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Some basics Phylodynamics modeling Trait evolution modeling Conclusion

4 reasons to speak about this concept

1. I didn’t want to speak about ancestral population size inference,

2. I wanted to speak/teach something more on the methodological side,

3. Very nice concept of statistics that we could try to use more in phylogenetics,

4. Might give ideas for future projects aiming at speeding up Bayesian inference
or provide you with nicely behaving building blocks for your next modeling work.
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Definition
A bit of lexicon related to exponential families

Definition 1
A family of probability distributions parametrized by a parameter θ is called an exponential family if its
probability mass function, or density, can be expressed as

f (x |θ) = h(x)eη(θ)t T (x)−A(η(θ))

natural parameter η(θ),
the distribution is said to be in its canonical form if η(θ) = θ,

sufficient statistic T (x),
all information in the data that is related to the parameters θ.

log-partition function A(η) = ln
(∫

x
h(x)eη(θ)t T (x)dx

)
, which is the logarithm of the normalization factor,

ensuring that f is a density.

Example 1
The family of exponential distributions (E(λ))λ∈R+ is an exponential family.
Indeed, we can express the density as,

f (x |λ) = λe−λx = e−λx+lnλ

And get the natural parameter η := −λ and the sufficient statistic T (x) = x.
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Nice properties
The sufficient statistic summarizes nicely all iid observations

Property 1
One can summarize all the information coming from an arbitrary amount of iid random variables
X = (Xi )ni=1 with only a fixed number of values, through the sufficient statistic

T (X) =
n∑

i=1

T (Xi ) .

Indeed, if L(θ) is a member of an exponential family, and if X = (Xi )ni=1 is a sequence of n iid random
variables distributed according to L(θ), then the density of X is

f (x |θ) = h(x1)h(x2)...h(xn) exp

(
η(θ)

n∑
i=1

T (xi )− nA(η)

)

Example 2
If X = (Xi )ni=1 are n iid exponentially distributed variables with rate λ, then all the information available to
estimate λ is simply contained in

T (X) =
n∑

i=1

Xi
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Nice properties
The magic of the conjugate prior

Property 2
These exponential families admit conjugate priors that belong to another exponential family. I.e. if

X |η ∼ fη, where fη belongs to an exponential family F(η)
then there exists another exponential family H such that if g ∈ H and if

η ∼ g, the posterior is given by
η|X ∼ h, where h belongs to the same family H.
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X |η ∼ fη, where fη belongs to an exponential family F(η)
then there exists another exponential family H such that if g ∈ H and if

η ∼ g, the posterior is given by
η|X ∼ h, where h belongs to the same family H.

Indeed, we can even derive the density of this conjugate prior:

f (x |η) = h(x)eη
t T (x)−A(η)

f (η|χ, ν) = p(χ, ν)eηχ−νA(η)

where χ, ν are hyperparameters.
One can directly check that the posterior is in the same family:

f (η|x , χ, ν) ∝ h(x)eηT (x)−A(η)p(χ, ν)eηχ−νA(η)

∝ eη(χ+T (x))−(ν+1)A(η)
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and λ|α, β ∼ Γ(α, β)
=⇒ λ|X , α, β ∼ Γ(α + 1, β + X) .

Indeed, one can check the posterior density,

f (X |λ) = λe−λX ,

f (λ|α, β) ∝ λα−1e−βλ

=⇒ f (λ|x , α, β) ∝ λα−1+1e−(β+X)λ
.
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A few discrete examples
The Poisson distribution

Example 4
The family of Poisson distributions (P(λ))λ∈R+ is an exponential family.
The conjugate prior is a Gamma distribution, with

λ|α, β ∼ Γ(α, β)
=⇒ λ|α, β, x ∼ Γ(α + x , β + 1) .

0 1

Canonical form the probability mass function can be expressed as

f (x |λ) =
1
x !
λ
x e−λ =

1
x !

ex lnλ−λ

The natural parameter is η(λ) = lnλ and the sufficient statistic is T (x) = x .

