
The probability distribution of the reconstructed phylogenetic tree with
occurrence data

Ankit Gupta, Marc Manceau, Timothy Vaughan, Mustafa Khammash∗ , Tanja Stadler∗

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.

Abstract

We consider a homogeneous birth-death process with incomplete sampling. Three successive sampling

schemes are considered. First, individuals can be sampled through time and included in the tree. Second,

they can be occurrences which are sampled through time and not included in the tree. Third, individuals

reaching present day can be sampled and included in the tree. Upon sampling, individuals are removed (i.e.

die).

The outcome of the process is thus composed of the reconstructed evolutionary tree spanning all individ-

uals sampled and included in the tree, and a timeline of occurrence events which are not placed along the

tree. We derive a formula allowing one to compute the joint probability density of these, which can readily

be used to perform maximum likelihood or Bayesian estimation of the parameters of the model.

In the context of epidemiology, our probability density allows us to estimate transmission rates through

a joint analysis of epidemiological case count data and phylogenetic trees reconstructed from pathogen

sequences. Within macroevolution, our equations are the basis for taking into account fossil occurrences from

paleontological databases together with extant species phylogenies for estimating speciation and extinction

rates. Thus, we provide the theoretical framework for bridging not only the gap between phylogenetics and

epidemiology, but also the gap between phylogenetics and paleontology.

Keywords: birth-death process, epidemiology, macroevolution, phylogenetics, phylodynamics

1. Introduction

Birth-death processes are used extensively in both epidemiology and macroevolution, to model the un-

derlying population dynamics of, respectively, infected individuals and species. For simplicity, we will refer

to the atomic particles of the process as individuals in this paper. In its most simple form, a birth-death
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process describes the population dynamics of a set of independent individuals, each of which can give birth

to another individual with a constant birth rate λ, or die with a constant death rate µ.

Seminal results on this process have been derived by Kendall (1948), who already evoked potential

applications to epidemiology. Much more recently, Nee et al. (1994) and Nee and May (1997) have made

important developments to the theory, showing how to compute the probability density of the reconstructed

evolutionary tree, i.e. the tree obtained by first tracing all genealogical relationships between individuals,

before erasing all branches that do not reach present. This has paved the way to extensive use of birth-death

processes in modern phylogenetics, with many refinements: birth and death rates have been proposed to

vary through time (Morlon et al., 2011; Stadler, 2011), to vary across lineages in the tree (Alfaro et al.,

2009), to vary depending on the type of individuals (Maddison et al., 2007), or to depend on the number of

individuals (Etienne et al., 2012; Leventhal et al., 2013).

In order to fit various applications, the sampling scheme of individuals has also been put under careful

scrutiny. Nee et al. (1994) initially suggested that individuals could be sampled at present with a given prob-

ability ρ; this uniform sampling is also called field of bullets sampling. Yet, trees that were reconstructed

using this sampling scheme were always ultrametric trees describing the genealogical relationships between

present-day individuals only. This assumption was relaxed by Stadler (2010), who additionally modeled the

sampling of individuals throughout the process, with a fixed per-individual sampling rate ψ. When sampled,

an individual is displayed along the tree and the reconstructed (non-necessarily ultrametric) tree corresponds

to the genealogical relationships between all sampled-through-time and sampled-at-present individuals. This

model opened the way to numerous new applications in epidemiology and macroevolution, allowing to take

into account non-synchronous data. In phylogenetics, this process is commonly used as a prior on the ge-

nealogical relationships between individuals sampled through time (Stadler et al., 2011). In macroevolution,

it allows one to use molecular and paleontological evidence together, by simultaneously considering present-

day species and the subset of fossil taxa which can be placed along a tree using morphological characters

(Zhang et al., 2015; Gavryushkina et al., 2017).

One step further towards considering even more data jointly in one analysis has been performed by

Vaughan et al. (2019), who introduce two types of sampling through time. The first one, which is named

sampling and sequencing, is the same as previously described. The term sequencing here referring to the

fact that the individual is placed unambiguously along the reconstructed tree using its genetic sequence.

Alternatively, an individual could be sampled and not sequenced, in which case its existence is only recorded

as a time point occurrence along a timeline. This approach is very promising, for it enables one to consider

jointly data from case count epidemiological studies together with trees reconstructed from pathogens se-

quenced during an outbreak. Alternatively, in the context of macroevolution, it allows one to use poorly
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preserved fossil occurrences, which could not be placed along the reconstructed tree. Yet, in its current

form, the inference framework proposed by Vaughan et al. (2019) relies on computer intensive Monte-Carlo

simulations within a particle filtering approach which prevents its use on large datasets. Similarly, (Heath

et al., 2014) proposes placing occurrences on a fixed tree using Markov chain Monte Carlo methodology.

Here the drawback is again the computer intensive approach as well as relying on a fixed tree rather than

sequences.

In this study, we derive a closed form formula for the joint probability density of a reconstructed tree

with individuals sampled through time and a record of occurrences, i.e. sampling times for individuals not

included in the tree. The underlying model is a birth-death process with sampling through time and at

present, where upon sampling individuals are removed (i.e. die). The density can readily be included within

phylodynamic tools as a prior in a Bayesian inference framework based on sequences and occurrences, or can

be used for maximum likelihood parameter estimation based on a tree and occurrences. Its computational

efficiency opens the way to analyse large datasets available for either epidemiology or macroevolution studies.

The aim of the paper is to provide a mathematical study of the birth-death model giving rise to serially

sampled reconstructed trees and occurrences. We first introduce model notations and some preliminary

observations. Then, we provide an alternative derivation of the probability density of the reconstructed

evolutionary tree under the birth-death process with sampling through time (Stadler, 2010), assuming that

an individual is removed upon sampling. Finally, we show how to extend this derivation to account for

non-sequenced occurrences, and provide an analytical formula to compute the probability density of the

reconstructed tree and occurrences. We finally discuss the use of this density to perform inferences in

epidemiology and macroevolution in a maximum likelihood or Bayesian setting.

