Inferring the ancestral population size under a birth-death process, from a reconstructed phylogenetic tree and a record of occurrences Groupe de travail Math-Bio et Santé – LJLL – Paris

Marc Manceau, Antoine Zwaans, Jérémy Andréoletti, Ankit Gupta, Tim Vaughan, Rachel Warnock, Tanja Stadler

June 29, 2020

Basics of phylogenetics 00000	Incorporating occurrences 0000	The ancestral population size	Empirical case studies	
Sketch of the pres	entation			

Basics of phylogenetics

The raw data The questions The Bayesian framework

Incorporating occurrences

Motivation Model A bit of context

The ancestral population size

Sketch of the overall strategy Forward-backward traversal of the tree Known corrolaries Reconstructing past population size

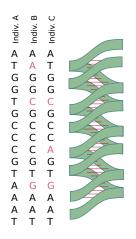
Empirical case studies

Overview of the project Implementation Cetacean diversity Covid-19 prevalence on the Diamond princess

Conclusion

Perspectives Take-home messages

Basics of phylogenetics ●○○○○	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion 0000
Basics of phyloge	netics			
Basics of phylogene The raw data The questions The Bayesian fra			ri Íń	
Incorporating occur Motivation Model A bit of context				

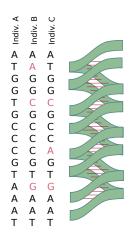


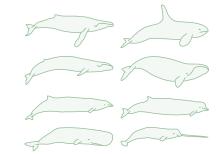
The raw data – in macroevolution		

 Molecular sequences of extant species

- Morphological traits of extant species
- Morphological traits of fossil species

Basics of phylogenetics ○●○○○	Incorporating occurrences	The ancestral population size	Empirical case studies	
The raw data – ir	n macroevolution			
 Molecular sequences extant species 		orphological traits of extant sp	pecies	


Morphological traits of fossil species


Basics of phylogenetics ○●○○○	Incorporating occurrences 0000	The ancestral population size	Empirical case studies	
<u> </u>				

The raw data – in macroevolution

 Molecular sequences of extant species

Morphological traits of fossil species

Basics of phylogenetics ○●○○○	Incorporating occurrences 0000	The ancestral population size	Empirical case studies	
The row data -	in macroevolution			

Morphological traits of extant species

The raw data – in macroevolution

- Molecular sequences of extant species
- Indiv. A Indiv. B Indiv. C А А А т Т Α G G G G G G С т С G G G С С С С С С С С A G G G Т т т G Α G А А Α А A А т т т

- Morphological traits of fossil species

Basics of phylogenetics ○○●○○	Incorporating occurrences	The ancestral population size	Empirical case studies	
The raw data – i	n epidemiology			

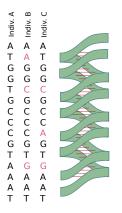
- Infected individuals are being sampled throughout the epidemic
- Their pathogens are being sequenced

 Traits concerning pathogens and hosts can be recorded
 (e.g. geographic location, viral load, gender, ...)

Basics of phylogenetics ○○●○○	Incorporating occurrences	The ancestral population size	Empirical case studies	
The raw data – ir	ı epidemiology			

Infected individuals are being sampled throughout the epidemic

Their pathogens are being sequenced

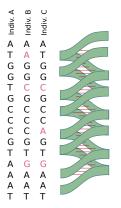

 Traits concerning pathogens and hosts can be recorded
 (e.g. geographic location, viral load, gender, ...)

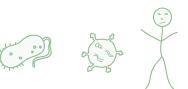
Basics of phylogenetics ○○●○○	Incorporating occurrences	The ancestral population size	Empirical case studies	

The raw data – in epidemiology

- Infected individuals are being sampled throughout the epidemic
- Their pathogens are being sequenced

 Traits concerning pathogens and hosts can be recorded (e.g. geographic location, viral load, gender, ...)




Basics of phylogenetics ○○●○○	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	

The raw data – in epidemiology

- Infected individuals are being sampled throughout the epidemic
- Their pathogens are being sequenced

 Traits concerning pathogens and hosts can be recorded (e.g. geographic location, viral load, gender, ...)

Basics of phylogene ○○○●○	tics Incorporating occurrences 0000	The ancestral population size	Empirical case studies	
The questic	ons			
	Macroevolution			
1. What	is the tempo of diversification ?	1. What is the temp	oo of epidemic spread ?	
2. What	are the drivers of trait evolution		en traits under selection	
3. What	was the diversity in the past ?	3. What was the pr	evalence in the past ?	
There	is a hidden phylogenetic/transm	ission tree.		
Traits	evolve along the tree.			
Propo	se scenarios of evolution: probab			
► Fit th	ese models to observed data.			

Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	
The questions				
	Macroevolution	Epide	miology	
	e tempo of diversification ?		o of epidemic spread ?	
2. What are th	he drivers of trait evolution ?		en traits under selection	?
3. What was t	the diversity in the past ?	3. What was the pre	evalence in the past ?	
There is a ł	hidden phylogenetic/transmissi	ion tree.		

- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

Basics of phyl ○○○●○	ogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The que	estions				
	Maci	roevolution			
1. W	/hat is the ter	npo of diversification ?	1. What is the temp	o of epidemic spread ?	
2. W	/hat are the d	rivers of trait evolution ?		en traits under selection	?
	/hat was the o	liversity in the past ?	3. What was the pre	evalence in the past ?	
► T		en phylogenetic/transmiss	ion tree		
► P		os of evolution: probabilis			

Fit these models to observed data.

Basics of pł ○○○●○	lylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion 0000
The qι	iestions				
	Mac	croevolution			
1.	What is the te	mpo of diversification ?	1. What is the temp	o of epidemic spread ?	
2.	What are the o	drivers of trait evolution	? 2. Are some pathog	en traits under selection	
3.	What was the	diversity in the past ?	3. What was the pre	evalence in the past ?	
	There is a hide	len phylogenetic/transmi	ssion tree.		
	Traits evolve a	long the tree.			
		rios of evolution: probabi			

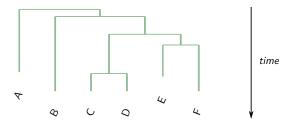
Fit these models to observed data.

Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	
The questions				
Ma	acroevolution	Epidemi	ology	
1. What is the t	empo of diversification ?	1. What is the tempo	of epidemic spread ?	
2. What are the	drivers of trait evolution ?		traits under selection ?	
What was the	e diversity in the past ?	3. What was the preva	lence in the past ?	

- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion 0000	
The questions					
Μ	lacroevolution	Epidemi	iology		
1. What is the	1. What is the tempo of diversification ?		$1. \ \mbox{What}$ is the tempo of epidemic spread ?		
2. What are the	e drivers of trait evolution ?		traits under selection	?	
3. What was the diversity in the past ?		3. What was the prevalence in the past ?			

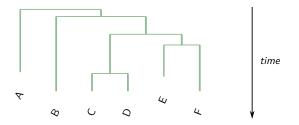
- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.


Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	
The questions				
Ma	croevolution	Epidem	iology	
1. What is the te	empo of diversification ?	1. What is the tempo	of epidemic spread ?	
2. What are the	drivers of trait evolution ?	2. Are some pathogen	traits under selection ?	
3. What was the	e diversity in the past ?	3. What was the preva	alence in the past ?	

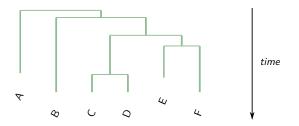
- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The questions				
Macr	roevolution	Epidemi	ology	
1. What is the ten	npo of diversification ?	1. What is the tempo	of epidemic spread ?	
2. What are the d	rivers of trait evolution ?	2. Are some pathogen	traits under selection ?	
3. What was the c	liversity in the past ?	3. What was the preva	lence in the past ?	

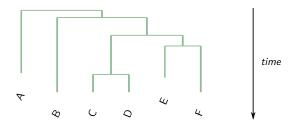
- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.


Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The questions				
Ma	croevolution	Epiden	niology	
1. What is the te	empo of diversification ?	1. What is the tempo	o of epidemic spread ?	
2. What are the	drivers of trait evolution ?	2. Are some pathoge	n traits under selection	?
3. What was the	diversity in the past ?	3. What was the prev	alence in the past ?	

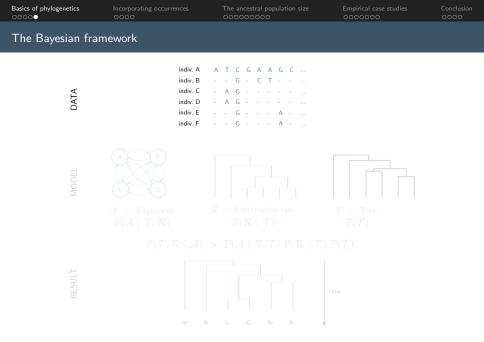
There is a hidden phylogenetic/transmission tree.

