Exponential families for phylogeneticists

cEvo group meeting – Basel

Marc Manceau

June 23, 2020

ETH zürich DBSSE

- 1. I didn't want to speak about ancestral population size inference,
- 2. I wanted to speak/teach something more on the methodological side,
- 3. Very nice concept of statistics that we could try to use more in phylogenetics,
- Might give ideas for future projects aiming at speeding up Bayesian inference or provide you with nicely behaving building blocks for your next modeling work.

- 1. I didn't want to speak about ancestral population size inference,
- 2. I wanted to speak/teach something more on the methodological side,
- 3. Very nice concept of statistics that we could try to use more in phylogenetics,
- Might give ideas for future projects aiming at speeding up Bayesian inference or provide you with nicely behaving building blocks for your next modeling work.

- 1. I didn't want to speak about ancestral population size inference,
- 2. I wanted to speak/teach something more on the methodological side,
- 3. Very nice concept of statistics that we could try to use more in phylogenetics,
- Might give ideas for future projects aiming at speeding up Bayesian inference or provide you with nicely behaving building blocks for your next modeling work.

- 1. I didn't want to speak about ancestral population size inference,
- 2. I wanted to speak/teach something more on the methodological side,
- 3. Very nice concept of statistics that we could try to use more in phylogenetics,
- Might give ideas for future projects aiming at speeding up Bayesian inference or provide you with nicely behaving building blocks for your next modeling work.

- 1. I didn't want to speak about ancestral population size inference,
- 2. I wanted to speak/teach something more on the methodological side,
- 3. Very nice concept of statistics that we could try to use more in phylogenetics,
- Might give ideas for future projects aiming at speeding up Bayesian inference or provide you with nicely behaving building blocks for your next modeling work.

Some basics 0000000	Phylodynamics modeling 00000	
Sketch of the presenta	ation	
Some basics Definition Nice properties A few discrete e	xamples	

Phylodynamics modeling

A few continuous examples

Kingman's coalescent Yule (pure birth) tree What about birth-death reconstructed trees ?

Trait evolution modeling

Continuous trait evolution with BM Molecular evolution

Conclusion

Some basics	Phylodynamics modeling 00000	
Sketch of the present	ation	
Some basics Definition Nice properties A few discrete o A few continuo	examples us examples	

Some basics ○●○○○○○	Phylodynamics modeling 00000	

Definition A bit of lexicon related to exponential families

Definition 1

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$,

the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x),

all information in the data that is related to the parameters θ .

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics ○●○○○○○	Phylodynamics modeling 00000	
Definition		

Definition 1

A bit of lexicon related to exponential families

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$, the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x),

all information in the data that is related to the parameters θ .

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics ●●●●●●●	Phylodynamics modeling 00000	
Definition A bit of lexicon related to e	xponential families	

Definition 1

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$, the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x), all information in the data that is related to the parameters heta

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics ●●●●●●●	Phylodynamics modeling 00000	
Definition		

A bit of lexicon related to exponential families

Definition 1

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$,

the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x), all information in the data that is related to the parameters θ .

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics ○●○○○○○	Phylodynamics modeling 00000	
Definition		

A bit of lexicon related to exponential families

Definition 1

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$,

the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x),

all information in the data that is related to the parameters $\boldsymbol{\theta}.$

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics ○●○○○○○	Phylodynamics modeling 00000	
Definition		

A bit of lexicon related to exponential families

Definition 1

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

natural parameter $\eta(\theta)$,

the distribution is said to be in its canonical form if $\eta(\theta) = \theta$,

sufficient statistic T(x),

all information in the data that is related to the parameters θ .

log-partition function $A(\eta) = \ln \left(\int_x h(x) e^{\eta(\theta)^t T(x)} dx \right)$, which is the logarithm of the normalization factor, ensuring that f is a density.

Example 1

The family of exponential distributions $(\mathcal{E}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. Indeed, we can express the density as,

$$f(x|\lambda) = \lambda e^{-\lambda x} = e^{-\lambda x + \ln \lambda}$$

Some basics	Phylodynamics modeling 00000	
Nice properties The sufficient statistic summ	narizes nicely all iid observations	

One can summarize all the information coming from an arbitrary amount of iid random variables $X = (X_i)_{i=1}^n$ with only a fixed number of values, through the sufficient statistic

$$T(X) = \sum_{i=1}^n T(X_i) \quad .$$

Indeed, if $\mathcal{L}(\theta)$ is a member of an exponential family, and if $X = (X_i)_{i=1}^n$ is a sequence of *n* iid random variables distributed according to $\mathcal{L}(\theta)$, then the density of X is

$$f(x|\theta) = h(x_1)h(x_2)...h(x_n) \exp\left(\eta(\theta) \sum_{i=1}^n T(x_i) - nA(\eta)\right)$$

Example 2

$$T(X) = \sum_{i=1}^{n} X_i$$

Some basics ○○●○○○○	Phylodynamics modeling 00000	
Nice properties The sufficient statistic summ	narizes nicely all iid observations	

One can summarize all the information coming from an arbitrary amount of iid random variables $X = (X_i)_{i=1}^n$ with only a fixed number of values, through the sufficient statistic

$$T(X) = \sum_{i=1}^n T(X_i) \quad .$$

Indeed, if $\mathcal{L}(\theta)$ is a member of an exponential family, and if $X = (X_i)_{i=1}^n$ is a sequence of *n* iid random variables distributed according to $\mathcal{L}(\theta)$, then the density of X is

$$f(x|\theta) = h(x_1)h(x_2)...h(x_n) \exp\left(\eta(\theta) \sum_{i=1}^n T(x_i) - nA(\eta)\right)$$

Example 2

$$T(X) = \sum_{i=1}^{n} X_i$$

Some basics	Phylodynamics modeling 00000	
Nice properties The sufficient statistic summ	narizes nicely all iid observations	

One can summarize all the information coming from an arbitrary amount of iid random variables $X = (X_i)_{i=1}^n$ with only a fixed number of values, through the sufficient statistic

$$T(X) = \sum_{i=1}^n T(X_i)$$
.

Indeed, if $\mathcal{L}(\theta)$ is a member of an exponential family, and if $X = (X_i)_{i=1}^n$ is a sequence of *n* iid random variables distributed according to $\mathcal{L}(\theta)$, then the density of X is

$$f(x|\theta) = h(x_1)h(x_2)...h(x_n) \exp\left(\eta(\theta) \sum_{i=1}^n T(x_i) - nA(\eta)\right)$$

Example 2

$$T(X) = \sum_{i=1}^{n} X_i$$

Some basics	Phylodynamics modeling 00000	
Nice properties		

The sufficient statistic summarizes nicely all iid observations

Property 1

One can summarize all the information coming from an arbitrary amount of iid random variables $X = (X_i)_{i=1}^n$ with only a fixed number of values, through the sufficient statistic

$$T(X) = \sum_{i=1}^n T(X_i)$$
.