2. Model and notations

We consider a constant rate birth-death process with incomplete sampling. We allow the possibility that

for some sampled individuals, the attachment times within the tree are known, whereas for others only their

sampling times is known but their attachment times within the tree are unknown. The latter sampling

events are called occurrences.

We assume that an individual gives birth at rate λ, and its death rate is (µ+ψ+ω). Here µ is the death

rate without sampling, ψ is the death rate with sampling and tree-inclusion and ω is the death rate with

sampling but without tree-inclusion (i.e. an occurrence). Additionally we assume that extant individuals,

alive at present time, are sampled and included in the reconstructed tree with probability ρ. For convenience,

we will refer to the five types of events in this model using their parameter names. In other words, λ-events

refer to the creation of a new individual, µ-events refer to death events without sampling, ψ-events refer to
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death events with sampling and tree inclusion, ω-events refer to death events with sampling but without

tree inclusion, and finally ρ-events refer to the sampling of extant lineages at present time.

Time is assumed to be 0 at present, and increases going into the past. The process starts at time

tor > 0 in the past, with one infected lineage and it generates a birth-death lineage tree from which the

reconstructed tree is derived. Our data consists of both the reconstructed tree T and the occurrence set

O. The reconstructed tree T is generated by all the ψ- and ρ-events giving rise to leaves, together with

all λ-events subtending those leaves. The occurrence set O consists of the times of all the ω-events, all

belonging to the interval (0, tor); see Figure 1 for an example.

We will be interested in the probability density of the joint observation of (O, T ), which will ultimately

depend on the times at which observed λ-, ψ-, and ω-events happen, but not on the tree topology (see e.g.

(Aldous et al., 2001; Stadler, 2010)). All these times pooled together are denoted as t0, t1, ..., tn, starting

with t0 = 0 and ending with tn = tor, and the number of observed lineages on the interval (th, th+1) is

denoted kh.

1 2 3 1 2 3

Figure 1: General setting of the method. On the left in green, the full process with sampling is shown. Red dots correspond
to ω-sampling (sampling through time without sequencing), blue dots correspond to ψ-sampling (sampling through time with
sequencing) and orange dots correspond to ρ-sampling at present. On the right, the observations are shown: a sampled-through-
time reconstructed tree T together with sequential observations O of sampled individuals along a timeline.
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2.1. Introducing useful quantities

Let u(t) be the probability that an individual alive at time t before today has no sampled extinct or

extant descendant lineages. Also let p(t) be the probability that a lineage alive at time t before today has

precisely one sampled extant lineage and no sampled extinct descendant lineages. We can write the Master

Equations for these two probabilities as

du

dt
= µ− (λ+ µ+ ω + ψ)u(t) + λu(t)2 (2.1)

dp

dt
= −(λ+ µ+ ω + ψ)p(t) + 2λu(t)p(t), (2.2)

with initial condition (u(0), p(0)) = (1− ρ, ρ). Defining

c1 =
√

(λ− µ− ω − ψ)2 + 4λ(ψ + ω) and c2 = −λ− µ− ω − ψ − 2λρ

c1
, (2.3)

the solution of these Master Equations (see Theorem 3.1 in Stadler (2010)) is given by

u(t) =
1

2λ

[
λ+ µ+ ω + ψ + c1

e−c1t(1− c2)− (1 + c2)

e−c1t(1− c2) + (1 + c2)

]
, (2.4)

p(t) =
4ρ

2(1− c22) + e−c1t(1− c2)2 + ec1t(1 + c2)2
. (2.5)

2.2. Key first observations

In order to understand better future calculations, we must examine the birth-death dynamics of the

number of hidden lineages in greater detail. Suppose (Xs)s≥0 be the forward in time stochastic process

describing the number of hidden lineages in some time-interval [s1, s2] ⊂ [0, tor], where s1 < s2 and we use

this new letter s because time is oriented (only in this section of the manuscript) from the origin 0 towards

the present tor. The number of observed lineages in T is fixed and equal to k in this interval and also

there is no occurrence event in this interval. This stochastic process (Xs)s≥0 is a birth-death process over

nonnegative integers N0 and it has the following characteristics:

• When the state is i, the rate of birth is λ(k + i) and if this event happens, the state moves to (i+ 1)

with probability

φik := 1−
k!

(k−2)!
(k+i+1)!
(k+i−1)!

= 1− k(k − 1)

(k + i)(k + i+ 1)

and with probability 1 − φik the state moves to some absorbing state ∆ outside the state space

N0 = {0, 1, . . . }. Note that as the number of infected lineages increases from k+ i to (k+ i+ 1) upon

a birth event φik is simply the probability that when we “look backwards", the two coalescing lineages
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are not both among the sampled lineages. In case the two coalescing lineages are among the sampled

lineages then the number of observed lineages will not be fixed in the time-interval [s1, s2] and hence

this birth-death trajectory for total number of infected lineages becomes infeasible, which is equivalent

to saying that it gets absorbed at state ∆.

• When the number of hidden lineages is i, the rate of death is (µ + ψ + ω)(k + i) and if this event

happens for some state i > 0 then the state moves to (i− 1) with probability

κ =
µ

µ+ ψ + ω

and it moves to the absorbing state ∆ with probability (1 − κ). Note that (1 − κ) is simply the

probability of a death event either being a ω-event or a ψ-event. Both such events will violate our

assumption that there is no occurrence event and the number of observed lineages is fixed in the time-

interval [s1, s2]. Moreover if i = 0 and a death event happens then the birth-death trajectory again

becomes infeasible and so it gets absorbed at state ∆.