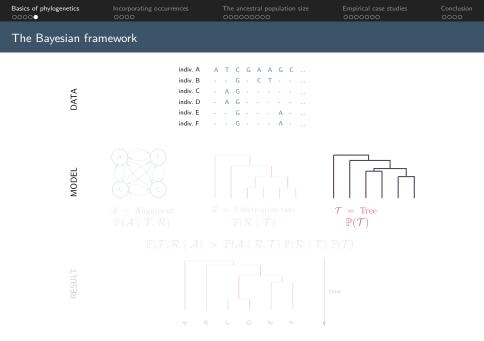

- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

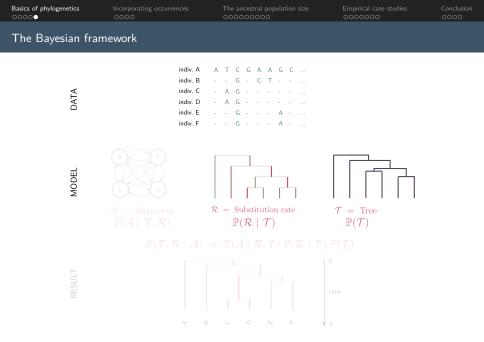
Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The questions				
Ma	croevolution	Epiden	niology	
1. What is the te	empo of diversification ?	1. What is the tempo	o of epidemic spread ?	
2. What are the	drivers of trait evolution ?	2. Are some pathoge	n traits under selection	?
3. What was the	diversity in the past ?	3. What was the prev	alence in the past ?	

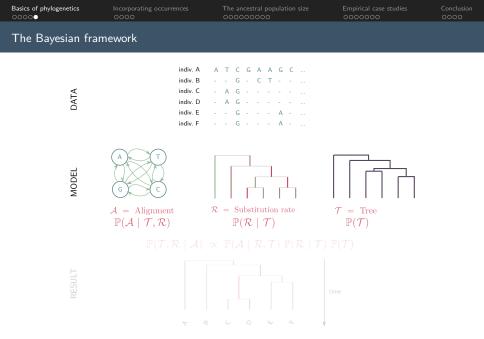

- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

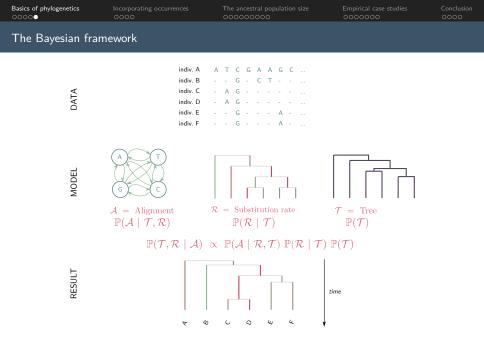
Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The questions				
Ma	croevolution	Epiden	niology	
1. What is the te	empo of diversification ?	1. What is the tempo	o of epidemic spread ?	
2. What are the	drivers of trait evolution ?	2. Are some pathoge	n traits under selection	?
3. What was the	diversity in the past ?	3. What was the prev	alence in the past ?	




- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.


Basics of phylogenetics ○○○●○	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
The questions				
Ma	croevolution	Epiden	niology	
1. What is the te	empo of diversification ?	1. What is the tempo	o of epidemic spread ?	
2. What are the	drivers of trait evolution ?	2. Are some pathoge	n traits under selection	?
3. What was the	diversity in the past ?	3. What was the prev	alence in the past ?	




- There is a hidden phylogenetic/transmission tree.
- Traits evolve along the tree.
- Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
- Fit these models to observed data.

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies	
Incorporating occu	irrences			

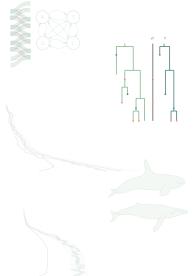
Basics of phylogenetics

The raw data The questions The Bayesian framework

Incorporating occurrences

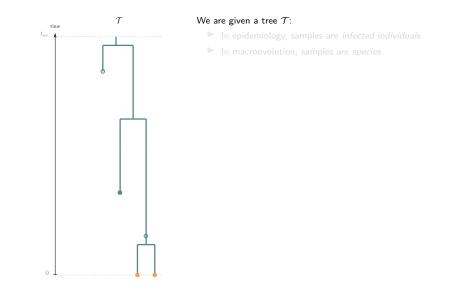
Motivation Model A bit of context

The ancestral population size


Sketch of the overall strategy Forward-backward traversal of the tree Known corrolaries Reconstructing past population size

Empirical case studies

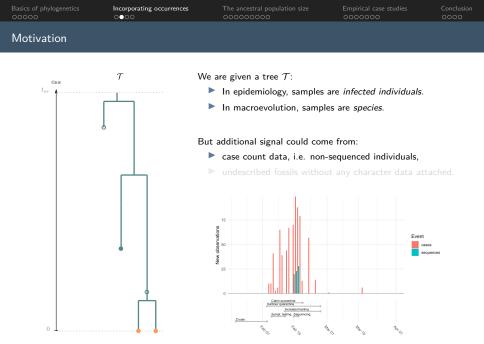
Overview of the project Implementation Cetacean diversity Covid-19 prevalence on the Diamond princess

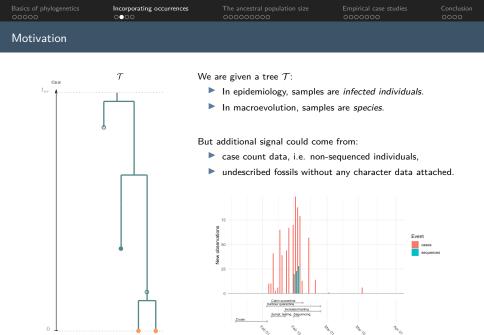

Conclusion

Perspectives Take-home messages

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	

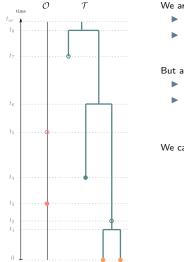
Motivation


Basics of phylogenetics	Incorporating occurrences ○●○○	The ancestral population size	Empirical case studies	Conclusion 0000
Motivation				
	au V	Ve are given a tree \mathcal{T} :		
t_{or} +		In epidemiology, samples	are infected individuals.	
⁴ or A		 In epidemiology, samples In macroevolution, samples 		
	•			
0				


Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion 0000
Motivation				
time tor		We are given a tree <i>T</i> : ▶ In epidemiology, samples ▶ In macroevolution, sampl		

0

Basics of phylogenetics	Incorporating occurrences ○●○○	The ancestral population size	Empirical case studies 0000000	Conclusion 0000
Motivation				
time	${\cal T}$	We are given a tree \mathcal{T} :		
<i>t</i> _{or}		In epidemiology, samples a		
c		In macroevolution, sample	s are <i>species</i> .	
		But additional signal could com	e from:	

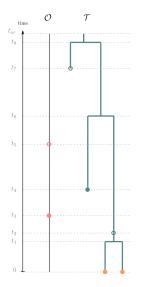

- case count data, i.e. non-sequenced individuals,
- undescribed fossils without any character data attached.

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	
M - +: +:				

Motivation

We are given a tree \mathcal{T} :

- In epidemiology, samples are infected individuals.
- In macroevolution, samples are species.


But additional signal could come from:

- case count data, i.e. non-sequenced individuals,
- undescribed fossils without any character data attached.

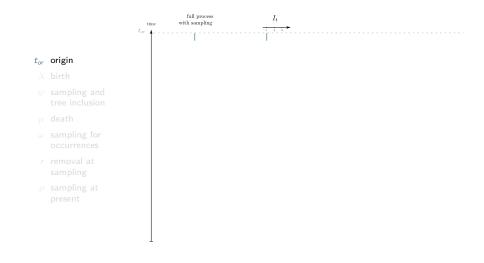
We call this a record of occurrences $\mathcal{O}.$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	
N 4 - + : :				

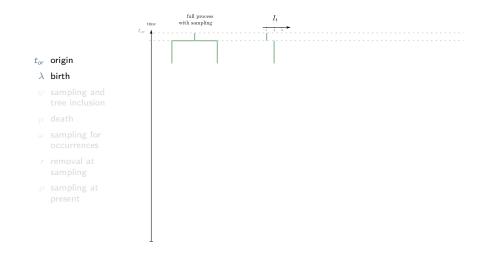
Motivation

We are given a tree \mathcal{T} :

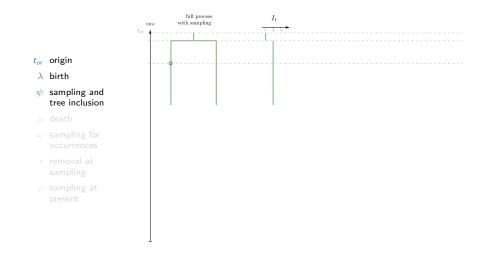
- In epidemiology, samples are infected individuals.
- In macroevolution, samples are species.