Indeed, if $\mathcal{L}(\theta)$ is a member of an exponential family, and if $X = (X_i)_{i=1}^n$ is a sequence of *n* iid random variables distributed according to $\mathcal{L}(\theta)$, then the density of X is

$$f(x|\theta) = h(x_1)h(x_2)...h(x_n) \exp\left(\eta(\theta) \sum_{i=1}^n T(x_i) - nA(\eta)\right)$$

Example 2

$$T(X) = \sum_{i=1}^{n} X_i$$

Some basics ○○O●○○○	Phylodynamics modeling 00000	
Nice properties The magic of the conjugate	prior	

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X | \eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by

Some basics	Phylodynamics modeling 00000	
Nice properties The magic of the conjugate	e prior	

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Some basics	Phylodynamics modeling 00000	
Nice properties The magic of the conjugate	e prior	

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

$$\begin{split} X|\eta \sim f_{\eta}, & \text{where } f_{\eta} \text{ belongs to an exponential family } \mathcal{F}(\eta) \\ \text{then there exists another exponential family } \mathcal{H} \text{ such that if } g \in \mathcal{H} \text{ and if} \\ \eta \sim g, & \text{the posterior is given by} \\ \eta|X \sim h, & \text{where } h \text{ belongs to the same family } \mathcal{H}. \end{split}$$

Indeed, we can even derive the density of this conjugate prior:

$$f(x|\eta) = h(x)e^{\eta^{t}T(x) - A(\eta)}$$
$$f(\eta|\chi,\nu) = p(\chi,\nu)e^{\eta\chi - \nu A(\eta)}$$

where χ, ν are hyperparameters.

One can directly check that the posterior is in the same family:

$$f(\eta|x, \chi, \nu) \propto h(x)e^{\eta T(x) - A(\eta)}p(\chi, \nu)e^{\eta \chi - \nu A(\eta)}$$
$$\propto e^{\eta(\chi + T(x)) - (\nu + 1)A(\eta)}$$

Some basics	Phylodynamics modeling 00000	
Nice properties The magic of the conjugate	e prior	

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Example 3

The exponential distribution is conjugate to a Gamma distribution.

Assume that
$$X|\lambda \sim \mathcal{E}(\lambda)$$

and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$
 $\implies \lambda|X, \alpha, \beta \sim \Gamma(\alpha + 1, \beta + X)$.

Some basics ○○○●○○○	Phylodynamics modeling 00000	
Nice properties The magic of the conjugate	prior	

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Example 3

The exponential distribution is conjugate to a Gamma distribution.

Assume that
$$X|\lambda \sim \mathcal{E}(\lambda)$$

and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$
 $\implies \lambda|X, \alpha, \beta \sim \Gamma(\alpha + 1, \beta + X)$.

Indeed, one can check the posterior density,

$$f(X|\lambda) = \lambda e^{-\lambda X},$$

$$f(\lambda|\alpha,\beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda}$$

$$\implies f(\lambda|x,\alpha,\beta) \propto \lambda^{\alpha-1+1} e^{-(\beta+X)\lambda}$$

Some basics ○○○○●○○	Phylodynamics modeling 00000	
A few discrete example The Poisson distribution	25	

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The conjugate prior is a Gamma distribution, with

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta)$$

 $\implies \lambda | \alpha, \beta, x \sim \Gamma(\alpha + x, \beta + 1) .$

Canonical form the probability mass function can be expressed as

$$f(x|\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda} = \frac{1}{x!}e^{x\ln\lambda - \lambda}$$

The natural parameter is $\eta(\lambda) = \ln \lambda$ and the sufficient statistic is T(x) = x.

Conjugate prior If $X|\lambda \sim \mathcal{P}(\lambda)$ and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$, we have $\begin{aligned} f(\lambda|\alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda} \\ f(\lambda|x) \propto \lambda^{\alpha-1+x} e^{-(\beta+1)\lambda} \\ \implies \lambda|x \sim \Gamma(\alpha + x, \beta + 1) \end{aligned}$

Some basics ○○○●●○○	Phylodynamics modeling 00000	
A few discrete exampl The Poisson distribution	es	

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The conjugate prior is a Gamma distribution, with

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta)$$

 $\implies \lambda | \alpha, \beta, x \sim \Gamma(\alpha + x, \beta + 1) .$

Canonical form the probability mass function can be expressed as

$$f(x|\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda} = \frac{1}{x!}e^{x\ln\lambda - \lambda}$$

The natural parameter is $\eta(\lambda) = \ln \lambda$ and the sufficient statistic is T(x) = x.

Conjugate prior If $X|\lambda \sim \mathcal{P}(\lambda)$ and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$, we have $f(\lambda|\alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda}$ $f(\lambda|x) \propto \lambda^{\alpha-1+x} e^{-(\beta+1)\lambda}$ $\implies \lambda|x \sim \Gamma(\alpha + x, \beta + 1)$

Some basics	Phylodynamics modeling 00000	
A few discrete exampl The Poisson distribution	es	

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The conjugate prior is a Gamma distribution, with

$$\lambda | lpha, eta \ \sim \Gamma(lpha, eta) \ \Longrightarrow \ \lambda | lpha, eta, x \ \sim \Gamma(lpha + x, eta + 1) \ .$$

Canonical form the probability mass function can be expressed as

$$f(x|\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda} = \frac{1}{x!}e^{x\ln\lambda-\lambda}$$

The natural parameter is $\eta(\lambda) = \ln \lambda$ and the sufficient statistic is T(x) = x.

Conjugate prior If $X|\lambda \sim \mathcal{P}(\lambda)$ and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$, we have $f(\lambda|\alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda}$ $f(\lambda|x) \propto \lambda^{\alpha-1+x} e^{-(\beta+1)\lambda}$ $\implies \lambda|x \sim \Gamma(\alpha + x, \beta + 1)$

Some basics ○○○●●○○	Phylodynamics modeling 00000	
A few discrete exampl The Poisson distribution	es	

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The conjugate prior is a Gamma distribution, with

$$\lambda | lpha, eta \ \sim \Gamma(lpha, eta) \ \Longrightarrow \ \lambda | lpha, eta, x \ \sim \Gamma(lpha + x, eta + 1) \ .$$

Canonical form the probability mass function can be expressed as

$$f(x|\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda} = \frac{1}{x!}e^{x\ln\lambda-\lambda}$$

The natural parameter is $\eta(\lambda) = \ln \lambda$ and the sufficient statistic is T(x) = x.

Conjugate prior If $X|\lambda \sim \mathcal{P}(\lambda)$ and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$, we have $\begin{aligned} f(\lambda|\alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda} \\ f(\lambda|x) \propto \lambda^{\alpha-1+x} e^{-(\beta+1)\lambda} \\ &\implies \lambda|x \sim \Gamma(\alpha+x, \beta+1) \end{aligned}$

Some basics ○○○●●○○	Phylodynamics modeling 00000	
A few discrete exampl The Poisson distribution	es	

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The conjugate prior is a Gamma distribution, with

$$\lambda | lpha, eta \ \sim \Gamma(lpha, eta) \ \Longrightarrow \ \lambda | lpha, eta, x \ \sim \Gamma(lpha + x, eta + 1) \ .$$

Canonical form the probability mass function can be expressed as

$$f(x|\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda} = \frac{1}{x!}e^{x\ln\lambda-\lambda}$$

The natural parameter is $\eta(\lambda) = \ln \lambda$ and the sufficient statistic is T(x) = x.