It is clear that due to the presence of an absorbing state outside the state space, the process (Xs)s≥0

is non-conservative. The rate of change of the distribution of this process can be specified by its generator

(see Chapter 3 in Ethier and Kurtz (1986)). We can define this operator on test functions f : R+×N0 → R

by

Akf(s, i) =
∂f(s, i)

∂t
+ λ(k + i) [φikf(s, i+ 1)− f(s, i)] (2.6)

+ (µ+ ψ + ω)(k + i)
[
1l{i>0}κf(s, i− 1)− f(s, i)

]
.

Here we implicitly assume that function f is continuously differentiable in the first coordinate. We now

come to a very important proposition on which our whole analysis depends.

Proposition 2.1. Let u(t) be given by (2.4) and define the function fk : R+ × N0 → R by

fk(s, i) =
(k + i)!

i!
u(tor − s)i.

Then the action of generator Ak on function fk simplifies to

Akfk(s, i) = k (2λu(tor − s)− (λ+ µ+ ψ + ω)) fk(s, i).

Moreover the following is a positive martingale in the interval [s1, s2] w.r.t. the filtration generated by process

X,

Ms = p(tor − s)kfk(s,Xs), (2.7)
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Remark 2.2. The function fk is a time-varying eigenfunction for the operator Ak and the corresponding

eigenvalue is k (2λu(tor − s)− (λ+ µ+ ψ + ω)).

Proof See Appendix. �

Note that the fact that Ms is a martingale implies that

E(Ms2) = E(Ms1)

which yields

E(fk(s2, Xs2)) =

(
p(tor − s1)

p(tor − s2)

)k
E(fk(s1, Xs1)). (2.8)

Reversing the direction of time and letting t1 = (tor − s2) and t2 = (tor − s1), conditioning on Xs1 = i, and

exploiting the time-homogeneity of the Markov process (Xs)s≥0 we can express (2.8) as

∑
j≥0

(k + j)!

j!
ujt1 Pi(X(t2 − t1) = j) =

(
pt2
pt1

)k
(k + i)!

i!
uit2 , (2.9)

where the subscript i denotes that the initial state is X0 = i. This formula will help us provide an alternative

derivation of the probability density of a reconstructed tree without occurrence data originally introduced

by Stadler (2010).

3. Revisiting the probability density of the reconstructed tree with samples through time

We assume in this section that ω = 0, and there is no occurrence data. We wish to offer an alternative

derivation of the probability density of the reconstructed tree spanning both ρ-sampled and ψ-sampled

individuals as in Stadler (2010).

Let t0 < t1 < t2 < · · · < tn be the ordered set of times at which the tree events occur backward in time

starting from the present time t0 = 0 and culminating at tn = tor. For any t ∈ [0, tor], call kt the number of

observed lineages at time t in T and let L(i)
t = P

(
T ↓t | It = kt + i

)
be the probability for the observed tree

below time t (i.e. in the time-interval [0, t]) when the total number of lineages is kt+ i at time t. Clearly the

probability density of the observed tree is L(0)
tor = P

(
T ↓tor | Itor = 1

)
, and to obtain this quantity we would

like to study how Lt evolves with time t and how it depends on the state i.

We now introduce an ansatz for the form of L(i)
t , given by

L
(i)
t =

(k + i)!

i!
uit W (t), (3.10)

where W (t) is some real-valued weight function that only depends on time t but not on i or k.
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Let us consider the interval (th−1, th) for some h ≥ 1. In this interval the number of observed lineages is

constant and equal to k. Using ansatz (3.10) and applying the Markov property we obtain

(k + i)!

i!
uithW (t−h ) = L

(i)

t−h

=
∑
j≥0

Pi(X(th − th−1) = j) L
(j)

t+h−1

=
∑
j≥0

Pi(X(th − th−1) = j)
(k + j)!

j!
ujth−1

W (t+h−1)

=

(
p(th)

p(th−1)

)k
(k + i)!

i!
uith W (t+h−1),

where the last equality follows from (2.9). This proves that under ansatz (3.10)

W (t−h ) =

(
p(th)

p(th−1)

)k
W (t+h−1). (3.11)

We now examine how W (t+) and W (t−) are related, for any time t at which we observe an event.

Suppose first that the event at time t is a ψ-event. Then k+ = k− + 1 and if the total number of lineages is

k+ + i at time t+h then the rate at which this event happens is ψ(k+ + i) and subsequently the total number

of lineages falls to (k− + i). This shows that

(k+ + i)!

i!
uit W (t+) = L

(i)
t+

= ψ(k+ + i) L
(i)
t−

= ψ(k− + 1 + i)
(k− + i)!

i!
uit W (t−)

= ψ
(k+ + i)!

i!
uit W (t−),

and hence

W (t+) = ψW (t−). (3.12)

Now suppose the event at time t is a λ-event. Then k+ = k− − 1 and if the total number of lineages is

(k+ + i) at time t+ then the rate at which this event happens is λ(k+ + i) and with probability 1/((k+ +

i)(k+ + 1 + i)) this event is a coalescent event between two observed ordered lineages. Once this event

happens the total number of lineages increments to (k− + i). Therefore

(k+ + i)!

i!
uit W (t+) = L

(i)
t+

= λ(k+ + i)

(
1

(k+ + i)(k+ + 1 + i)

)
L
(i)
t−

=
λ

k+ + 1 + i

(k− + i)!

i!
uit W (t−)

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2019. ; https://doi.org/10.1101/679365doi: bioRxiv preprint 

https://doi.org/10.1101/679365
http://creativecommons.org/licenses/by/4.0/


= λ
(k+ + i)!

i!
uit W (t−),

which proves that

W (t+) = λW (t−). (3.13)

Let k0 be the number of extant lineages at time t0 = 0. Using relations (3.11), (3.12) and (3.13) we

can propagate the weight function W (t) backward in time starting from W (t+0 ) = ρk0 and ending at W (t−n )

which is equal to the tree density L(T ). This backward propagation scheme is described in Algorithm 1

and it yields a closed-form formula very similar to theorem 3.5 in Stadler (2010). Since individuals are here

removed upon sampling, our result can be derived from theorem 3.5 by setting k = 0 and dropping p0(yi)

factors corresponding to the death of ψ-sampled leaves.