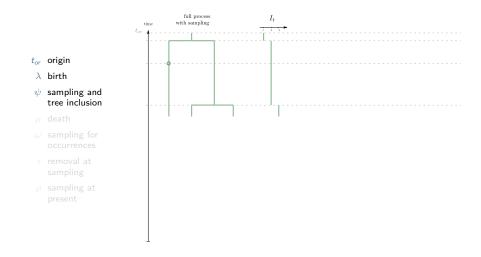

But additional signal could come from:

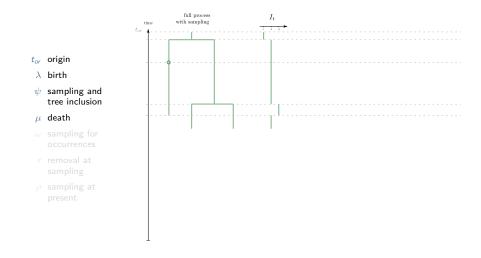
- case count data, i.e. non-sequenced individuals,
- undescribed fossils without any character data attached.

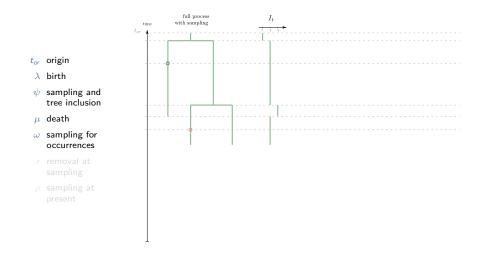

We call this a record of occurrences \mathcal{O} .

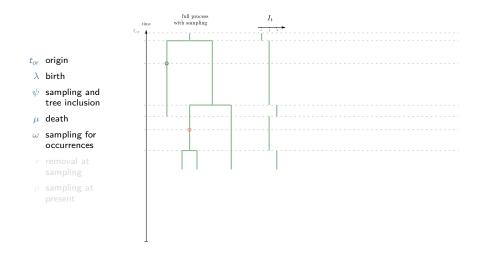
What is the total number of individuals in the past ?

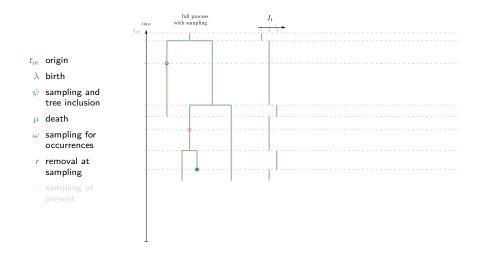

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	


Basics of phylogenetics	Incorporating occurrences		
	0000		

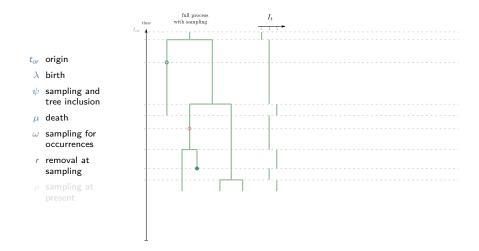

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	


Basics of phylogenetics	Incorporating occurrences		
	0000		

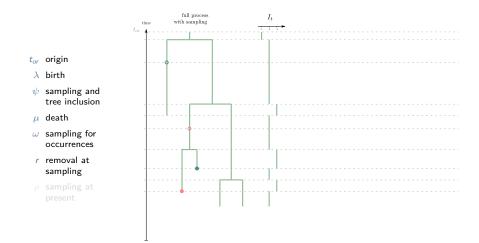

Basics of phylogenetics	Incorporating occurrences		
	0000		


Basics of phylogenetics	Incorporating occurrences		
	0000		

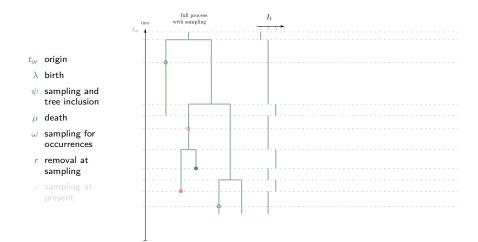
Basics of phylogenetics	Incorporating occurrences		
	0000		

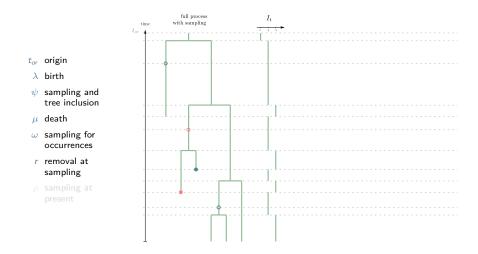


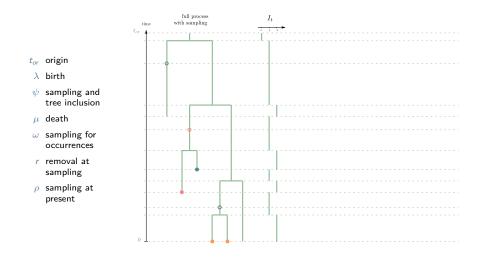
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
00000		00000000	000000	0000

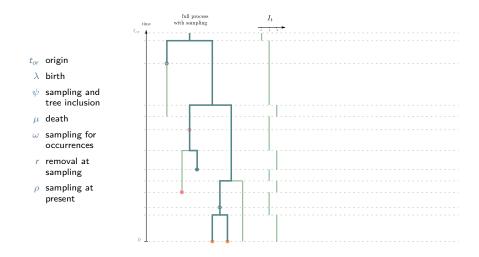


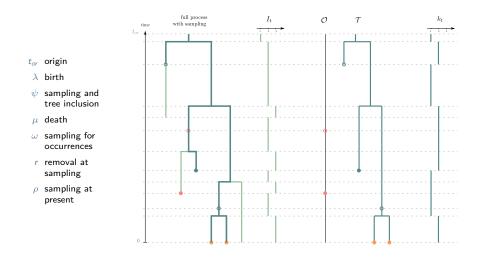
LJLL Math-Bio, June 2020

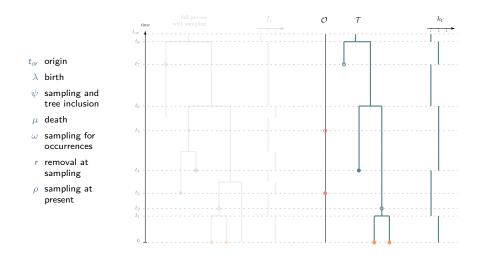

Basics of phylogenetics	Incorporating occurrences		
	0000		

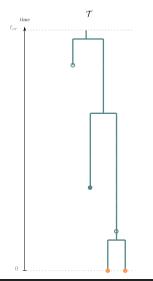

Basics of phylogenetics	Incorporating occurrences		
	0000		


Basics of phylogenetics	Incorporating occurrences		
	0000		


Basics of phylogenetics	Incorporating occurrences		
	0000		


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
00000		00000000	000000	0000


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion 0000
00000		00000000	000000	0000

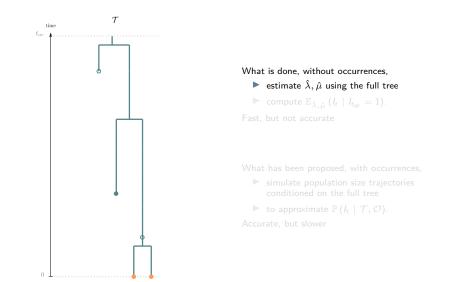

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	

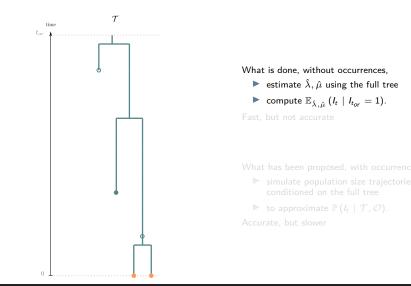
Basics of phylogenetics	Incorporating occurrences		
	0000		

What is done, without occurrences,

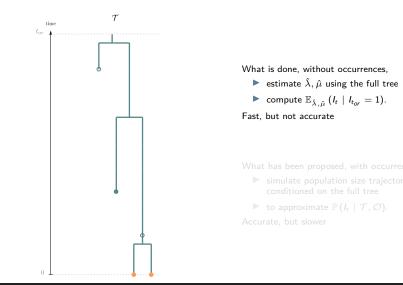
- lestimate $\hat{\lambda}, \hat{\mu}$ using the full tree
- compute $\mathbb{E}_{\hat{\lambda},\hat{\mu}}(I_t \mid I_{tor} = 1)$.