Conjugate prior If $X|\lambda \sim \mathcal{P}(\lambda)$ and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$, we have $\begin{aligned} f(\lambda|\alpha, \beta) \propto \lambda^{\alpha-1} e^{-\beta\lambda} \\ f(\lambda|x) \propto \lambda^{\alpha-1+x} e^{-(\beta+1)\lambda} \\ \implies \lambda|x \sim \Gamma(\alpha + x, \beta + 1) \end{aligned}$

Some basics	Phylodynamics modeling 00000	

A few discrete examples Distributions related to Bernoulli experiments

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{n \in \{0,1\}}$, i.e. number of successes before finding r failur.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|lpha, eta \sim$ Beta(lpha, eta), then,

$$\begin{split} &\text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \; \text{Beta}(\alpha + 1, \beta + n_f) \\ &\text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ &\text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + r) \end{split}$$

Interpretation $\alpha - 1$ is the total number of successes, $\beta - 1$ is the total number of failures.

Some basics	Phylodynamics modeling	Trait evolution modeling	
A few discrete example	es		

A rew discrete examples Distributions related to Bernoulli experiments

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{p \in \{0,1\}}$, i.e. number of successes before finding r failures.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|\alpha, \beta \sim Beta(\alpha, \beta)$, then,

$$\begin{split} &\text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \; \text{Beta}(\alpha + 1, \beta + n_f) \\ &\text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ &\text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + r) \end{split}$$

Interpretation $\alpha - 1$ is the total number of successes, $\beta - 1$ is the total number of failures.

Some basics ○○○○○●○	Phylodynamics modeling 00000	
A few discrete example	es	

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{p \in \{0,1\}}$, i.e. number of successes before finding r failures.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|lpha, eta \sim$ Beta(lpha, eta), then,

$$\begin{array}{l} \text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \; \text{Beta}(\alpha + 1, \beta + n_f) \\ \text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ \text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + r) \end{array}$$

Interpretation $\alpha - 1$ is the total number of successes, $\beta - 1$ is the total number of failures.

Some basics ○○○○○●○	Phylodynamics modeling 00000	
A few discrete example	es	

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{p \in \{0,1\}}$, i.e. number of successes before finding r failures.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|\alpha, \beta \sim \text{Beta}(\alpha, \beta)$, then,

$$\begin{split} &\text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \; \mathsf{Beta}(\alpha + 1, \beta + n_f) \\ &\text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \; \mathsf{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ &\text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \; \mathsf{Beta}(\alpha + n_s, \beta + r) \end{split}$$

Interpretation $\alpha - 1$ is the total number of successes, $\beta - 1$ is the total number of failures.

Some basics ○○○○○●○	Phylodynamics modeling 00000	
A few discrete example	es	

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{p \in \{0,1\}}$, i.e. number of successes before finding r failures.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|\alpha, \beta \sim \text{Beta}(\alpha, \beta)$, then,

$$\begin{split} &\text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \; \text{Beta}(\alpha + 1, \beta + n_f) \\ &\text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ &\text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \; \text{Beta}(\alpha + n_s, \beta + r) \end{split}$$

Interpretation $\alpha-1$ is the total number of successes, $\beta-1$ is the total number of failures.

Some basics ○○○○○●○	Phylodynamics modeling 00000	
A few discrete example	es	

Example 5

The following are all exponential families, conjugate to a Beta prior: Geometric distributions $(\mathcal{G}(p))_{p \in \{0,1\}}$, i.e. number of failures before the first success. Binomial distributions $(\mathcal{B}(n, p))_{p \in \{0,1\}}$, i.e. number of successes in n successive experiments. Negative binomial distributions $(\mathcal{NB}(r, p))_{p \in \{0,1\}}$, i.e. number of successes before finding r failures.

Canonical form we can express these pmfs for the number of successes n_s and number of failures n_f ,

$$\begin{split} f_1(n_f|p) &= (1-p)^{n_f} p = e^{n_f \ln(1-p) + \ln p}, \\ f_2(n_s|p) &= \binom{n}{n_s} p^{n_s} (1-p)^{n-n_s} = \binom{n}{n_s} e^{n_s \ln \frac{p}{1-p} + n \ln(1-p)}, \\ f_3(n_s|p) &= \binom{n_s + r - 1}{n_s} (1-p)^r p^{n_s} = \binom{n_s + r - 1}{n_s} e^{n_s \ln p + r \ln(1-p)} \end{split}$$

Conjugate prior Assume that $p|\alpha, \beta \sim \text{Beta}(\alpha, \beta)$, then,

$$\begin{array}{l} \text{if } n_f | p \sim \mathcal{G}(p) \implies p | n_f, \alpha, \beta \sim \ \text{Beta}(\alpha + 1, \beta + n_f) \\ \text{if } n_s | p \sim \mathcal{B}(n, p) \implies p | n_s, \alpha, \beta \sim \ \text{Beta}(\alpha + n_s, \beta + (n - n_s)) \\ \text{if } n_s | p \sim \mathcal{NB}(r, p) \implies p | n_s, \alpha, \beta \sim \ \text{Beta}(\alpha + n_s, \beta + r) \end{array}$$

Interpretation $\alpha - 1$ is the total number of successes, $\beta - 1$ is the total number of failures.

Some basics	Phylodynamics modeling 00000	
A few continuous exan	nples	

The 3 family of Gaussian distributions with one parameter fixed or not, i.e. $(\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}} (\mathcal{N}(\mu, \sigma^2))_{\sigma^2 \in \mathbb{R}^+} (\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+}$, are all exponential families.

Canonical forms are a bit messier on this example, but they respectively lead to,

$$\begin{split} \eta(\mu) &= (\mu/\sigma^2) \text{ and } T(x) = x, \\ \eta(\sigma^2) &= -1/(2\sigma^2) \text{ and } T(x) = x^2 - 2\mu x, \\ \eta(\mu, \sigma^2) &= \left(\mu/\sigma^2, -1/(2\sigma^2)\right) \text{ and } T(x) = (x, x^2) \end{split}$$

Conjugate prior they are respectively conjugate to the following priors:

$$\begin{split} & \mu \sim \mathcal{N}(\mu_0, \sigma_0^2), \\ & \sigma^2 \sim \Gamma^{-1}(\alpha, \beta), \\ & (\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta) \end{split}$$

Multivariate normal Similar results still hold in higher dimension.

Some basics		
000000		
A few continuous exan The Gaussian distribution	nples	

The 3 family of Gaussian distributions with one parameter fixed or not, i.e. $(\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}} (\mathcal{N}(\mu, \sigma^2))_{\sigma^2 \in \mathbb{R}^+} (\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+}$, are all exponential families.

Canonical forms are a bit messier on this example, but they respectively lead to,

$$\begin{split} &\eta(\mu) = (\mu/\sigma^2) \text{ and } T(x) = x, \\ &\eta(\sigma^2) = -1/(2\sigma^2) \text{ and } T(x) = x^2 - 2\mu x, \\ &\eta(\mu,\sigma^2) = \left(\mu/\sigma^2, -1/(2\sigma^2)\right) \text{ and } T(x) = (x,x^2) \end{split}$$

Conjugate prior they are respectively conjugate to the following priors:

$$\begin{split} & \mu \sim \mathcal{N}(\mu_0, \sigma_0^2), \\ & \sigma^2 \sim \Gamma^{-1}(\alpha, \beta), \\ & (\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta) \end{split}$$

Multivariate normal Similar results still hold in higher dimension.
Some basics		
000000		
A few continuous exan The Gaussian distribution	nples	

Example 6

The 3 family of Gaussian distributions with one parameter fixed or not, i.e. $(\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}} (\mathcal{N}(\mu, \sigma^2))_{\sigma^2 \in \mathbb{R}^+} (\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+}$, are all exponential families.