Algorithm 1 Computes the probability density L(T ).
Input: Observed tree T , and parameters tor, λ, µ, ψ, ρ.
Output: The density value L(T ).
1: Set W (t+0 ) = ρk0

2: for h = 1,. . . ,n do
3: Set

W (t−h ) =

(
p(th)

p(th−1)

)kh
W (t+h−1)

4: if h = n then
5: return W (t−n )
6: else if th is a ψ-event then
7: Set W (t+h ) = ψW (t−h )
8: else th is a λ-event
9: Set W (t+h ) = λW (t−h )

10: end if
11: end for

4. The density of the reconstructed tree and case count record

We now consider the scenario where ω 6= 0 and we have occurrence data O along with the observed

lineage tree T . As in the previous section, let t0 < t1 < t2 < · · · < tn be the ordered set of times at

which the events occur backward in time starting from the present time t0 = 0 and culminating at tn = tor.

For any t ∈ [0, tor], let L
(i)
t = P

(
T ↓t ,O

↓
t | It = kt + i

)
be the probability for the observed lineage tree and

occurrence data below time t (i.e. in the time-interval [0, t]) when the number of observed lineages in T is

kt at time t and the number of hidden lineages is i. Clearly the probability density of the observed tree and

occurrence data is again L(0)
tor = P

(
T ↓tor ,O

↓
tor | Itor = 1

)
, and to obtain this quantity we would like to study
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how Lt evolves with time t and how it depends on the state i. It will become evident that ansatz (3.10) will

not work for this probability, and so we generalize this ansatz as

L
(i)
t =

q∑
l=0

(k + i)!

(i− l)!
ui−lt Wl(t), (4.14)

where q is a nonnegative integer, k is the number of observed lineages at time t, andW (t) = (W0(t), . . . ,Wq(t))

is some vector-valued weight function that only depends on time t but not on i or k. Note that for q = 0,

this ansatz becomes the previous ansatz (3.10).

4.1. Backward evolution at punctual events

We first examine how W (t+) and W (t−) are related when t is an event time. Suppose first that the

event at time t is a ψ-event. Then k+ = k− + 1 and if the total number of lineages is k+ + i at time t+

then the rate at which this event happens is ψ(k+ + i) and subsequently the total number of lineages falls

to (k− + i). This shows that
q∑
l=0

(k+ + i)!

(i− l)!
ui−lt+ Wl(t

+) = L
(i)
t+

= ψ(k+ + i)L
(i)
t−

= ψ(k+ + i)

q∑
l=0

(k− + i)!

(i− l)!
ui−lt Wl(t

−)

= ψ

q∑
l=0

(k+ + i)!

(i− l)!
ui−lt Wl(t

−),

and hence

W (t+) = ψW (t−). (4.15)

Now suppose that the event at time t is a λ-event. Then k+ = k− − 1 and if the total number of

lineages is (k+ + i) at time t+ then the rate at which this event happens is λ(k+ + i) and with probability

1/((k+ + i)(k+ + i + 1)) this event is a coalescent event between two observed ordered lineages. Once this

event happens the total number of lineages increments to (k− + i). Therefore
q∑
l=0

(k+ + i)!

(i− l)!
ui−lt Wl(t

+) = L
(i)
t+

= λ(k+ + i)

(
1

(k+ + i)(k+ + 1 + i)

)
L
(i)
t−

=
λ

k+ + 1 + i

q∑
l=0

(k− + i)!

(i− l)!
ui−lt Wl(t

−)

= λ

q∑
l=0

(k+ + i)!

(i− l)!
ui−lt Wl(t

−),
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which proves that

W (t+) = λW (t−). (4.16)

So far the transition conditions (4.15) and (4.16) are identical to what we encountered in the previous

section. However the difference comes for ω-events as we now discuss. Suppose t is a ω-event. Then k+ = k−

and if the total number of lineages is (k++i) at time t+ then the rate at which this event happens is ω(k++i)

and subsequently the total number of lineages falls to (k+ + i− 1). This shows that

q∑
l=0

(k+ + i)!

(i− l)!
ui−lt Wl(t

+) = L
(i)
t+

= ω(k+ + i)L
(i−1)
t−

= ω(k+ + i)

q∑
l=0

(k+ + i− 1)!

(i− 1− l)!
ui−1−lt Wl(t

−)

= ω

q∑
l=0

(k+ + i)!

(i− (l + 1))!
u
i−(l+1)
t Wl(t

−),

and hence

W (t+) = ωSW (t−), (4.17)

where S is the shift-operator defined by

S(v1, . . . , vn) = (0, v1, . . . , vn) for any (v1, . . . , vn) ∈ Rn. (4.18)

Setting q = 0 in this calculation shows that the simpler ansatz (3.10), in which W (t) is a scalar function

instead of a vector-valued function, is not compatible with the requirement that W (t) is not a function of i

or k.

4.2. Backward evolution on a time interval without punctual events

Now that we have the transition conditions, (4.15), (4.16) and (4.15), we can propagate the weight

function W (t) backward in time, provided we can evaluate how it evolves in a time-interval (th−1, th) for

any h ≥ 1, and this backward evolution preserves our ansatz (4.14). In order to study this backward

evolution we need some new notation and a simple lemma, which we now provide.