Fast, but not accurate

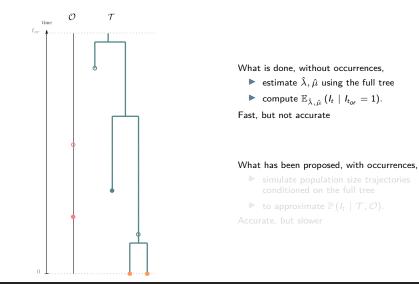
What has been proposed, with occurrences,


- simulate population size trajectories conditioned on the full tree
- to approximate $\mathbb{P}(I_t \mid \mathcal{T}, \mathcal{O})$.

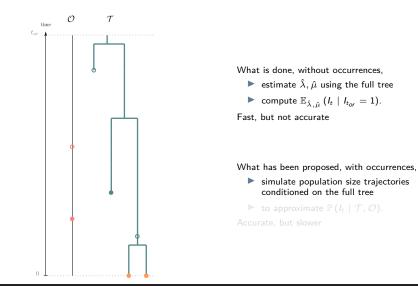
Accurate, but slower


Basics of phylogenetics	Incorporating occurrences		
	0000		

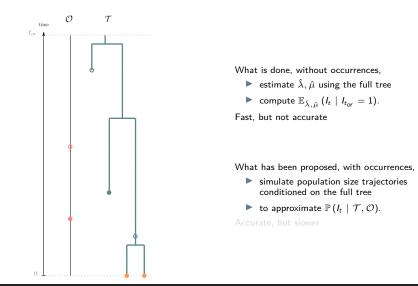
Basics of phylogenetics	Incorporating occurrences		
	0000		



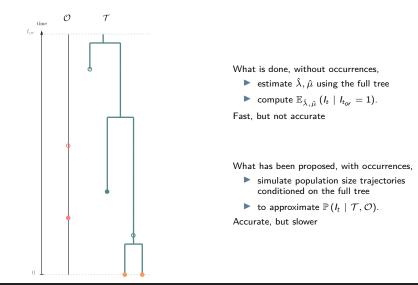
Basics of phylogenetics	Incorporating occurrences		
	0000		


LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences		
	0000		


LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences		
	0000		


LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences		
	0000		

LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences		
	0000		

Basics of phylogenetics 00000	Incorporating occurrences 0000	The ancestral population size	Empirical case studies 0000000	

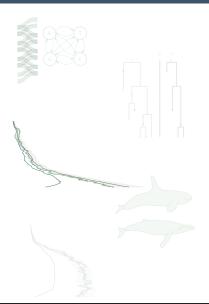
Basics of phylogenetics

The raw data The questions The Bayesian framework

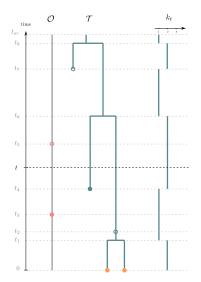
Incorporating occurrences

Motivation Model A bit of context

The ancestral population size


Sketch of the overall strategy Forward-backward traversal of the tree Known corrolaries Reconstructing past population size

Empirical case studies

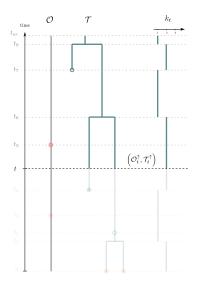

Overview of the project Implementation Cetacean diversity Covid-19 prevalence on the Diamond princess

Conclusion

Perspectives Take-home messages

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	

For any time t, we are interested in


$$\mathcal{K}_{t}^{(i)} := \mathbb{P}\left(I_{t} = k_{t} + i \mid \mathcal{T}, \mathcal{O}\right)$$

We define

$$M_t^{(l)} := \mathbb{P}\left(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i\right)$$

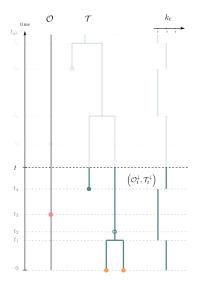
 $L_t^{(l)} := \mathbb{P}\left(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i\right)$

$$\begin{split} \mathcal{K}_{t}^{(i)} &\propto \mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow}\right) \\ &\propto \mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\propto L_{t}^{(i)} M_{t}^{(i)} \end{split}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	

For any time t, we are interested in

$$\mathcal{K}_{t}^{(i)} := \mathbb{P}\left(I_{t} = k_{t} + i \mid \mathcal{T}, \mathcal{O}\right)$$

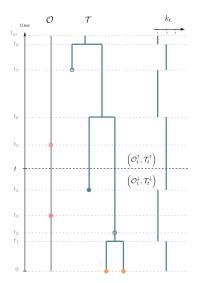

We define

$$M_t^{(i)} := \mathbb{P}\left(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i\right)$$

$$L_t^{(i)} := \mathbb{P}\left(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i\right)$$

$$\begin{split} \mathcal{K}_{t}^{(i)} &\propto \mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow}\right) \\ &\propto \mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\propto L_{t}^{(i)} M_{t}^{(i)} \end{split}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	


For any time t, we are interested in

$$\mathcal{K}_{t}^{(i)} := \mathbb{P}\left(I_{t} = k_{t} + i \mid \mathcal{T}, \mathcal{O}\right)$$

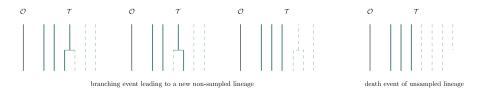
$$\begin{split} & \text{We define} \\ & \mathcal{M}_{t}^{(i)} \ := \mathbb{P}\left(\mathcal{T}_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, I_{t} = k_{t} + i\right) \\ & \mathcal{L}_{t}^{(i)} \ := \mathbb{P}\left(\mathcal{T}_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid \mathbf{I}_{t} = \mathbf{k}_{t} + i\right) \end{split}$$

$$\begin{split} \mathcal{K}_{t}^{(l)} &\propto \mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow}\right) \\ &\propto \mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\propto L_{t}^{(l)} M_{t}^{(l)} \end{split}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	

For any time t, we are interested in

$$K_t^{(i)} := \mathbb{P}(I_t = k_t + i \mid \mathcal{T}, \mathcal{O})$$


We define

$$M_t^{(i)} := \mathbb{P}\left(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i\right)$$

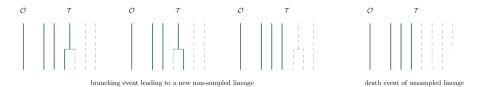
 $L_t^{(i)} := \mathbb{P}\left(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i\right)$

$$\begin{split} \mathcal{K}_{t}^{(i)} &\propto \mathbb{P}\left(I_{t} = k_{t} + i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow}\right) \\ &\propto \mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t} = k_{t} + i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\mathbb{P}\left(I_{t} = k_{t} + i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\ &\propto L_{t}^{(i)} \mathcal{M}_{t}^{(i)} \end{split}$$

Basics of phylogenetics		The ancestral population size		
00000	0000	00000000	0000000	0000

Forward-backward traversal of the tree to compute $M_t = \left(\mathbb{P}({T}_t^{\uparrow}, {\mathcal O}_t^{\uparrow}, I_t = k_t + i)
ight)_{i > i}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$M_{t-\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(i + k_t)\delta t) M_t^{(i)} + \lambda (2k_t + i - 1)\delta t \mathbb{1}_{i>0} M_t^{(i-1)} + \mu (i+1)\delta t M_t^{(i+1)}$$

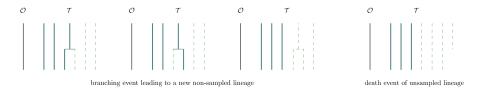
Leading to a system of ODEs,

$$\frac{dM_t^{(l)}}{dt} = (\lambda + \mu + \psi + \omega)(i + k_t)M_t^{(l)} - \lambda(2k_t + i - 1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○●○○○○○○	Empirical case studies	

Forward-backward traversal of the tree to compute $M_t=\left(\mathbb{P}({\mathcal{T}}_t^\uparrow,{\mathcal{O}}_t^\uparrow,I_t=k_t+i)
ight)_{i>}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$M_{t-\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(i + k_t)\delta t) M_t^{(i)} + \lambda(2k_t + i - 1)\delta t \mathbb{1}_{i>0} M_t^{(i-1)} + \mu(i+1)\delta t M_t^{(i+1)}$$