Canonical forms are a bit messier on this example, but they respectively lead to,

$$\begin{split} &\eta(\mu) = (\mu/\sigma^2) \text{ and } T(x) = x, \\ &\eta(\sigma^2) = -1/(2\sigma^2) \text{ and } T(x) = x^2 - 2\mu x, \\ &\eta(\mu,\sigma^2) = \left(\mu/\sigma^2, -1/(2\sigma^2)\right) \text{ and } T(x) = (x,x^2) \end{split}$$

Conjugate prior they are respectively conjugate to the following priors:

$$\begin{split} & \mu \sim \mathcal{N}(\mu_0, \sigma_0^2), \\ & \sigma^2 \sim \Gamma^{-1}(\alpha, \beta), \\ & (\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta) \end{split}$$

Multivariate normal Similar results still hold in higher dimension.

Some basics		
000000		
A few continuous exan	nples	

Example 6

The 3 family of Gaussian distributions with one parameter fixed or not, i.e. $(\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}} (\mathcal{N}(\mu, \sigma^2))_{\sigma^2 \in \mathbb{R}^+} (\mathcal{N}(\mu, \sigma^2))_{\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+}$, are all exponential families.

Canonical forms are a bit messier on this example, but they respectively lead to,

$$\begin{split} &\eta(\mu) = (\mu/\sigma^2) \text{ and } T(x) = x, \\ &\eta(\sigma^2) = -1/(2\sigma^2) \text{ and } T(x) = x^2 - 2\mu x, \\ &\eta(\mu,\sigma^2) = \left(\mu/\sigma^2, -1/(2\sigma^2)\right) \text{ and } T(x) = (x,x^2) \end{split}$$

Conjugate prior they are respectively conjugate to the following priors:

$$\begin{split} & \mu \sim \mathcal{N}(\mu_0, \sigma_0^2), \\ & \sigma^2 \sim \Gamma^{-1}(\alpha, \beta), \\ & (\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta) \end{split}$$

Multivariate normal Similar results still hold in higher dimension.

Trait evolution modeling

Sketch of the presentation

Some basics

Definition Nice properties A few discrete examples A few continuous examples

Phylodynamics modeling

Kingman's coalescent Yule (pure birth) tree What about birth-death reconstructed trees ?

Trait evolution modeling

Continuous trait evolution with BM Molecular evolution

Conclusion

Some basics 0000000	Phylodynamics modeling ○●○○○	
Kingman's coalescent		

- Let \mathcal{T} be a tree with *n* leaves,
- Let $T_i :=$ time elapsed to go from *i* to i 1 lineages,

then ${\mathcal T}$ is said to follow a Kingman coalescent with parameter heta if its density is,

$$f(\mathcal{T}|\theta) = \prod_{i=2}^{n} \theta e^{-\theta \binom{i}{2}T_i} = \exp\left(-\theta \sum_{i=2}^{n} \binom{i}{2}T_i + (n-1)\ln\theta\right)$$

Exponential family with natural parameter $-\theta$ and sufficient statistic $\sum_{i=2}^{n} {i \choose 2} T_i$. Conjugate prior Assume $\theta \sim \Gamma(\alpha, \beta)$, then,

$$\begin{split} f(\theta | \mathcal{T}, \alpha, \beta) &\propto \theta^{\alpha - 1} e^{-\beta \theta} \theta^{n - 1} e^{-\theta \sum_{i=2}^{n} \tau_i} \\ &\propto \theta^{\alpha - 1 + (n - 1)} e^{-\theta \left(\beta + \sum_{i=2}^{n} {i \choose 2} \tau_i\right)} \end{split}$$

which means that $\theta | \mathcal{T}, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \ \beta + \sum_{i=2}^{n} {i \choose 2} T_i\right).$

Some basics	Phylodynamics modeling	Trait evolution modeling	g Conclus
000000	0000	00000	
Kingman's coalescent			
\blacktriangleright Let ${\mathcal T}$ be a tree wit	h <i>n</i> leaves,	Г	т .
\blacktriangleright Let $T_i :=$ time elaps	sed to go from i to $i-1$ lin	neages,	Щ.

then ${\mathcal T}$ is said to follow a Kingman coalescent with parameter θ if its density is,

$$f(\mathcal{T}|\theta) = \prod_{i=2}^{n} \theta e^{-\theta \binom{i}{2}T_{i}} = \exp\left(-\theta \sum_{i=2}^{n} \binom{i}{2}T_{i} + (n-1)\ln\theta\right)$$

Exponential family with natural parameter $-\theta$ and sufficient statistic $\sum_{i=2}^{n} {i \choose 2} T_i$. Conjugate prior Assume $\theta \sim \Gamma(\alpha, \beta)$, then,

$$\begin{split} f(\theta | \mathcal{T}, \alpha, \beta) &\propto \theta^{\alpha - 1} e^{-\beta \theta} \theta^{n - 1} e^{-\theta \sum_{i=2}^{n} \tau_i} \\ &\propto \theta^{\alpha - 1 + (n - 1)} e^{-\theta \left(\beta + \sum_{i=2}^{n} \binom{i}{2} \tau_i\right)} \end{split}$$

which means that $\theta | \mathcal{T}, \alpha, \beta \sim \Gamma \left(\alpha + n - 1, \ \beta + \sum_{i=2}^{n} {i \choose 2} \mathcal{T}_{i} \right).$

Some basics 0000000	Phylodynamics modeling	Trait evolution modeling 00000	Conclus
Kingman's coalescent			
\blacktriangleright Let ${\mathcal T}$ be a tree wit	h <i>n</i> leaves,	Г. т.	

▶ Let T_i := time elapsed to go from i to i − 1 lineages,

then ${\mathcal T}$ is said to follow a Kingman coalescent with parameter θ if its density is,

$$f(\mathcal{T}|\theta) = \prod_{i=2}^{n} \theta e^{-\theta \binom{i}{2} T_i} = \exp\left(-\theta \sum_{i=2}^{n} \binom{i}{2} T_i + (n-1) \ln \theta\right)$$

Exponential family with natural parameter $-\theta$ and sufficient statistic $\sum_{i=2}^{n} {i \choose 2} T_i$.