For any time t ≥ 0 and θ ∈ (0, 1), define

c2(θ) =
λ+ µ+ ω + ψ − 2λθ

c1
, (4.19)

u(t, θ) =
1

2λ

[
λ+ µ+ ω + ψ + c1

e−c1t(1− c2(θ))− (1 + c2(θ))

e−c1t(1− c2(θ)) + (1 + c2(θ))

]
, (4.20)
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and p(t, θ) =
4(1− θ)

2(1− c2(θ)2) + e−c1t(1− c2(θ))2 + ec1t(1 + c2(θ))2
(4.21)

where c1 is as given in (2.3). Notice that if we set θ = 1− ρ then c2(θ), u(t, θ) and p(t, θ) become identical

to c2, u(t) and p(t) defined in Section 2. Henceforth for any k ∈ N0 we also define the ratio

Rk(t, θ) =

(
p(t, θ)

p(0, θ)

)k
, (4.22)

and when k = 1, we drop the subscript and refer to Rk(t, θ) as R(t, θ). To ease further algebra, we also name

here the function corresponding to the denominator of p(t, θ), namely q(t, θ) = 4(1 − θ)/p(t, θ). The next

lemma gives us analytical expressions for the higher order partial derivatives of Rk(t, θ) and u(t, θ) w.r.t. θ.

Lemma 4.1. Let u(t, θ) and Rk(t, θ) be as defined by (4.20) and (4.22) respectively. Then for any n =

1, 2, . . . we have the following:

(A) Let Jn = {(j1, j2) ∈ N2
0 : j1 + 2j2 = n}. Then ∂nθRk(t, θ) is given by

∂nθRk(t, θ) = n!Rk(t, θ)
∑

(j1,j2)∈Jn

(−1)j1+j2

2j2
(j1 + j2 + k − 1)!

j1!j2!(k − 1)!

(
∂θq(t, θ)

q(t, θ)

)j1 (∂2θq(t, θ)
q(t, θ)

)j2
.

(B) The quantity ∂nθ u(t, θ) is given by

∂nθ u(t, θ) =
[
− c1

8λ

(
ec1t(1 + c2(θ))2 − e−c1t(1− c2(θ))2

)
∂nθR(t, θ)

+
n

2

(
ec1t + e−c1t + c2(θ)(ec1t − e−c1t)

)
∂n−1θ R(t, θ)

−λn(n− 1)

2c1

(
ec1t − e−c1t

)
∂n−2θ R(t, θ)

]
.

Proof See Appendix. �

Recall the formula (2.9), for the probability evolution on a time-interval [t1, t2] on which the number of

observed lineages remains fixed at k, and call now θ = u(t1, 1 − ρ). Appealing to the semi-group property

of solutions to ODEs (2.1)-(2.2) we get

u(t2, 1− ρ) = u(t2 − t1, u(t1, 1− ρ)) = u(t2 − t1, θ) and
p(t2, 1− ρ)

p(t1, 1− ρ)
=
p(t2 − t1, θ)
p(0, θ)

.

Hence we can rewrite (2.9) as∑
j≥0

(k + j)!

j!
θjPi(X(t) = j) =

(k + i)!

i!
u(t, θ)i Rk(t, θ), (4.23)

where t = (t2 − t1). Note that the probability Pi(X(t) = j) does not depend on θ. Differentiating (4.23) l

times w.r.t. θ we obtain∑
j≥0

(k + j)!

j!

j!

(j − l)!
θj−l Pi(X(t) = j) =

(k + i)!

i!

l∑
m=0

(
l

m

)
∂mθ
[
u(t, θ)i

]
∂l−mθ Rk(t, θ). (4.24)
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Applying the Faà di Bruno’s formula (see Fraenkel (1978)), for any m = 1, 2, . . . yields

∂mθ
[
u(t, θ)i

]
=

m∑
n=0

i!

(i− n)!
u(t, θ)i−nBm,n(∂θu(t, θ), ∂2θu(t, θ), . . . , ∂m−n+1

θ u(t, θ)), (4.25)

where Bm,n(x1, x2, . . . , xm−n+1) is the incomplete Bell polynomial. Such polynomials can be computed

efficiently via a recurrence relation

Bm,n(x1, x2, . . . , xm−n+1) =
m−n+1∑
i=0

(
m− 1

n− 1

)
xiBm−i,n−1(x1, . . . , xm−n−i),

where B0,0 = 1 and Bm,0 = B0,m = 0 for each m ≥ 1. Henceforth we denote

Bmn(t, θ) = Bm,n(∂θu(t, θ), ∂2θu(t, θ), . . . , ∂m−n+1
θ u(t, θ)).

Substituting (4.25) in (4.24) we obtain∑
j≥0

(k + j)!

j!

j!

(j − l)!
θj−l Pi(X(t) = j)

=
(k + i)!

i!

l∑
m=0

m∑
n=0

(
l

m

)
i!

(i− n)!
u(t, θ)i−n Bmn(t, θ)∂l−mθ Rk(t, θ)

=
(k + i)!

i!

l∑
n=0

i!

(i− n)!
u(t, θ)i−n

l∑
m=n

(
l

m

)
Bmn(t, θ)∂l−mθ Rk(t, θ). (4.26)

Letting

Cln(t, θ, k) =
l∑

m=n

(
l

m

)
Bmn(t, θ)∂l−mθ Rk(t, θ), (4.27)

we can express (4.26) as

∑
j≥0

(k + j)!

(j − l)!
θj−l Pi(X(t) = j) =

l∑
n=0

(k + i)!

(i− n)!
u(t, θ)i−n Cln(t, θ, k). (4.28)

This formula will play a critical role in determining the backward propagation of the vector-valued weight

function W (t) = (W0(t), . . . ,Wq(t)) between the transition points.

Indeed, let us consider the interval (th−1, th) for some h ≥ 1. In this interval the number of observed

lineages is constant and we assume that it is equal to kh. Also let θh = u(th, 1− ρ) for each h. Using ansatz

(4.14) and applying the Markov property we obtain

q∑
l=0

(kh + i)!