Conjugate prior If X |λ ∼ P(λ) and λ|α, β ∼ Γ(α, β), we have

f (λ|α, β) ∝ λα−1e−βλ

f (λ|x) ∝ λα−1+x e−(β+1)λ

=⇒ λ|x ∼ Γ(α + x , β + 1)

Interpretation α is the total number of points observed, β is the total number of intervals.
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A few discrete examples
Distributions related to Bernoulli experiments

Example 5
The following are all exponential families, conjugate to a Beta prior:
Geometric distributions (G(p))p∈(0,1), i.e. number of failures before the first success.
Binomial distributions (B(n, p))p∈(0,1), i.e. number of successes in n successive experiments.
Negative binomial distributions (NB(r , p))p∈(0,1), i.e. number of successes before finding r failures.

#events

Canonical form we can express these pmfs for the number of successes ns and number of failures nf ,
f1(nf |p) = (1− p)nf p = enf ln(1−p)+ln p

,

f2(ns |p) =
( n
ns

)
pns (1− p)n−ns =

( n
ns

)
ens ln p

1−p +n ln(1−p)
,

f3(ns |p) =
(ns + r − 1

ns

)
(1− p)rpns =

(ns + r − 1
ns

)
ens ln p+r ln(1−p)

Conjugate prior Assume that p|α, β ∼ Beta(α, β), then,
if nf |p ∼ G(p) =⇒ p|nf , α, β ∼ Beta(α + 1, β + nf )
if ns |p ∼ B(n, p) =⇒ p|ns , α, β ∼ Beta(α + ns , β + (n − ns ))
if ns |p ∼ NB(r , p) =⇒ p|ns , α, β ∼ Beta(α + ns , β + r)

Interpretation α− 1 is the total number of successes, β − 1 is the total number of failures.
With more than two outcomes the multinomial distribution is conjugate to the Dirichlet distribution.
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A few continuous examples
The Gaussian distribution

Example 6
The 3 family of Gaussian distributions with one parameter fixed or not,
i.e. (N (µ, σ2))µ∈R (N (µ, σ2))σ2∈R+ (N (µ, σ2))µ∈R,σ2∈R+ , are all
exponential families.

Canonical forms are a bit messier on this example, but they respectively lead to,

η(µ) = (µ/σ2) and T (x) = x ,

η(σ2) = −1/(2σ2) and T (x) = x2 − 2µx ,

η(µ, σ2) =
(
µ/σ

2
,−1/(2σ2)

)
and T (x) = (x , x2) .

Conjugate prior they are respectively conjugate to the following priors:

µ ∼ N (µ0, σ
2
0),

σ
2 ∼ Γ−1(α, β),

(µ, σ2) ∼ NΓ−1(µ0, λ, α, β).

Multivariate normal Similar results still hold in higher dimension.
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Kingman’s coalescent

I Let T be a tree with n leaves,
I Let Ti := time elapsed to go from i to i − 1 lineages,

then T is said to follow a Kingman coalescent with parameter θ
if its density is,

T2

T3

T4

T5

f (T |θ) =
n∏

i=2

θe
−θ
(
i
2

)
Ti = exp

(
−θ

n∑
i=2

( i
2

)
Ti + (n − 1) ln θ

)

Exponential family with natural parameter −θ and sufficient statistic
∑n

i=2

(
i
2

)
Ti .

Conjugate prior Assume θ ∼ Γ(α, β), then,

f (θ|T , α, β) ∝ θα−1e−βθθn−1e
−θ
∑n

i=2
Ti

∝ θα−1+(n−1)e
−θ
(
β+
∑n

i=2

(
i
2

)
Ti
)

which means that θ|T , α, β ∼ Γ
(
α + n − 1, β +

∑n
i=2

(
i
2

)
Ti
)
.

