	its seem unconstrained			
Brownian mc	odel			

- Some traits do not confer any adaptive advantage/disadvantage over long time-scale.
- > They are supposed to evolve following a "phenotypic drift".

$$dX_t^{(i)} = \sigma dB_t^{(i)}$$

Time

Example 1 : body mass

Introduction	Leading ideas in phenotypic evolution ○●○	General framework	Biologically informed models	Conclusion
Abiotic c Ornstein-Uhl	conditions determine an o	optimal trait va	alue	
•	Some traits confer an adaptiv	ve advantage arou	ınd a given value.	

They evolve with a balance between the strength of selection and random noise.

$$dX_t^{(i)} = \psi(heta - X_t^{(i)})dt + \sigma dB_t^{(i)}$$

Time

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models	Conclusion
	000	000	0000	

Biotic interactions impose constraints on phenotypic evolution Nuismer and Harmon, Ecology Letters, 2014

- S < 0: competition leads to trait repulsion.
- S > 0: mimicry confers a selective advantage.

$$dX_{t}^{(i)} = S\left(\frac{1}{n}\sum_{j=1}^{n}X_{t}^{(j)} - X_{t}^{(i)}\right)dt + \sigma dB_{t}^{(i)}$$

Example 3 : Müllerian mimicry in the Heliconius genus

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models	Conclusion
	000	0 00	0000	
A genera	al framework			

$$\begin{cases} dX_t = (a(t) - AX_t)dt + \Gamma(t)dW_t \\ X(0) = X_0 \end{cases}$$

Code	Equation on a living lineage k	а	А	Г
BM	$dX_t^{(k)} = \sigma dW_t^{(k)}$	0	0	σI
OU	$dX_t^{(k)} = \psi(heta - X_t^{(k)})dt + \sigma dW_t^{(k)}$	$\psi \theta V$	ψ I	σI
PM	$dX_t^{(k)} = \psi(heta - X_t^{(k)})dt$	$\psi \theta V$	$(\psi + S)I - \frac{S}{n}U$	σI
	$+S\left(rac{1}{n_t}\sum_{l=1}^{n_t}X_t^{(l)}-X_t^{(k)} ight)dt+\sigma dW_t^{(k)}$			
EB	$dX_t^{(k)} = \sigma_0 e^{-\frac{1}{2}rt} dW_t^{(k)}$	0	0	$\sigma_0 e^{-\frac{1}{2}rt}I$
DD	$dX_t^{(k)} = \sigma_0 e^{-rn_t} dW_t^{(k)}$	0	0	$\sigma_0 e^{-rn_t} I$

Illustration : Ornstein-Uhlenbeck process

$$d\begin{pmatrix} X_t^{(1)} \\ X_t^{(2)} \\ \vdots \\ X_t^{(n)} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \psi\theta \\ \psi\theta \\ \vdots \\ \vdots \\ \psi\theta \end{pmatrix} - \begin{pmatrix} \psi & 0 & \cdots & 0 \\ 0 & \psi & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \psi \end{pmatrix} \begin{pmatrix} X_t^{(1)} \\ X_t^{(2)} \\ \vdots \\ X_t^{(n)} \end{pmatrix} dt + \begin{pmatrix} \sigma & 0 & \cdots & 0 \\ 0 & \sigma & \ddots & \vdots \\ 0 & \sigma & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma \end{pmatrix} d\begin{pmatrix} B_t^{(1)} \\ B_t^{(2)} \\ \vdots \\ B_t^{(n)} \end{pmatrix}$$

One formula to rule them all

Introduction	Leading ideas in phenotypic evolution	General framework ○●○	Biologically informed models	Conclusion
Likelihood Turnkey codes	d computation s available on github			

- Fix the parameter set *p* of the models.
- X_T at present time is Gaussian with computable mean m_p and variance Σ_p .
- > A numerical algorithm derives this distribution for any model.

```
getTipDistribution(model1, parameters)
getDataLikelihood(model1, traitValues, parameters)
```


Introduction	Leading ideas in phenotypic evolution	General framework ○○●	Biologically informed models	Conclusion
Using the Turnkey code	e likelihood s available on github			

traitValues <- simulateTipData(model1, parameters)</pre>

Sp. A	Sp. B	Sp. C	Sp. D
10.2	8.4	6.9	4.8

inferredParameters <- fitTipData(model1, traitValues)

m_0	v_0	lpha	θ	σ
1	0	-1	0	2.2

AlCweights <- modelSelection(c(model1, model2, model3), traitValues)

AIC _{model1}	AIC_{model2}	AIC_{model3}
4.2	0	6.7

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models ●○○○	Conclusion
Adding bi	ogeography knowledge f Systematic Biology, 2016	to the model		

 Trait evolution is driven by biotic interactions within separated communities.

$$A = \begin{pmatrix} \frac{25}{3} & \frac{-5}{23} & \frac{-5}{3} & 0 & 0\\ \frac{-5}{3} & \frac{25}{3} & \frac{-5}{3} & 0 & 0\\ \frac{-5}{3} & \frac{-5}{3} & \frac{25}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{5}{2} & \frac{-5}{2}\\ 0 & 0 & 0 & \frac{-5}{2} & \frac{5}{2} \end{pmatrix}$$

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models ○○●○	Conclusion			
Strengths of competition in different settings Work in progress, Jonathan Drury							
Which factors are associated to the strongest influence of other lineages ?							

- ▶ In different geographic areas : islands, climatic regions, ...
- Depending on other factors : diet, dispersal ability, ...

- Coevolution with predation, parasitism or mutualism, should drive a signature on phenotypic data.
- Could we use this signature to infer past interactions between lineages ?

Introduction	Leading ideas in phenotypic evolution	General framework	Biologically informed models	Conclusion
Take-hom	e message			

- 1. Existence of this framework to build biologically informed models of trait evolution.
- 2. Easy computation of the likelihood, turnkey codes available.
- 3. Paves the way to new questions regarding phenotypic macroevolution.

Thank you for your attention ! And many thanks to workmates for helpful discussions on this topic

 ${\sf Codes \ freely \ available \ on \ the \ Github \ repository \ of \ the \ RPANDA \ package \ : \ https://github.com/hmorlon/PANDA \ repository \ of \ the \ repository \ of \ the \ repository \ rep$

Adress any question to : marc.manceau@gmail.com