Conjugate prior Assume $heta \sim \mathsf{\Gamma}(lpha,eta)$, then,

$$\begin{split} f(\theta | \mathcal{T}, \alpha, \beta) &\propto \theta^{\alpha - 1} e^{-\beta \theta} \theta^{n - 1} e^{-\theta \sum_{i=2}^{n} \tau_i} \\ &\propto \theta^{\alpha - 1 + (n - 1)} e^{-\theta \left(\beta + \sum_{i=2}^{n} {i \choose 2} \tau_i\right)} \end{split}$$

which means that $\theta | \mathcal{T}, \alpha, \beta \sim \Gamma \left(\alpha + n - 1, \ \beta + \sum_{i=2}^{n} {i \choose 2} \mathcal{T}_{i} \right).$

Some basics 0000000	Phylodynamics modeling	Trait evolution modeling 00000	Conclusi
Kingman's coalescent			
• Let \mathcal{T} be a tree w	th <i>n</i> leaves.	t	

Let $T_i :=$ time elapsed to go from *i* to i - 1 lineages,

then ${\mathcal T}$ is said to follow a Kingman coalescent with parameter θ if its density is,

$$f(\mathcal{T}|\theta) = \prod_{i=2}^{n} \theta e^{-\theta \binom{i}{2}T_{i}} = \exp\left(-\theta \sum_{i=2}^{n} \binom{i}{2}T_{i} + (n-1)\ln\theta\right)$$

Exponential family with natural parameter $-\theta$ and sufficient statistic $\sum_{i=2}^{n} {i \choose 2} T_i$. Conjugate prior Assume $\theta \sim \Gamma(\alpha, \beta)$, then,

$$f(\theta|\mathcal{T}, \alpha, \beta) \propto \theta^{\alpha-1} e^{-\beta\theta} \theta^{n-1} e^{-\theta} \sum_{i=2}^{n} \tau_i$$
$$\propto \theta^{\alpha-1+(n-1)} e^{-\theta} \left(\beta + \sum_{i=2}^{n} {i \choose 2} \tau_i\right)$$

which means that $\theta | \mathcal{T}, \alpha, \beta \sim \Gamma \left(\alpha + n - 1, \ \beta + \sum_{i=2}^{n} {i \choose 2} \mathcal{T}_{i} \right).$

Some basics	Phylodynamics modeling ○●○○○	Trait evolution modeling	Conclus
Kingman's coalescent			
• Let \mathcal{T} be a tree wi	th <i>n</i> leaves.		

Let $T_i :=$ time elapsed to go from *i* to i - 1 lineages,

then ${\mathcal T}$ is said to follow a Kingman coalescent with parameter θ if its density is,

$$f(\mathcal{T}|\theta) = \prod_{i=2}^{n} \theta e^{-\theta \binom{i}{2}T_{i}} = \exp\left(-\theta \sum_{i=2}^{n} \binom{i}{2}T_{i} + (n-1)\ln\theta\right)$$

Exponential family with natural parameter $-\theta$ and sufficient statistic $\sum_{i=2}^{n} {i \choose 2} T_i$. Conjugate prior Assume $\theta \sim \Gamma(\alpha, \beta)$, then,

$$\begin{split} f(\theta | \mathcal{T}, \alpha, \beta) &\propto \theta^{\alpha - 1} e^{-\beta \theta} \theta^{n - 1} e^{-\theta} \sum_{i = 2}^{n} \tau_i \\ &\propto \theta^{\alpha - 1 + (n - 1)} e^{-\theta} \Big(\beta + \sum_{i = 2}^{n} {i \choose 2} \tau_i \Big) \end{split}$$

which means that $\theta | \mathcal{T}, \alpha, \beta \sim \Gamma \left(\alpha + n - 1, \ \beta + \sum_{i=2}^{n} {i \choose 2} \mathcal{T}_{i} \right).$

000	0000

Phylodynamics modeling

Trait evolution modeling

Conclusion

Yule (pure birth) tree

- Let T be a tree with n leaves,
- Let x_i be the depth of leaf i,

then \mathcal{T} is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$.

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta) \implies \lambda | x, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \beta + \sum_{i=0}^{n-1} x_i\right)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Some basics 0000000	Phylodynamics modeling ○○●○○	Trait evolution modeling 00000	
Yule (pure birth) tree			
\blacktriangleright Let ${\mathcal T}$ be a tree wit	th <i>n</i> leaves,	1	

Let x_i be the depth of leaf i,

then \mathcal{T} is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$.

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta) \implies \lambda | x, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \beta + \sum_{i=0}^{n-1} x_i\right)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Some basics 0000000	Phylodynamics modeling ○○●○○	Trait evolution modeling 00000	
Yule (pure birth) tree			
\blacktriangleright Let \mathcal{T} be a tree wi	th n leaves	↑ □ ↑	

Let x_i be the depth of leaf i,

then ${\mathcal T}$ is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$.

Conjugate prior It is thus again conjugate to a Gamma distribution.

$$\lambda | lpha, eta \sim \Gamma(lpha, eta) \implies \lambda | x, lpha, eta \sim \Gamma\left(lpha + n - 1, eta + \sum_{i=0}^{n-1} x_i
ight)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Some basics 0000000	Phylodynamics modeling ○○●○○	Trait evolution modeling 00000	
Yule (pure birth) tree			
• Let \mathcal{T} be a tree with	th n leaves.	↑ <u> </u>	

Let x_i be the depth of leaf i,

then \mathcal{T} is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$. Conjugate prior It is thus again conjugate to a Gamma distribution.

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta) \implies \lambda | x, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \beta + \sum_{i=0}^{n-1} x_i\right)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Some basics 0000000	Phylodynamics modeling	
Yule (pure birth) tree		

- Let T be a tree with n leaves,
- Let x_i be the depth of leaf i,

then \mathcal{T} is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$. Conjugate prior It is thus again conjugate to a Gamma distribution.

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta) \implies \lambda | x, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \beta + \sum_{i=0}^{n-1} x_i\right)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Some basics 0000000	Phylodynamics modeling ○○●○○	Trait evolution modeling 00000	
Yule (pure birth) tree			
• Let \mathcal{T} be a tree with	h n leaves.	↑ ↑]	

Let x_i be the depth of leaf i,

then \mathcal{T} is said to be a Yule tree if it has the following density,

$$f(\mathcal{T}|\lambda) \propto \lambda^{n-1} \prod_{i=0}^{n-1} e^{-\lambda x_i} \propto \exp\left(-\lambda \sum_{i=0}^{n-1} x_i + (n-1) \ln \lambda\right)$$

Exponential family with natural parameter $-\lambda$ and sufficient statistic $\sum_{i=0}^{n-1} x_i$. Conjugate prior It is thus again conjugate to a Gamma distribution.

$$\lambda | \alpha, \beta \sim \Gamma(\alpha, \beta) \implies \lambda | x, \alpha, \beta \sim \Gamma\left(\alpha + n - 1, \beta + \sum_{i=0}^{n-1} x_i\right)$$

In the literature I don't see much statistical work in phylogenetics based on pure birth anymore.

Phylodynamics modeling	Trait evolution modeling	
00000		

The density of the reconstructed tree is given by

$$f(\mathcal{T}|\lambda,\mu) = \lambda^{n-1} \prod_{i=0}^{n-1} p(x_i|\lambda,\mu)$$

where,

$$p(x_i|\lambda,\mu) = \left(\frac{\lambda-\mu}{\lambda-\mu e^{-(\lambda-\mu)x_i}}\right)^2 e^{-(\lambda-\mu)x_i}$$
$$= \exp\left(-(\lambda-\mu)x_i + 2\ln(\lambda-\mu) - 2\ln(\lambda-\mu e^{-(\lambda-\mu)x_i})\right)$$

Not an exponential family since we cannot factorize $\eta(\theta)T(x)$ within the exponential in function p. Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with $\lambda=\mu$, we have a different expression.

$$p(x_i|\lambda) = (\lambda x_i + 1)^{-2} = e^{-2\ln(\lambda x_i + 1)}$$

But this still does not define an exponential family.