Leading to a system of ODEs,

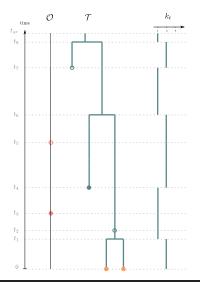
$$\frac{dM_t^{(i)}}{dt} = (\lambda + \mu + \psi + \omega)(i + k_t)M_t^{(i)} - \lambda(2k_t + i - 1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○●○○○○○○	Empirical case studies	

Forward-backward traversal of the tree to compute $M_t=\left(\mathbb{P}({\mathcal{T}}_t^\uparrow,{\mathcal{O}}_t^\uparrow,I_t=k_t+i)
ight)_{i>}$

We can write the Master equation, $\forall i \in \mathbb{N}$,

$$M_{t-\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(i + k_t)\delta t) M_t^{(i)} + \lambda (2k_t + i - 1)\delta t \mathbb{1}_{i>0} M_t^{(i-1)} + \mu (i+1)\delta t M_t^{(i+1)}$$

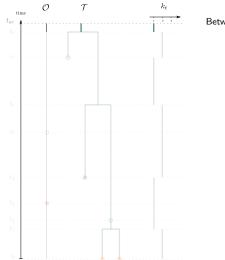

Leading to a system of ODEs,

$$\frac{dM_t^{(i)}}{dt} = (\lambda + \mu + \psi + \omega)(i + k_t)M_t^{(i)} - \lambda(2k_t + i - 1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

Forward-backward traversal of the tree

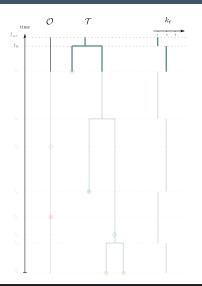
A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$


We know how to initialize M_t at the time of origin

$$M_{t_{or}}^{(i)} = \mathbb{P}(I_{t_{or}} = 1 + i) = \mathbb{1}_{i=0}$$

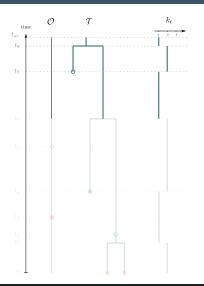
Forward-backward traversal of the tree

A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, l_t = k_t + i)
ight)_{i > 0}$

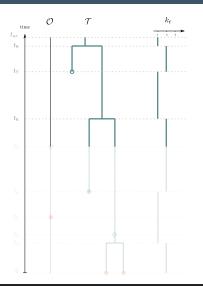


Between two events, M_t evolves following an ODE

Forward-backward traversal of the tree

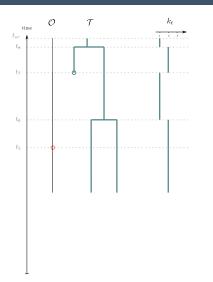

A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(\overline{T_t^{\uparrow}}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \geq 0}$

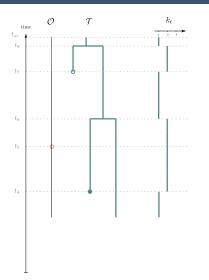
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$

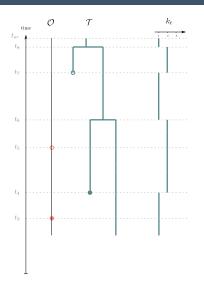
$$M_{t-}^{(i)} = \psi(1-r)\mathbb{1}_{i>0}M_{t+}^{(i-1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$

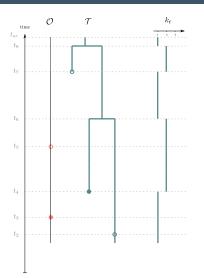

A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(\overline{T_t^{\uparrow}}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \geq 0}$

$$M_{t-}^{(i)} = \omega(1-r)(k_t+i)M_{t+}^{(i)}$$


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(\mathcal{T}_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)
ight)_{i \geq 0}$

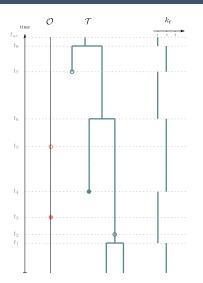
$$M_{t-} = \psi r M_{t+}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$

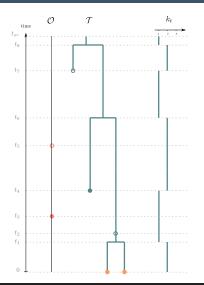
$$M_{t-}^{(i)} = \omega r(i+1)M_{t+}^{(i+1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$

$$M_{t-} = \psi(1-r)M_{t+}$$

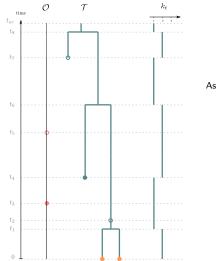
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	


A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$

$$M_{t-} = \lambda M_{t+}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		0000000	

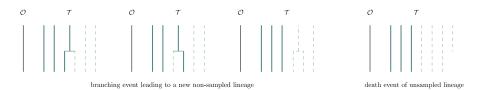
A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, I_t = k_t + i)\right)_{i \ge 0}$



$$M_0^{(i)} = \rho^{k_0} (1-\rho)^i M_{0+}^{(i)}$$

LJLL Math-Bio, June 2020

A forward breadth-first traversal to compute $M_t = \left(\mathbb{P}(T_t^{\uparrow}, \mathcal{O}_t^{\uparrow}, l_t = k_t + i)\right)_{i > 0}$



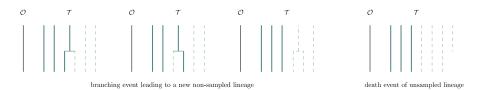
As a by-product, we get the likelihood in the end,

$$\begin{aligned} \mathcal{L} &= \sum_{i=0}^{\infty} \mathbb{P}\left(\mathcal{T}, \mathcal{O}, I_{t_0} = k_0 + i\right) \\ &= \sum_{i=0}^{\infty} M_0^{(i)} \end{aligned}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

Forward-backward traversal of the tree to compute $L_t=\left(\mathbb{P}(T_t^{\downarrow},\mathcal{O}_t^{\downarrow}\mid I_t=k_t+i)
ight)_{i\sim}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$L_{t+\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(k_t + i)\delta t)L_t^{(i)} + \lambda(2k_t + i)\delta tL_t^{(i+1)} + \mu i\delta tL_t^{(i-1)}$$

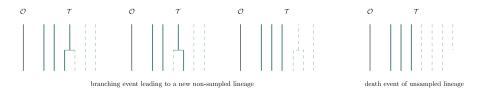
Leading to a system of ODEs,

$$\frac{d\mathcal{L}_t^{(i)}}{dt} = -(\lambda + \mu + \psi + \omega)(k_t + i)\mathcal{L}_t^{(i)} + \lambda(2k_t + i)\mathcal{L}_t^{(i+1)} + \mu i\mathcal{L}_t^{(i-1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

Forward-backward traversal of the tree to compute $L_t=\left(\mathbb{P}(T_t^{\downarrow},\mathcal{O}_t^{\downarrow}\mid I_t=k_t+i)
ight)_{i\sim}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$L_{t+\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(k_t + i)\delta t)L_t^{(i)} + \lambda(2k_t + i)\delta tL_t^{(i+1)} + \mu i\delta tL_t^{(i-1)}$$

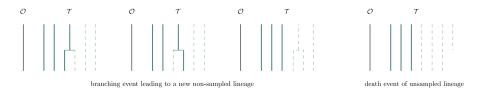
Leading to a system of ODEs,

$$\frac{d\mathcal{L}_t^{(i)}}{dt} = -(\lambda + \mu + \psi + \omega)(k_t + i)\mathcal{L}_t^{(i)} + \lambda(2k_t + i)\mathcal{L}_t^{(i+1)} + \mu i\mathcal{L}_t^{(i-1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

Forward-backward traversal of the tree to compute $L_t=\left(\mathbb{P}({\mathcal{T}}_t^{\downarrow},{\mathcal{O}}_t^{\downarrow}\mid I_t=k_t+i)
ight)_{i\sim}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$\mathcal{L}_{t+\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(k_t + i)\delta t) \mathcal{L}_t^{(i)} + \lambda(2k_t + i)\delta t \mathcal{L}_t^{(i+1)} + \mu i\delta t \mathcal{L}_t^{(i-1)}$$

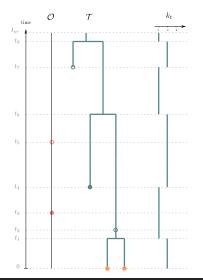
Leading to a system of ODEs,

$$\frac{dL_t^{(i)}}{dt} = -\left(\lambda + \mu + \psi + \omega\right)(k_t + i)L_t^{(i)} + \lambda(2k_t + i)L_t^{(i+1)} + \mu iL_t^{(i-1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