(i− l)!
θi−lh Wl(t

−
h ) = L

(i)

t−h

=
∑
j≥0

Pi(X(th − th−1) = j)L
(i)

t+h−1
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=

q∑
l=0

Wl(t
+
h−1)

∑
j≥0

Pi(X(th − th−1) = j)
(kh + j)!

(j − l)!
θj−lh−1

=

q∑
l=0

l∑
n=0

Wl(t
+
h−1)

(kh + i)!

(i− n)!
θi−nh Cln(th − th−1, θh−1, kh)

=

q∑
n=0

(kh + i)!

(i− n)!
θi−nh

q∑
l=n

Wl(t
+
h−1)Cln(th − th−1, θh−1, kh),

where the second-last equality is due to formula (4.28). This calculation proves that ansatz (4.14) is preserved

by the backward evolution of the weight vector W (t) and

W (t−h ) = W (t+h−1)C(th − th−1, θh−1, kh), (4.29)

whereW (t−h ) = (W0(t−h ), . . . ,Wq(t
−
h )) andW (t+h−1) = (W0(t+h−1), . . . ,Wq(t

+
h−1)) are (q+1)-dimensional row

vectors and C(th − th−1, θh−1, yh) is the (q + 1)× (q + 1) lower-triangular matrix matrix whose entries are

given by Cln(th − th−1, θh−1, kh) for l ≥ n and 0 for l < n. Note that by using Lemma 4.1, this matrix can

be analytically computed.

4.3. Summary of the likelihood computation

Let k0 be the number of extant and sampled lineages at time t0 = 0. Using relations (4.29), (4.15),

(4.16) and (4.17) we can propagate the vector-valued weight function W (t) backward in time starting from

W (t+0 ) whose entries are all equal to ρk0 and ending at W (t−or), whose first component W1(t−or) is equal to

the target probability density L(T ,O). Note that due to the presence of the shift operator S in (4.17) the

dimensional of W (t) is (q + 1) where q is the number of occurrence events in the time-interval [0, t]. This

backward propagation scheme is described in Algorithm 2 and it simplifies to Algorithm 1 in the absence of

occurrence data.
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Algorithm 2 Computes the probability density L(O, T ).
Input: Observed (O, T ), and parameters tor, λ, µ, ψ, ω, ρ.
Output: The probability density L(T ,O).
1: Set q = 0, θ = (1− ρ) and W (t+0 ) = ρk0 .
2: for h = 1, . . . , n do
3: Compute the (q + 1) × (q + 1) lower-triangular matrix C(th − th−1, θ, kh) whose entry Cln(th −
th−1, θ, kh) for l ≥ n is given by (4.27).

4: Viewing W (t+h−1) = (W0(t+h−1), . . . ,Wq(t
+
h−1)) as a 1× (q + 1) vector, set

W (t−h ) = W (t+h−1)C(th − th−1, θ, kh).

5: if i = n then
6: return W1(t−n ) which is the first component of the weight vector W (t−n ).
7: else if th is a ψ-event then
8: Set W (t+h ) = ψW (t−h )
9: else if th is a λ-event then

10: Set W (t+h ) = λW (t−h )
11: elseth is a ω-event
12: Set W (t+h ) = ωSW (t−h ), where S is the shift operator (4.18).
13: Set q = q + 1.
14: end if
15: Set θ = u(th − th−1, θ).
16: end for

4.4. Numerical implementation and sanity check

The main algorithm to compute the probability density of (O, T ) has been implemented numerically

and is available on GitHub: https://github.com/ankitgupta83/tree-and-occurrences/. As a check that the

method leads to correct values, we compared the results obtained with our analytical calculation (Algo-

rithm 2) with the ones obtained using Monte Carlo simulations as described in Vaughan et al. (2019) and

implemented here in C++.

We consider two toy examples depicted in Figure 2(A) for which we calculate the probability density.

The comparisons are shown in Figure 2(B) and Figure 2(C), and one can see that there is a close match

between numerical values computed analytically and those estimated with simulations.
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Figure 2: (A) Two toy examples of reconstructed trees along with occurrence data (open circles). (B) Comparison between
probability densities obtained analytically with Algorithm 2 and the corresponding probability densities obtained with simu-
lations as described in Vaughan et al. (2019). The parameter λ varies between 0 and 2, while the other parameters are set to
ψ = 0.1, µ = 0, ω = 0.1 and ρ = 0.7. (C) Same as (B) except now the parameter ω varies between 0 and 1, while the other
parameters are set to ψ = 0.1, µ = 0, λ = 1.25 and ρ = 0.7.
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5. Applications

Our results pave the way to different applications that we present in this section.

5.1. Different flavors of the likelihood

Following Stadler (2010), we first point out that our main result, Algorithm 2, allows us to compute the

density of the observations, given a model with fixed time of origin tor. This quantity, that we call L below,

can be seen as an extension of Theorem 3.5 in Stadler (2010) (while assuming that samples correspond to

death events), when occurrences can be observed.

Depending on the analysis that one wants to perform, it might be desirable to condition this density on

various events, including,

1. the number of ρ-sampled leaves at present,

L(O, T | {ρ-sampling n individuals }) =
L

P({ρ-sampling n individuals })

where the denominator is a well-known quantity which can, e.g., be found in Theorem 3.3 in Stadler

(2010), replacing µ by µ+ ψ + ω in our case.

2. the survival of the process up to the present,

L(O, T | { survival of at least one individual at present }) =
L

1− utor
3. the survival of two lineages starting at time tmrca,

L(O, T | { survival of two lineages originating at tmrca}) =
L

(1− utor )2
p(tmrca)

λp(tor)

In each case, since the event we condition on is in the observed data, one only needs to divide by

the probability of the event. These are only three possibilities that one could use. In the context of

phylodynamics, conditioning on the survival of the process, or on the survival of two lineages starting at

tmrca is common practice, since we study an evolutionary process precisely because it survived.