Phylodynamics modeling	Trait evolution modeling	
00000		

The density of the reconstructed tree is given by

$$f(\mathcal{T}|\lambda,\mu) = \lambda^{n-1} \prod_{i=0}^{n-1} p(x_i|\lambda,\mu)$$

where,

$$p(x_i|\lambda,\mu) = \left(\frac{\lambda-\mu}{\lambda-\mu e^{-(\lambda-\mu)x_i}}\right)^2 e^{-(\lambda-\mu)x_i}$$
$$= \exp\left(-(\lambda-\mu)x_i + 2\ln(\lambda-\mu) - 2\ln(\lambda-\mu e^{-(\lambda-\mu)x_i})\right)$$

Not an exponential family since we cannot factorize $\eta(\theta)T(x)$ within the exponential in function p.

Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with $\lambda=\mu$, we have a different expression.

$$p(x_i|\lambda) = (\lambda x_i + 1)^{-2} = e^{-2\ln(\lambda x_i + 1)}$$

But this still does not define an exponential family.

Phylodynamics modeling	Trait evolution modeling	
00000		

The density of the reconstructed tree is given by

$$f(\mathcal{T}|\lambda,\mu) = \lambda^{n-1} \prod_{i=0}^{n-1} p(x_i|\lambda,\mu)$$

where,

$$p(x_i|\lambda,\mu) = \left(\frac{\lambda-\mu}{\lambda-\mu e^{-(\lambda-\mu)x_i}}\right)^2 e^{-(\lambda-\mu)x_i}$$
$$= \exp\left(-(\lambda-\mu)x_i + 2\ln(\lambda-\mu) - 2\ln(\lambda-\mu e^{-(\lambda-\mu)x_i})\right)$$

Not an exponential family since we cannot factorize $\eta(\theta)T(x)$ within the exponential in function *p*. Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with $\lambda=\mu$, we have a different expression.

$$p(x_i|\lambda) = (\lambda x_i + 1)^{-2} = e^{-2\ln(\lambda x_i + 1)}$$

But this still does not define an exponential family.

Phylodynamics modeling	Trait evolution modeling	
00000		

The density of the reconstructed tree is given by

$$f(\mathcal{T}|\lambda,\mu) = \lambda^{n-1} \prod_{i=0}^{n-1} p(x_i|\lambda,\mu)$$

where,

$$p(x_i|\lambda,\mu) = \left(\frac{\lambda-\mu}{\lambda-\mu e^{-(\lambda-\mu)x_i}}\right)^2 e^{-(\lambda-\mu)x_i}$$
$$= \exp\left(-(\lambda-\mu)x_i + 2\ln(\lambda-\mu) - 2\ln(\lambda-\mu e^{-(\lambda-\mu)x_i})\right)$$

Not an exponential family since we cannot factorize $\eta(\theta)T(x)$ within the exponential in function *p*. Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with $\lambda = \mu$, we have a different expression.

$$p(x_i|\lambda) = (\lambda x_i + 1)^{-2} = e^{-2\ln(\lambda x_i + 1)}$$

But this still does not define an exponential family.

Phylodynamics modeling	Trait evolution modeling	
00000		

The density of the reconstructed tree is given by

$$f(\mathcal{T}|\lambda,\mu) = \lambda^{n-1} \prod_{i=0}^{n-1} p(x_i|\lambda,\mu)$$

where,

$$p(x_i|\lambda,\mu) = \left(\frac{\lambda-\mu}{\lambda-\mu e^{-(\lambda-\mu)x_i}}\right)^2 e^{-(\lambda-\mu)x_i}$$
$$= \exp\left(-(\lambda-\mu)x_i + 2\ln(\lambda-\mu) - 2\ln(\lambda-\mu e^{-(\lambda-\mu)x_i})\right)$$

Not an exponential family since we cannot factorize $\eta(\theta)T(x)$ within the exponential in function *p*. Conjugate prior it thus seems very optimistic to find an interesting conjugate prior.

Special cases for the critical process with $\lambda = \mu$, we have a different expression.

$$p(x_i|\lambda) = (\lambda x_i + 1)^{-2} = e^{-2\ln(\lambda x_i + 1)}$$

But this still does not define an exponential family.

Some basics 0000000	Phylodynamics modeling ○○○○●		
What about birth-dea The continuously observed	th reconstructed trees ? process, see Crawford et al. (201	8)	

For any birth-death process parametrized with birth/death rates (λ_k, μ_k) in state k,

- let U_k and D_k be the total number of birth/death events from state k,
- let T_k be the total time spent in state k,

then the density of the continuously observed process is,

$$\mathbb{P}(X|(\lambda_k,\mu_k)) = \prod_{k=0}^{\infty} \lambda_k^{U_k} \mu_k^{D_k} e^{-(\lambda_k + \mu_k)T_k}$$

Exponential family with sufficient statistics (U_k, D_k, T_k) .

Some basics 0000000	Phylodynamics modeling ○○○○●	
What about birth-dea The continuously observed	th reconstructed trees ? process, see Crawford et al. (2018)	

For any birth-death process parametrized with birth/death rates (λ_k, μ_k) in state k,

- let U_k and D_k be the total number of birth/death events from state k,
- let T_k be the total time spent in state k,

then the density of the continuously observed process is,

$$\mathbb{P}(X|(\lambda_k,\mu_k)) = \prod_{k=0}^{\infty} \lambda_k^{U_k} \mu_k^{D_k} e^{-(\lambda_k + \mu_k)T_k}$$

Exponential family with sufficient statistics (U_k, D_k, T_k) .

Phylodynamics modeling	
00000	

What about birth-death reconstructed trees ? The continuously observed process, see Crawford et al. (2018)

For the linear case it simplifies to,

$$\mathbb{P}(X|\lambda,\mu) = \prod_{k=0}^{\infty} (k\lambda)^{U_k} (k\mu)^{D_k} e^{-k(\lambda+\mu)T_k}$$

= $\exp\left(\sum_k (U_k + D_k) lnk + \sum_k U_k \ln \lambda + \sum_k D_k \ln \mu - (\lambda+\mu) \sum_k kT_k\right)$
 $\propto \exp\left((\ln \lambda, \ln \mu, \lambda + \mu)^t (U, D, T_{part})\right)$

Exponential family with sufficient statistic (U, D, T_{part}) ,

where U, D are the number of birth and death events, and T_{part} is the total particle time, i.e. $\sum_k kT_k$.

Conjugate prior Assume that $\lambda,\mu\sim \mathsf{\Gamma}(lpha,\gamma)\otimes\mathsf{\Gamma}(eta,\gamma)$, i.e.

$$f(\lambda,\mu) \propto \lambda^{lpha-1} e^{-\gamma\lambda} \mu^{eta-1} e^{-\gamma\mu}$$

Then we get,

$$p(\lambda,\mu|X) \propto \lambda^{\alpha-1}\mu^{\beta-1}e^{-\gamma(\lambda+\mu)}\lambda^{U}\mu^{D}e^{-(\lambda+\mu)T_{part}}$$
$$\propto \lambda^{\alpha-1+U}\mu^{\beta-1+D}e^{-(\gamma+T_{part})(\lambda+\mu)}$$

meaning that $\lambda, \mu | X \sim \Gamma(lpha + U, \gamma + T_{\mathsf{part}}) \otimes \Gamma(eta + D, \gamma + T_{\mathsf{part}}).$

Phylodynamics modeling	
00000	

What about birth-death reconstructed trees ? The continuously observed process, see Crawford et al. (2018)

For the linear case it simplifies to,

$$\mathbb{P}(X|\lambda,\mu) = \prod_{k=0}^{\infty} (k\lambda)^{U_k} (k\mu)^{D_k} e^{-k(\lambda+\mu)T_k}$$
$$= \exp\left(\sum_k (U_k + D_k) \ln k + \sum_k U_k \ln \lambda + \sum_k D_k \ln \mu - (\lambda+\mu) \sum_k kT_k\right)$$
$$\propto \exp\left((\ln \lambda, \ln \mu, \lambda + \mu)^t (U, D, T_{part})\right)$$

Exponential family with sufficient statistic (U, D, T_{part}) , where U, D are the number of birth and death events, and T_{part} is the total particle time, i.e. $\sum_{k} kT_{k}$.