In the literature I found a few papers using this, see Parag et al. (2020).
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Yule (pure birth) tree

I Let T be a tree with n leaves,
I Let xi be the depth of leaf i ,

then T is said to be a Yule tree if it has the following density,

x0

x1

x2

x3

x4

f (T |λ) ∝ λn−1
n−1∏
i=0

e−λxi ∝ exp

(
−λ

n−1∑
i=0

xi + (n − 1) lnλ

)

Exponential family with natural parameter −λ and sufficient statistic
∑n−1

i=0
xi .

Conjugate prior It is thus again conjugate to a Gamma distribution.

λ|α, β ∼ Γ(α, β) =⇒ λ|x , α, β ∼ Γ

(
α + n − 1, β +

n−1∑
i=0

xi

)
In the literature I don’t see much statistical work in phylogenetics based on pure birth anymore.

What about birth-death reconstructed trees then ?
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What about birth-death reconstructed trees ?

The density of the reconstructed tree is given by

f (T |λ, µ) = λ
n−1

n−1∏
i=0

p(xi |λ, µ)

where,

x0

x1

x2

x3

x4

p(xi |λ, µ) =
(

λ− µ
λ− µe−(λ−µ)xi

)2
e−(λ−µ)xi

= exp
(
−(λ− µ)xi + 2 ln(λ− µ)− 2 ln(λ− µe−(λ−µ)xi )

)
Not an exponential family since we cannot factorize η(θ)T (x) within the exponential in function p.

Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with λ = µ, we have a different expression.

p(xi |λ) = (λxi + 1)−2 = e−2 ln(λxi+1)

But this still does not define an exponential family.

Continuously observed process What happens if we look at the full birth-death trajectory ?
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What about birth-death reconstructed trees ?
The continuously observed process, see Crawford et al. (2018)

For any birth-death process parametrized with birth/death rates (λk , µk ) in state k,
I let Uk and Dk be the total number of birth/death events from state k,
I let Tk be the total time spent in state k,

then the density of the continuously observed process is,

P(X |(λk , µk )) =
∞∏
k=0

λ
Uk
k µ

Dk
k e−(λk+µk )Tk

Exponential family with sufficient statistics (Uk ,Dk ,Tk ).
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For the linear case it simplifies to,

P(X |λ, µ) =
∞∏
k=0

(kλ)Uk (kµ)Dk e−k(λ+µ)Tk

= exp

(∑
k

(Uk + Dk )lnk +
∑

k

Uk lnλ +
∑

k

Dk lnµ− (λ + µ)
∑

k

kTk

)
∝ exp

(
(lnλ, lnµ, λ + µ)t(U,D,Tpart)

)
Exponential family with sufficient statistic (U,D,Tpart),
where U,D are the number of birth and death events, and Tpart is the total particle time, i.e.

∑
k
kTk .

Conjugate prior Assume that λ, µ ∼ Γ(α, γ)⊗ Γ(β, γ), i.e.

f (λ, µ) ∝ λα−1e−γλµβ−1e−γµ

Then we get,

p(λ, µ|X) ∝ λα−1
µ
β−1e−γ(λ+µ)

λ
U
µ
De−(λ+µ)Tpart

∝ λα−1+U
µ
β−1+De−(γ+Tpart )(λ+µ)

meaning that λ, µ|X ∼ Γ (α + U, γ + Tpart)⊗ Γ (β + D, γ + Tpart).
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Continuous trait evolution with BM

I Let T be a tree with n leaves,
I let tk,l denote the coalescence times between two leaves

k, l ,

then a Brownian Motion with initial (root) value µ and infinites-
imal variance σ2 has the following tip distribution,

(Xf ) ∼ Nn
(
µV , σ2ΣT

)
where (ΣT )k,l = tk,l and V = (1, 1, ..., 1).

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

(µ, σ2) ∼ NΓ−1(µ0, λ, α, β)

(µ, σ2)| (Xf ) ∼ NΓ−1(.)