We also stress that the probability density provided in this manuscript applies to an oriented and unlabelled

tree. If one wishes to compare the probability densities of trees under different generating models, then

it might be useful to add a combinatorial factor for dealing, e.g. with unoriented and labelled trees, as

described in Stadler (2010).

5.2. Maximum likelihood estimators

The previous probability densities can readily be used to estimate parameters of the model from recon-

structed trees and occurrences. Taken as a function of parameters, the density is indeed called likelihood, and
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maximum likelihood estimators can be obtained by maximizing the likelihood function over the parameters.

Since it does not appear straight-forward to identify optimal parameter configurations analytically, we sug-

gest relying on numerical optimizers instead. In this context, computing quickly the likelihood value using

Algorithm 2 in place of the more computationally intensive Monte-Carlo algorithm proposed by Vaughan

et al. (2019), can prove essential, since the optimization requires many calls to the function.

5.3. Bayesian analysis

This density is also a key component when using this model in a Bayesian framework, where one can

estimate the parameters of the model directly from the occurrences and the sequencing data rather than

fixing a tree. Suppose we observe the sampling times of occurrences O (individuals without any measurement

data), the sampling times and genotypic or phenotypic measurements of m ψ-sampled individuals, and

the genotypic or phenotypic measurements of n ρ-sampled individuals. We call A the sequencing data,

summarizing all the genotypic or phenotypic measurements (e.g. a nucleotide alignment of pathogens, or

a collection of morphological traits for fossil species, or any combination of those), and θ all parameters

relating to the model of character evolution along a tree.

Loosely defining f to represent all probability densities involved, and relying on the name of the random

variable to know which one we refer to, one is generally interested in sampling from,

f(T , θ, λ, µ, ρ, ψ, ω, tor | O,A) ∝ f(A | T , θ)f(O, T | λ, µ, ρ, ψ, ω, tor)f(λ, µ, ρ, ψ, ω, θ, tor),

with f(λ, µ, ρ, ψ, ω, θ, tor) being the prior distribution on the model parameters. Standard MCMC (Markov-

Chain Monte-Carlo) algorithms can be used to sample from this posterior distribution. As a result, from

sequencing and occurrence data, we can directly obtain the marginal distribution of birth-death parameters

integrated over the posterior distribution of trees.

5.4. Simulations of the process

While the raw process is quite easy to simulate forward-in-time, it can be more difficult to simulate it

under a different conditioning event C, relating for example to the number of ρ-, ψ-, or ω-samples. Naive

rejection sampling is not an efficient option if one wishes to condition on an event happening with very low

probability. Adapting the particle filtering algorithm developed by Vaughan et al. (2019) would be a much

better option.

Another option is to use the results of this paper and directly sample from the density f(O, T | λ, µ, ρ, ψ, ω, tor, C),

using our ability to evaluate f(O, T | λ, µ, ρ, ψ, ω, tor) quickly, within an MCMC algorithm with any reason-

able movement proposal changing the reconstructed tree and possibly occurrence times or numbers while

satisfying the constraint C.
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6. Discussion

In this study, we derived a closed-form probability density formula of a reconstructed tree and an occur-

rence record (i.e. a record of when cases occurred) under a linear birth-death model with sampling. This

can readily be used for statistical purposes, to infer the parameters of the model in a maximum likelihood

or a Bayesian framework.

In the context of epidemiology, this study offers a way to improve the accuracy of statistical estimates of

key epidemiological parameters, such as the transmission and recovery rate (λ and (µ + ψ + ω)), and thus

the basic reproductive number R = λ/(µ+ψ+ω), using jointly the occurrence record and the phylogenetic

tree reconstructed from pathogen sequences. This should be of use to health policy makers as well as epi-

demiologists, enabling them to jointly use the epidemiological data (occurrence record) as well as molecular

data (genetic sequences), to recover the dynamic of an outbreak.

In the context of macroevolution, the present work contributes to the ongoing effort towards bridging the

gap between inferences made from the fossil record and inferences made from contemporary data. It can be

seen as an extension of the birth-death process with sampling through time (Stadler, 2010), allowing one

to take into account fossil occurrences which evolutionary relationships to other taxa are not well resolved.

However, we need to point out here that we assume removal of a sampled individual from the population,

while a species continues to exist if a specimen is preserved in and observed from the fossil record. Numerical

rather than our analytic treatment of the model can deal with non-removal upon sampling (Vaughan et al.,

2019).

Many extensions of this model are possible. One of the simplest would be to consider time-varying rate

parameters λt, µt, ψt, ωt. The most widely used approach to do so in the recent literature has been to consider

so-called skyline versions of birth-death processes (Stadler et al., 2013), meaning that the rate parameters

are piecewise constant functions. Because we expressed all our results based on two key functions ut and pt,

whose analytical expressions can easily be obtained considering piecewise constant rates, our central result

would still hold. The challenge, however, would be to use such a model with an appropriate number of rate

shifts so as not to overfit the data, although in a Bayesian context the number of rate shifts could also be

estimated as part of a reversible jump MCMC scheme (Green, 1995).

Another important extension of the model would be to allow for the possibility not to remove individuals

upon sampling. In fact, the model considered in Stadler (2010) does assume that ψ-sampled individuals

keep living in the process. However, it is central for the derivation of our result that ω-sampled individuals

are removed upon sampling. Our choice to remove all individuals upon sampling also seems reasonable for

a number of applications in epidemiology, since sampled individuals are generally those that have sought

medical attention, and - even if not quarantined - might be much less likely to spread the disease (but see
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also (Gavryushkina et al., 2014)).

Recently, Stadler et al. (2018) introduced an other extension of the birth-death model with sampling through

time to account for data on the lifetime of some individuals. It assumes that individuals can be sampled

multiple times, and that the first and last sampling event are recorded along the tree. This extension of the

model could be transposed in our setting, where the record of occurrences would become a record of sampled

lifetime intervals. Such an approach would allow to use infection interval data or stratigraphic range data.