Conjugate prior Assume that $\lambda,\mu\sim \mathsf{\Gamma}(lpha,\gamma)\otimes\mathsf{\Gamma}(eta,\gamma)$, i.e.

$$f(\lambda,\mu) \propto \lambda^{lpha-1} e^{-\gamma\lambda} \mu^{eta-1} e^{-\gamma\mu}$$

Then we get,

$$\begin{split} p(\lambda,\mu|X) &\propto \lambda^{\alpha-1} \mu^{\beta-1} \mathrm{e}^{-\gamma(\lambda+\mu)} \lambda^{\mathcal{U}} \mu^{D} \mathrm{e}^{-(\lambda+\mu)T_{part}} \\ &\propto \lambda^{\alpha-1+\mathcal{U}} \mu^{\beta-1+D} \mathrm{e}^{-(\gamma+T_{part})(\lambda+\mu)} \end{split}$$

meaning that $\lambda, \mu | X \sim \Gamma \left(lpha + U, \gamma + \mathcal{T}_{\mathsf{part}}
ight) \otimes \Gamma \left(eta + D, \gamma + \mathcal{T}_{\mathsf{part}}
ight).$

Phylodynamics modeling	
00000	

What about birth-death reconstructed trees ? The continuously observed process, see Crawford et al. (2018)

For the linear case it simplifies to,

$$\mathbb{P}(X|\lambda,\mu) = \prod_{k=0}^{\infty} (k\lambda)^{U_k} (k\mu)^{D_k} e^{-k(\lambda+\mu)T_k}$$
$$= \exp\left(\sum_k (U_k + D_k) \ln k + \sum_k U_k \ln \lambda + \sum_k D_k \ln \mu - (\lambda+\mu) \sum_k kT_k\right)$$
$$\propto \exp\left((\ln \lambda, \ln \mu, \lambda + \mu)^t (U, D, T_{part})\right)$$

Exponential family with sufficient statistic (U, D, T_{part}) ,

where U, D are the number of birth and death events, and T_{part} is the total particle time, i.e. $\sum_{k} kT_{k}$. Conjugate prior Assume that $\lambda, \mu \sim \Gamma(\alpha, \gamma) \otimes \Gamma(\beta, \gamma)$, i.e.

$$f(\lambda,\mu) \propto \lambda^{\alpha-1} e^{-\gamma\lambda} \mu^{\beta-1} e^{-\gamma\mu}$$

Then we get,

$$\begin{split} p(\lambda,\mu|X) \propto \lambda^{\alpha-1}\mu^{\beta-1} \mathrm{e}^{-\gamma(\lambda+\mu)}\lambda^{U}\mu^{D} \mathrm{e}^{-(\lambda+\mu)T_{part}} \\ \propto \lambda^{\alpha-1+U}\mu^{\beta-1+D} \mathrm{e}^{-(\gamma+T_{part})(\lambda+\mu)} \end{split}$$
 meaning that $\lambda,\mu|X \sim \Gamma \left(\alpha+U,\gamma+T_{part}\right) \otimes \Gamma \left(\beta+D,\gamma+T_{part}\right). \end{split}$

Son OO	ne basics 100000	Phylodynamics modeling 00000	Trait evolution modeling ●○○○○	
Sk	etch of the preser	itation		
	Some basics Definition Nice properti A few discret A few continu	es e examples ious examples		
	Phylodynamics n Kingman's cc Yule (pure bi What about l	nodeling alescent th) tree pirth-death reconstructed trees ?		
	Trait evolution m Continuous tr Molecular evo	odeling ait evolution with BM Jution		

Conclusion

Continuous trait 6	evolution with RM		
		0000	
	Phylodynamics modeling	Trait evolution modeling	

- Let \mathcal{T} be a tree with *n* leaves,
- let t_{k,l} denote the coalescence times between two leaves k, l,

then a Brownian Motion with initial (root) value μ and infinitesimal variance σ^2 has the following tip distribution,

$$(X_f) \sim \mathcal{N}_n\left(\mu V, \sigma^2 \Sigma_T\right)$$
 where $(\Sigma_T)_{k,l} = t_{k,l}$ and $V = (1, 1, ..., 1).$

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

$$(\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)$$

 $(\mu, \sigma^2)|(X_f) \sim \mathcal{N}\Gamma^{-1}(.)$

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017).

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○●○○○	
-			

- Let \mathcal{T} be a tree with *n* leaves,
- let $t_{k,I}$ denote the coalescence times between two leaves k, I,

then a Brownian Motion with initial (root) value μ and infinitesimal variance σ^2 has the following tip distribution,

$$(X_f) \sim \mathcal{N}_n\left(\mu V, \sigma^2 \Sigma_T\right)$$
 where $(\Sigma_T)_{k,l} = t_{k,l}$ and $V = (1, 1, ..., 1)$.

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

$$(\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)$$

 $(\mu, \sigma^2)|(X_f) \sim \mathcal{N}\Gamma^{-1}(.)$

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017).

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○●○○○	

- Let \mathcal{T} be a tree with *n* leaves,
- let t_{k,I} denote the coalescence times between two leaves k, I,

then a Brownian Motion with initial (root) value μ and infinitesimal variance σ^2 has the following tip distribution,

$$(X_f) \sim \mathcal{N}_n\left(\mu V, \sigma^2 \Sigma_T\right)$$
 where $(\Sigma_T)_{k,l} = t_{k,l}$ and $V = (1, 1, ..., 1)$.

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

$$(\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)$$

 $(\mu, \sigma^2)|(X_f) \sim \mathcal{N}\Gamma^{-1}(.)$

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017).

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○●○○○	

- ▶ Let *T* be a tree with *n* leaves,
- let t_{k,l} denote the coalescence times between two leaves k, l,

then a Brownian Motion with initial (root) value μ and infinitesimal variance σ^2 has the following tip distribution,

$$(X_f) \sim \mathcal{N}_n\left(\mu V, \sigma^2 \Sigma_T\right)$$
 where $(\Sigma_T)_{k,l} = t_{k,l}$ and $V = (1, 1, ..., 1)$.

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

$$(\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)$$

 $(\mu, \sigma^2)|(X_f) \sim \mathcal{N}\Gamma^{-1}(.)$

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017). With multiple traits evolving jointly along the tree, the conjugate prior to a multivariate normal distribution is called *Inverse-Wishart*.