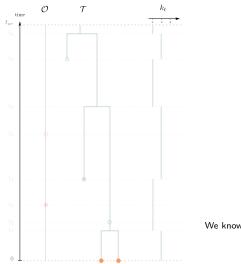
Forward-backward traversal of the tree to compute $L_t=\left(\mathbb{P}({\mathcal{T}}_t^{\downarrow},{\mathcal{O}}_t^{\downarrow}\mid I_t=k_t+i)
ight)_{i\sim}$

We can write the Master equation, $\forall i \in \mathbb{N}$,


$$L_{t+\delta t}^{(i)} = (1 - (\lambda + \mu + \psi + \omega)(k_t + i)\delta t)L_t^{(i)} + \lambda(2k_t + i)\delta tL_t^{(i+1)} + \mu i\delta tL_t^{(i-1)}$$

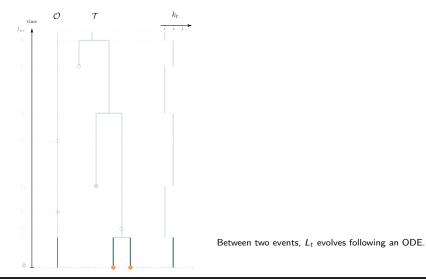
Leading to a system of ODEs,

$$\frac{d\mathcal{L}_t^{(i)}}{dt} = -(\lambda + \mu + \psi + \omega)(k_t + i)\mathcal{L}_t^{(i)} + \lambda(2k_t + i)\mathcal{L}_t^{(i+1)} + \mu i\mathcal{L}_t^{(i-1)}$$


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		000000000	

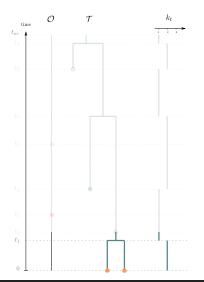
A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \geq 0}$


We know how to initialize L_t at present.

$$L_0^{(i)} = \rho^{k_0} (1 - \rho)^i$$

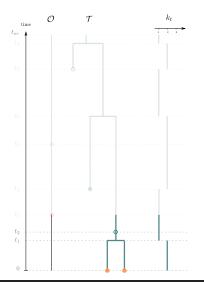
LJLL Math-Bio, June 2020


A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \geq 0}$

LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00 00 0000	

A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

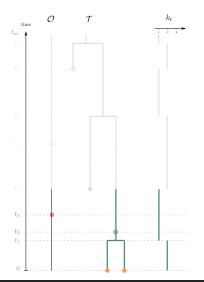


$$L_{t^+} = \lambda L_{t^-}$$

LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

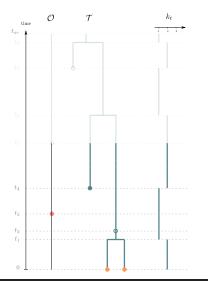


$$L_{t^+} = \psi(1-r)L_{t^-}$$

LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00 000 000	

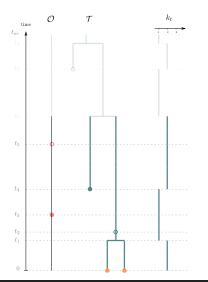
A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

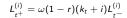


$$L_{t^+}^{(i)} = \omega riL_{t^-}^{(i-1)}$$

LJLL Math-Bio, June 2020

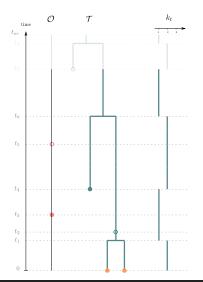
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00 00 0000	


A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$



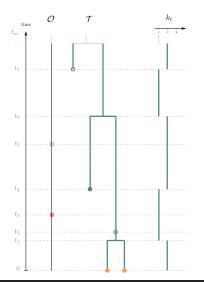
00000	0000	00000000	0000000	0000
Basics of phylogenetics		The ancestral population size		Conclusion

A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$



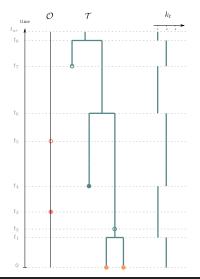
LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	


A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

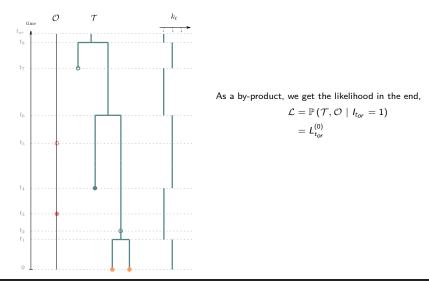
$$L_{t^+} = \lambda L_{t^-}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00 000 000	


A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

$$L_{t^+}^{(i)} = \psi(1-r)L_{t^-}^{(i+1)}$$

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00 000 000	


A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, O_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \ge 0}$

$$L_{t^+} = \lambda L_{t^-}$$

A backward breadth-first traversal to compute $L_t = \left(\mathbb{P}(T_t^{\downarrow}, \mathcal{O}_t^{\downarrow} \mid I_t = k_t + i)\right)_{i \geq 0}$

Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size ○○○○○●●○○	Empirical case studies 0000000	

Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

We introduce the corresponding probability generating function:

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

This can be solved analytically to get \hat{M} .

Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size ○○○○○●○○	Empirical case studies	
The encoded new	ulation size			

Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

We introduce the corresponding probability generating function:

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

This can be solved analytically to get \hat{M} .

Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size ○○○○○●○○	Empirical case studies	
The encoded new	ulation size			

Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

We introduce the corresponding probability generating function:

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

This can be solved analytically to get \hat{M} .

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	
The encostrol nerv	lation cito			

Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

We introduce the corresponding probability generating function:

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

This can be solved analytically to get M.

Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size ○○○○○●○○	Empirical case studies	
The encoded new	ulation size			

Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

We introduce the corresponding probability generating function:

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

This can be solved analytically to get \hat{M} .

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	
The encostrol nerv	lation cito			

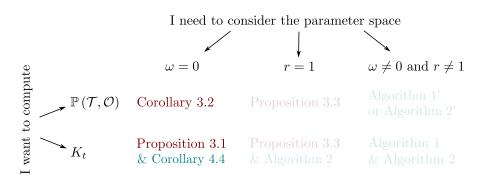
Recall that M_t verifies:

$$\frac{dM_t^{(i)}}{dt} = \gamma(i+k)M_t^{(i)} - \lambda(2k+i-1)\mathbb{1}_{i>0}M_t^{(i-1)} - \mu(i+1)M_t^{(i+1)}$$
$$M_{tor}^{(i)} = \mathbb{1}_{i=0}$$

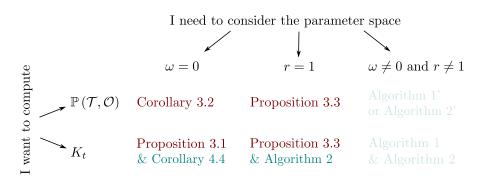
We introduce the corresponding probability generating function:

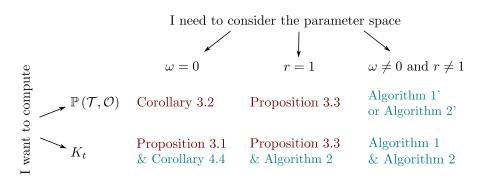

$$\hat{M}(t,z) = \sum_{i=0}^{\infty} z^i M_t^{(i)}$$

The initial condition translates as $\forall z$, $\hat{M}(t_{or}, z) = 1$ And the ODE translates as the following PDE:

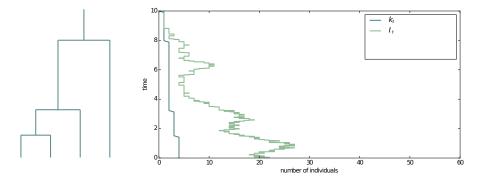

$$\partial_t \hat{M} = -k(2\lambda z - \gamma)\hat{M} - (\lambda z^2 - \gamma z + \mu)\partial_z \hat{M}$$

• This can be solved analytically to get \hat{M} .