In summary, we present a way to analytically calculate the likelihood of phylogenetic trees together with

occurrence data. So far, this likelihood could only be calculated analytically for the phylogenetic tree or

for the occurrence data. Thus, we view this work as a major step towards coherent statistical analysis of

different data sources under the birth-death model with sampling through time.
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Appendix

Proof of Proposition 2.1

Note that reversing the direction of time in (2.1) we can write the ODE for u(tor − s) as

du(tor − s)
dt

= −µ+ (λ+ µ+ ω + ψ)u(tor − s)− λu(tor − s)2 (A.1)

Applying the generator Ak on function fk(s, i) we obtain

Akfk(s, i) =
(k + i)!

i!
iu(tor − s)i−1

du(tor − s)
dt

+ λ(k + i)

(
φik

(k + i+ 1)!

(i+ 1)!
u(tor − s)i+1 − (k + i)!

i!
u(tor − s)i

)
+ (µ+ ω + ψ)(k + i)

(
1l{i>0}κ

(k + i− 1)!

(i− 1)!
u(tor − s)i−1 −

(k + i)!

i!
u(tor − s)i

)
.

Since i ≥ 0, noting that

(k + i)
(k + i− 1)!

(i− 1)!
=

(k + i)!

i!
i and (k + i)φik

(k + i+ 1)!

(i+ 1)!
= (2k + i)

(k + i)!

i!
,

and using (A.1) we get

Akfk(s, i) = −µ (k + i)!

i!
iu(tor − s)i−1

+ (λ+ µ+ ω + ψ)
(k + i)!

i!
iu(tor − s)i

− λ (k + i)!

i!
iu(tor − s)i+1 + λ(2k + i)

(k + i)!

i!
u(tor − s)i+1

− λ(k + i)
(k + i)!

i!
u(tor − s)i + µi

(k + i)!

i!
u(tor − s)i−1

− (µ+ ω + ψ)(k + i)
(k + i)!

i!
u(tor − s)i

= −k(λ+ µ+ ω + ψ)
(k + i)!

i!
u(tor − s)i + 2kλ

(k + i)!

i!
u(tor − s)i+1

= k (2λu(tor − s)− (λ+ µ+ ψ + ω)) fk(s, k + i).
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We now prove that Ms defined by (2.7) is a martingale w.r.t. the filtration Fs generated by process X.

Note that since this process has generator Ak the following is a Fs-martingale (see Chapter 4 in Ethier and

Kurtz (1986))

ms = fk(s,X(s))− fk(s1, X(s1))−
∫ s

s1

k(2λu(tor − z)− (λ+ µ+ ψ + ω))fk(z,X(z))dz.

Writing this equation in differential form we obtain

dms = dfk(s,X(s))− k (2λu(tor − s)− (λ+ µ+ ψ + ω)) fk(s,X(s))ds.

Multiplying both sides by the integrating factor

Js = exp

(
−
∫ s

s1

k (2λu(tor − z)− (λ+ µ+ ψ + ω)) dz

)
we get

Jsdms = Jsdfk(s,X(s)) + fk(s,X(s))dJs = dJsfk(s,X(s)).

Upon integration we see that
∫ s
s1
Jzdmz is a martingale which implies that Jsfk(s,X(s)) is a positive Fs-

martingale in the time-interval [s1, s2]. Note that Js satisfies the ODE

dJs = −k (2λu(tor − s)− (λ+ µ+ ψ + ω)) Js

which is similar to (2.2). Exploiting this similarity allows us to write

Js =

(
p(tor − s)
p(tor − s1)

)k
Now the fact that Jsfk(s,X(s)) is a positive Fs-martingale proves that Ms is also such a martingale. This

completes the proof of this proposition. �

Proof of Lemma 4.1

Observe that

∂θc2(θ) = −2λ

c1

and all higher order derivatives of c2(θ) are zero, i.e. ∂mθ c2(θ) = 0 for all m ≥ 2. As q(t, θ) is a simple

quadratic function of c2(θ) we get from chain-rule for derivatives that

∂θq(t, θ) = −4λ

c1

(
ec1t − e−c1t + c2(θ)(ec1t + e−c1t − 2)

)
∂2θq(t, θ) =

8λ2

c21

(
ec1t + e−c1t − 2

)
,

and ∂mθ q(t, θ) = 0 for m = 3, 4, . . . .
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As q(0, θ) = 4 is independent of θ we can express the derivatives of Rk(t, θ) as

∂nθRk(t, θ) = 4k∂nθ

[
1

(q(t, θ))k

]
.

Using the derivatives of q(t, θ) computed above and the Faà di Bruno’s formula (see Fraenkel (1978)) we

obtain the expression for ∂nθRk(t, θ) reported in part (A).

For part (B) observe that we can write u(t, θ) as

u(t, θ) =
λ+ µ+ ω + ψ

2λ
− c1

8λ
r(θ)R(t, θ) (A.2)

where

r(θ) = ec1t(1 + c2(θ))2 − e−c1t(1− c2(θ))2.

The derivatives of r(θ) can be obtained as

∂θr(θ) = −4λ

c1

[
ec1t + e−c1t + c2(θ)(ec1t − e−c1t)

]
,

∂2θr(θ) =
8λ2

c21

[
ec1t − e−c1t

]
and ∂mθ r(θ) = 0 for m = 3, 4, . . . .

Applying the generalized product-rule for derivatives to formula (A.2) we can express ∂nθ u(t, θ) as

∂nθ u(t, θ) = − c1
8λ

2∑
m=0

(
n

m

)
∂mθ r(θ)∂

n−m
θ R(t, θ).

Substituting the values of ∂mθ r(θ) and simplifying, we obtain the expression for ∂nθ u(t, θ) reported in part

(B). This completes the proof of this lemma. �
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