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017).
With multiple traits evolving jointly along the tree, the conjugate prior to a multivariate normal
distribution is called Inverse-Wishart.
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Molecular evolution

I Consider a JC69 model with fixed transition rate α,
I and observe the state X1 at time t1 and X2 at time t2,

then the probability of the observation is,

A T

G C

P(X1,X2|t, α) =
3
4

(
1− e−4αt

)
1X1 6=X2 +

1
4

(
1 + 3e−4αt

)
1X1=X2

Not an exponential family
What about the continuously observed process ? If we observe the whole trajectory (Xt)t∈(t1,t2), under
any model of molecular evolution with transition rate matrix Q = (qij ),

P ((Xt)|(qij )) =
4∏

i=1

e−qii Ti
∏
j 6=i

q
Uij
ij

which is an exponential family with sufficient statistics,

Ti :=

∫ t2

t1

1Xt=idt (total time spent in state i)

Uij := number of steps from i to j
With JC69, this simplifies to e−3αtαU where U is simply the number of steps.
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Molecular evolution
The two most popular ways of building a MCMC to sample a target distribution ν

Metropolis-Hastings

Algorithm Initialize a first state x0.
At step i , the chain being in state xi ,

1. Propose a next state yi+1 by drawing a
realisation in distribution q(xi , ·).

2. Compute the ratio:

r(xi , yi+1) :=
ν(yi+1)q(yi+1, xi )
ν(xi )q(xi , yi+1)

3. Draw u ∼ U(0, 1).
If u ≤ r , set xi+1 := yi+1.
otherwise, keep xi+1 := xi .

Reversibility One can check that
νxqxy min(1, r(x , y)) = νyqyx min(1, r(y , x)).
Hence, it converges to the stationary
distribution ν.

Advantage One can use (almost) any proposal
distribution q.

Drawback One needs to carefully tune q to
ensure fast convergence.

Gibbs sampler

Algorithm First, initialize the chain in state x0.
At step n, xn = (x (1)

n , x (2)
n , ..., x (k)

n ),
1. Draw i ∼ U{1, 2, ..., k}.
2. Draw x (i)

n+1 in the conditional law

p
(
X (i) |

(
X (j)
)
j 6=i

=
(
x (j)
n

)
j 6=i

)
.

3. Fix xn+1 :=
(
x (1)
n , x (2)

n , ..., x (i)
n+1, ..., x

(k)
n

)
.

Reversibility One can check that νxpxy = νypyx .
Hence, it converges to the stationary
distribution ν.

Advantage It is generally assumed that it
converges faster.

Drawback One needs to know how to sample
step 2.
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Molecular evolution
The two most popular ways of building a MCMC to sample a target distribution ν
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Molecular evolution
Example from the literature: Lartillot (2006)

I A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
I Comparison to an alternative MH-MCMC sampler.

1. along each branch j and at any site i , sample nij the total number of substitutions, (tkij ) the times at
which substitutions occur, and (σk

ij ) the successive states.
2. sampling the branch-length l given everything else.

The prior is Gamma, conjugate to a Poisson variable.
Posterior is a Gamma again with known parameters.

3. sampling the site-specific rates r given everything else.
The prior is Gamma, conjugate to a Poisson variable.
Posterior is Gamma again with known parameters.

4. sampling the stationary profile π given everything else.
The prior is a Dirichlet, conjugate to a multinomial distribution.
Posterior is Dirichlet again with known parameters.

5. update the hyperparameters with a MH step.

I each step requires a costly data-augmentation step,
I but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.
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Conclusion
Take-home messages

Exponential families are beloved by statisticians, for good reasons.

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman’s coalescents, Yule trees, the continuously observed birth-death
process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are
exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley
Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.

Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on

smoothing prior assumptions? bioRxiv.
Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic

Biology.

Thank you for your attention !
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