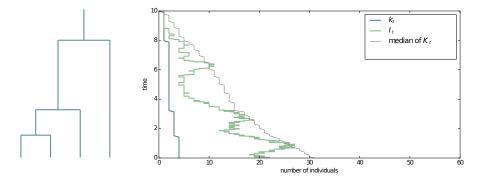

Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○○○○○○●○	Empirical case studies	
The ancestral pop	ulation size			


Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○○○○○○●○	Empirical case studies 0000000	
The ancestral pop	oulation size			

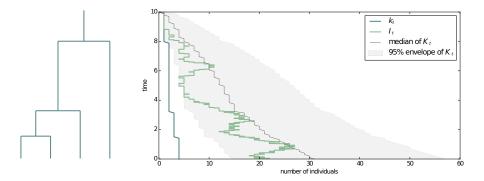
Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○○○○○○●○	Empirical case studies	
The ancestral pop	ulation size			


Basics of phylogenetics	Incorporating occurrences	The ancestral population size ○○○○○○○●○	Empirical case studies	
The ancestral pop	ulation size			

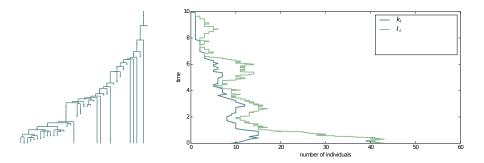
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	


Reconstructing past population size

- With only ρ -sampling ($\psi, \omega = 0, 0$).
- With ho and ψ -sampling ($\omega=$ 0).
- With ρ , ψ , and ω -sampling.

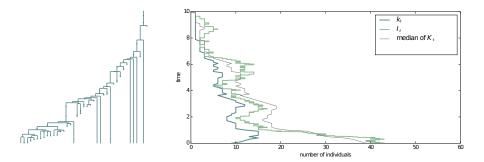

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

- With only ρ -sampling ($\psi, \omega = 0, 0$).
- With ho and ψ -sampling ($\omega=$ 0).
- With ρ , ψ , and ω -sampling.


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	
			i .

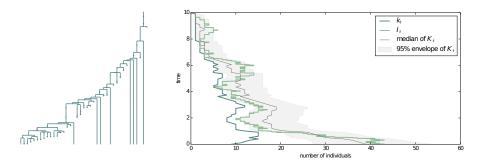
- With only ρ -sampling ($\psi, \omega = 0, 0$).
- With ho and ψ -sampling ($\omega=$ 0).
- With ρ , ψ , and ω -sampling.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

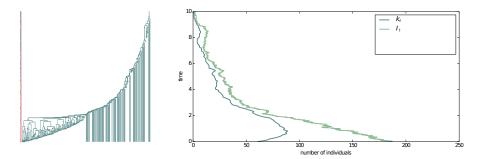

- With only ho-sampling $(\psi, \omega = 0, 0)$.
- With ρ and ψ -sampling ($\omega = 0$).
- With ρ , ψ , and ω -sampling.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	
			1

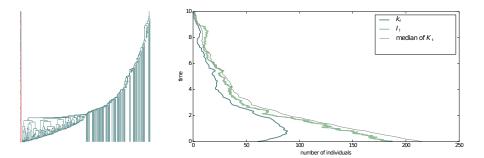
• With only ho-sampling $(\psi, \omega = 0, 0)$.


- With ρ and ψ -sampling ($\omega = 0$).
- With ρ , ψ , and ω -sampling.

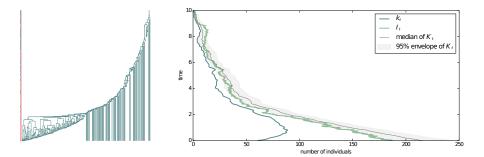
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	
			1


• With only ho-sampling $(\psi, \omega = 0, 0)$.

- With ρ and ψ -sampling ($\omega = 0$).
- With ρ , ψ , and ω -sampling.


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

- With only ho-sampling $(\psi, \omega = 0, 0)$.
- With ho and ψ -sampling ($\omega=0)$.
- With ρ , ψ , and ω -sampling.


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

- With only ho-sampling $(\psi, \omega = 0, 0)$.
- Nith ho and ψ -sampling ($\omega=0)$.
- With ρ , ψ , and ω -sampling.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	
		00000000	

- With only ho-sampling $(\psi, \omega = 0, 0)$.
- Nith ho and ψ -sampling ($\omega=0)$.
- With ρ , ψ , and ω -sampling.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies ●○○○○○○	Conclusion 0000
Empirical case stud	dies			
Basics of phylogeneti The raw data The questions The Bayesian frai				
Incorporating occurre Motivation Model A bit of context				
Known corrolaries	erall strategy d traversal of the tree			
Empirical case studie Overview of the p Implementation Cetacean diversity Covid-19 prevaler	project	ess		

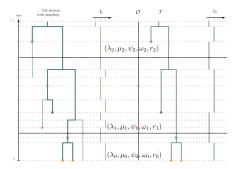
Conclusion

Perspectives Take-home messages

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies ○●○○○○○	

Goals:

- 1. Work with piecewise-constant parameters.
- 2. Implement the method to compute $\mathbb{P}(\mathcal{T},\mathcal{O}).$
- 3. Propose an easy post-analysis computation of K_t .
- 4. Illustrate the approach on empirical datasets.

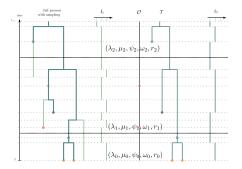


Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Goals:

- 1. Work with piecewise-constant parameters.
- 2. Implement the method to compute $\mathbb{P}(\mathcal{T}, \mathcal{O})$.
- 3. Propose an easy post-analysis computation of K_t .
- 4. Illustrate the approach on empirical datasets.

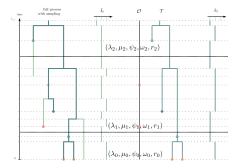
LJLL Math-Bio, June 2020


Marc Manceau, Antoine Zwaans, Jérémy Andréoletti, Ankit Gupta, Tim Vaughan, Rachel Warnock, Tanja Stadler

Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Goals:

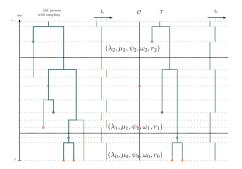
- 1. Work with piecewise-constant parameters.
- 2. Implement the method to compute $\mathbb{P}(\mathcal{T}, \mathcal{O})$.
- 3. Propose an easy post-analysis computation of K_t .
- 4. Illustrate the approach on empirical datasets.


LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Goals:

- 1. Work with piecewise-constant parameters.
- 2. Implement the method to compute $\mathbb{P}(\mathcal{T}, \mathcal{O})$.
- 3. Propose an easy post-analysis computation of K_t .
- 4. Illustrate the approach on empirical datasets.


LJLL Math-Bio, June 2020

Basics of phylogenetics		Empirical case studies	
		000000	

Goals:

- 1. Work with piecewise-constant parameters.
- 2. Implement the method to compute $\mathbb{P}(\mathcal{T}, \mathcal{O})$.
- 3. Propose an easy post-analysis computation of K_t .
- 4. Illustrate the approach on empirical datasets.

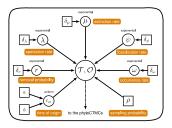
LJLL Math-Bio, June 2020

Marc Manceau, Antoine Zwaans, Jérémy Andréoletti, Ankit Gupta, Tim Vaughan, Rachel Warnock, Tanja Stadler

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies ○○●○○○○	

Implementation

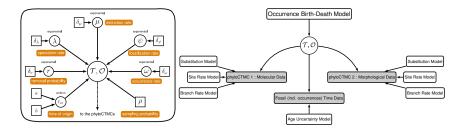
- within the phylogenetic software revBayes,
- modular design based on graphical models,
- use to sample the Bayesian posterior.



Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies ○○●○○○○	
Implementation				

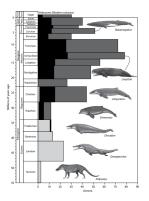
Implementation

- within the phylogenetic software revBayes,
- modular design based on graphical models,
- use to sample the Bayesian posterior.



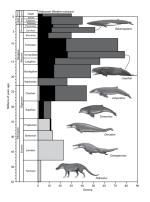
Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies	
Implementation				

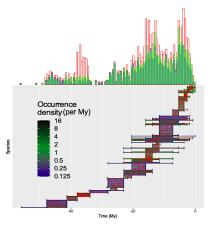
- within the phylogenetic software revBayes,
- modular design based on graphical models,
- use to sample the Bayesian posterior.



Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Generic diversity

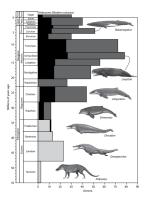

- Bias 1: Uneven sampling of time periods/localities,
- Bias 2: Species abundances,

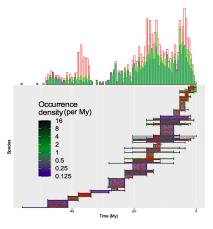


Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000 00 0	

Generic diversity

- Bias 1: Uneven sampling of time periods/localities
- Bias 2: Species abundances,

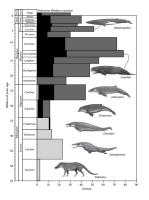


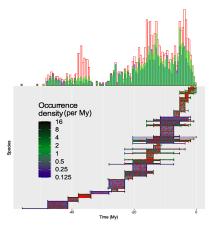

Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000 00 0	

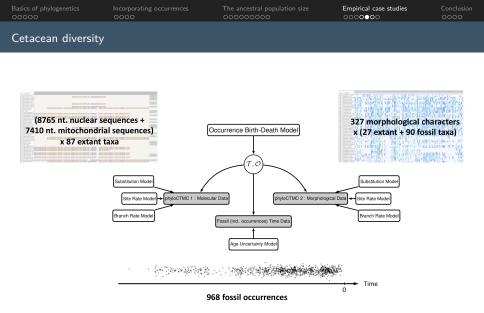
Generic diversity

Bias 1: Uneven sampling of time periods/localities,

Bias 2: Species abundances,

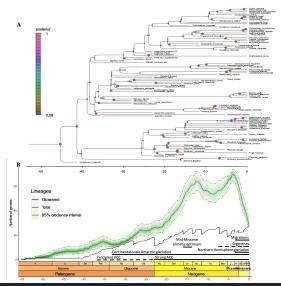





Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Generic diversity

- Bias 1: Uneven sampling of time periods/localities,
- Bias 2: Species abundances,



LJLL Math-Bio, June 2020

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies ○○○○○●○	

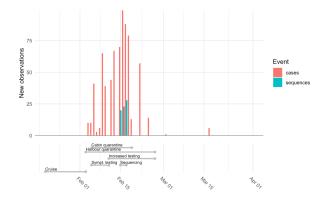
Cetacean diversity Preliminary results

LJLL Math-Bio, June 2020

Marc Manceau, Antoine Zwaans, Jérémy Andréoletti, Ankit Gupta, Tim Vaughan, Rachel Warnock, Tanja Stadler

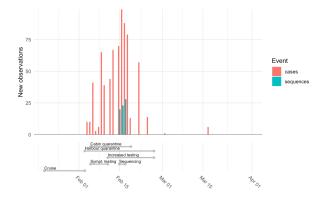
Basics of phylogenetics	Incorporating occurrences	Empirical case studies	
		000000	

Diamond princess cruise ship,


- Very close to the model assumptions,
- With rates varying at known time points.

Basics of phylogenetics			Empirical case studies	
00000	0000	00000000	000000	0000

- Diamond princess cruise ship,
- Very close to the model assumptions,
- With rates varying at known time points.


Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size	Empirical case studies ○○○○○○●	

- Diamond princess cruise ship,
- Very close to the model assumptions,
- With rates varying at known time points.

Basics of phylogenetics	Incorporating occurrences 0000	The ancestral population size	Empirical case studies ○○○○○○●	

- Diamond princess cruise ship,
- Very close to the model assumptions,
- With rates varying at known time points.

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ●○○○
Conclusion				
Basics of phylogene The raw data The questions The Bayesian fi				

Incorporating occurrences

Motivation Model A bit of context

The ancestral population size

Sketch of the overall strategy Forward-backward traversal of the tree Known corrolaries Reconstructing past population size

Empirical case studies

Overview of the project Implementation Cetacean diversity Covid-19 prevalence on the Diamond princess

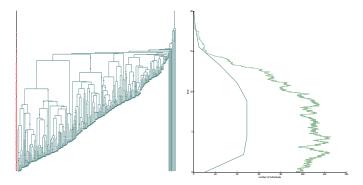
Conclusion

Perspectives Take-home messages

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○●○○
Perspectives Diversity-dependent d	iversification			

extension to logistic birth-death processes, with per-capita rates either:

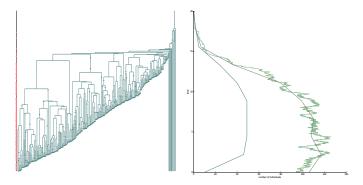
$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$


design methods to test hypotheses regarding diversification scenarios,

try to fit it to empirical data, either from epidemiology or macroevolution.

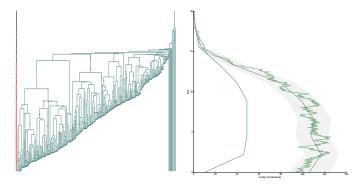
Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○●○○
Perspectives Diversity-dependent d	iversification			

$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$


- design methods to test hypotheses regarding diversification scenarios,
- try to fit it to empirical data, either from epidemiology or macroevolution.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○●○○
Perspectives Diversity-dependent di	versification			

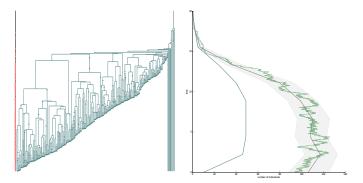
$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$


- design methods to test hypotheses regarding diversification scenarios,
- try to fit it to empirical data, either from epidemiology or macroevolution.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○●○○
Perspectives Diversity-dependent d	iversification			

$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$

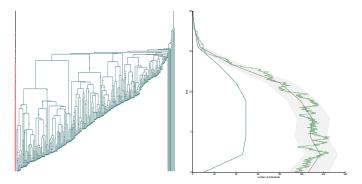
- design methods to test hypotheses regarding diversification scenarios,
- try to fit it to empirical data, either from epidemiology or macroevolution.


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ○●○○
Perspectives Diversity-dependent	diversification			

extension to logistic birth-death processes, with per-capita rates either:

$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$

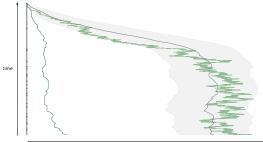
design methods to test hypotheses regarding diversification scenarios,


try to fit it to empirical data, either from epidemiology or macroevolution.

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ○●○○
Perspectives Diversity-dependent o	liversification			

$$\lambda_i = \lambda - \alpha i$$
 or $\mu_i = \mu + \beta i$

- design methods to test hypotheses regarding diversification scenarios,
- try to fit it to empirical data, either from epidemiology or macroevolution.


Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○○●O

Take-home messages

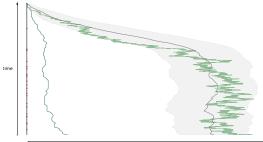
Model birth-death model with a specific sampling scheme through time.

Method to get the likelihood of a tree and a record of occurrences, as well as $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$. Implementation with piecewise-constant parameters within the phylogenetic software revBayes. Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies 0000000	Conclusion ○○●O

Take-home messages


Model birth-death model with a specific sampling scheme through time.

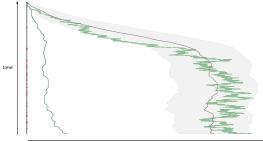
Method to get the likelihood of a tree and a record of occurrences, as well as $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$.

Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Basics of phylogenetics 00000	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ○○●○
Take-home messag	jes			


Model birth-death model with a specific sampling scheme through time.

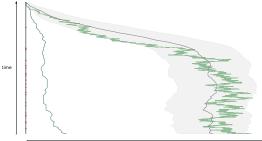
Method to get the likelihood of a tree and a record of occurrences, as well as $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$.

Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion
00000	0000		0000000	○○●O
Take-home messag	ges i			


Model birth-death model with a specific sampling scheme through time.

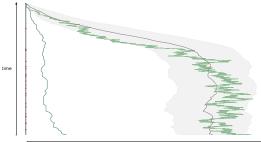
Method to get the likelihood of a tree and a record of occurrences, as well as $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$.

Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ○○●○
Take-home messag	ges			


Model birth-death model with a specific sampling scheme through time.

Method to get the likelihood of a tree and a record of occurrences, as well as $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$.

Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Basics of phylogenetics	Incorporating occurrences	The ancestral population size	Empirical case studies	Conclusion ○○○●
References				

Etienne et al. (2012) used backward Kolmogorov equations to compute the likelihood of trees, under a logistic birth-death process.

Leventhal et al. (2013) used the forward Kolmogorov equations to compute the likelihood of trees, under a logistic birth-death process.

Vaughan et al. (2018) introduced the model and a Monte-Carlo method to get $\mathbb{P}(I_t \mid \mathcal{O}, \mathcal{T})$.

Laudanno et al. (2019) did something similar to our analytical work on \hat{M} .

Gupta et al. (2020) analytical development to compute $\mathbb{P}(\mathcal{T}, \mathcal{O})$ when r = 1.

Manceau et al. (submitted) combining the forward and backward traversals to get the ancestral population size.

Andréoletti, Zwaans et al. (in prep) implementation in a Bayesian framework and application on empirical datasets.