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○●○○○	

- Let \mathcal{T} be a tree with *n* leaves,
- let $t_{k,I}$ denote the coalescence times between two leaves k, I,

then a Brownian Motion with initial (root) value μ and infinitesimal variance σ^2 has the following tip distribution,

$$(X_f) \sim \mathcal{N}_n\left(\mu V, \sigma^2 \Sigma_T\right)$$
 where $(\Sigma_T)_{k,l} = t_{k,l}$ and $V = (1, 1, ..., 1)$.

Conjugate prior We have here a Normal-Inverse Gamma conjugate prior:

$$(\mu, \sigma^2) \sim \mathcal{N}\Gamma^{-1}(\mu_0, \lambda, \alpha, \beta)$$

 $(\mu, \sigma^2)|(X_f) \sim \mathcal{N}\Gamma^{-1}(.)$

Ornstein-Uhlenbeck The distribution of tip values is not part of an exponential family.

In higher dimension It still holds, see for example Tolkoff et al. (2017).

Some basics 0000000	Phylodynamics modeling 00000	Trait evolution modeling ○○●○○	
Molecular evolution			
Consider a JC69 r	nodel with fixed transition rate $lpha,$		

and observe the state X₁ at time t₁ and X₂ at time t₂,

then the probability of the observation is,

$$\mathbb{P}(X_1, X_2 | t, \alpha) = \frac{3}{4} \left(1 - e^{-4\alpha t} \right) \mathbb{1}_{X_1 \neq X_2} + \frac{1}{4} \left(1 + 3e^{-4\alpha t} \right) \mathbb{1}_{X_1 = X_2}$$

Not an exponential family

What about the continuously observed process ? If we observe the whole trajectory $(X_t)_{t \in (t_1, t_2)}$, under any model of molecular evolution with transition rate matrix $Q = (q_{ij})$,

$$\mathbb{P}((X_t)|(q_{ij})) = \prod_{i=1}^4 e^{-q_{ij}T_i} \prod_{j \neq i} q_{ij}^{U_{ij}}$$

which is an exponential family with sufficient statistics,

$$T_i := \int_{t_1}^{t_2} \mathbb{1}_{X_t=i} dt \quad (\text{total time spent in state } i)$$

 $U_{ij} :=$ number of steps from *i* to *j*

With JC69, this simplifies to $e^{-3\alpha t}\alpha^U$ where U is simply the number of steps.

		00000	
Molecular evolution			
 Consider a JC69 m and observe the state 	odel with fixed transition rate ate X_1 at time t_1 and X_2 at ti	α , A me t_2 ,	T

then the probability of the observation is,

$$\mathbb{P}(X_1, X_2 | t, \alpha) = \frac{3}{4} \left(1 - e^{-4\alpha t} \right) \mathbb{1}_{X_1 \neq X_2} + \frac{1}{4} \left(1 + 3e^{-4\alpha t} \right) \mathbb{1}_{X_1 = X_2}$$

$$\mathbb{P}\left((X_t)|(q_{ij})\right) = \prod_{i=1}^4 e^{-q_{ij}T_i} \prod_{j \neq i} q_{ij}^{U_{ij}}$$

$$T_i := \int_{t_1}^{t_2} \mathbb{1}_{X_t = i} dt \quad \text{(total time spent in state } i\text{)}$$

		00000		
Molecular evolution				
 Consider a JC69 me and observe the state 	odel with fixed transition rate te X_1 at time t_1 and X_2 at t	$e \alpha$, (ime t_2 ,	A T	

then the probability of the observation is,

$$\mathbb{P}(X_1, X_2 | t, \alpha) = \frac{3}{4} \left(1 - e^{-4\alpha t} \right) \mathbb{1}_{X_1 \neq X_2} + \frac{1}{4} \left(1 + 3e^{-4\alpha t} \right) \mathbb{1}_{X_1 = X_2}$$

Not an exponential family

What about the continuously observed process ? If we observe the whole trajectory $(X_t)_{t \in (t_1, t_2)}$, under any model of molecular evolution with transition rate matrix $Q = (q_{ij})$,

$$\mathbb{P}\left((X_t)|(q_{ij})\right) = \prod_{i=1}^4 e^{-q_{ij}T_i} \prod_{j \neq i} q_{ij}^{U_{ij}}$$

which is an exponential family with sufficient statistics,

$$T_i := \int_{t_1}^{t_2} \mathbb{1}_{X_t = i} dt \quad \text{(total time spent in state } i\text{)}$$

 $U_{ij} :=$ number of steps from *i* to *j*

With JC69, this simplifies to $e^{-3\alpha t}\alpha^{U}$ where U is simply the number of steps.

		00000	
Molecular evolution			
 Consider a JC69 mo and observe the sta 	odel with fixed transition rate te X_1 at time t_1 and X_2 at t	$e \alpha$, ime t_2 ,	

then the probability of the observation is,

Trait evolution modeling

$$\mathbb{P}(X_1, X_2 | t, \alpha) = \frac{3}{4} \left(1 - e^{-4\alpha t} \right) \mathbb{1}_{X_1 \neq X_2} + \frac{1}{4} \left(1 + 3e^{-4\alpha t} \right) \mathbb{1}_{X_1 = X_2}$$

Not an exponential family

What about the continuously observed process ? If we observe the whole trajectory $(X_t)_{t \in (t_1, t_2)}$, under any model of molecular evolution with transition rate matrix $Q = (q_{ij})$,

$$\mathbb{P}\left((X_t)|(q_{ij})\right) = \prod_{i=1}^4 e^{-q_{ij}T_i} \prod_{j \neq i} q_{ij}^{U_i}$$

which is an exponential family with sufficient statistics,

$$T_i := \int_{t_1}^{t_2} \mathbbm{1}_{X_t=i} dt$$
 (total time spent in state *i*)

 $U_{ij} :=$ number of steps from *i* to *j*

With JC69, this simplifies to $e^{-3\alpha t}\alpha^U$ where U is simply the number of steps.

		Trait evolution modeling	
000000	00000	00000	

Molecular evolution

The two most popular ways of building a MCMC to sample a target distribution u

METROPOLIS-HASTINGS

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid \left(X^{(j)}\right)_{j \neq i} = \left(x_n^{(j)}\right)_{j \neq i}\right)$.
3. Fix $x_{n+1} := \left(x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)}\right)$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Drawback One needs to know how to sample step 2.

000000 00000 00 00			Trait evolution modeling	
	000000	00000	00000	

Molecular evolution

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid \left(X^{(j)}\right)_{j \neq i} = \left(x_n^{(j)}\right)_{j \neq i}\right)$.
3. Fix $x_{n+1} := \left(x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)}\right)$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Drawback One needs to know how to sample step 2.
	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

$$\begin{split} \nu_x q_{xy} \min(1, r(x, y)) &= \nu_y q_{yx} \min(1, r(y, x)). \\ \text{Hence, it converges to the stationary} \\ \text{distribution } \nu. \end{split}$$

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

$GIBBS \ {\rm SAMPLER}$

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

$GIBBS \ {\rm SAMPLER}$

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν_x .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

- Advantage One can use (almost) any proposal distribution *q*.
- Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

	Trait evolution modeling	
	00000	

The two most popular ways of building a MCMC to sample a target distribution u

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○○○○●	
Molecular evolution Example from the literature:	: Lartillot (2006)		

A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,

- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *l* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

OCOCOCO OCOCO		Conclusion
Molecular evolution Example from the literature: Lartillot (20	06)	

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics 0000000	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		
			/

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics	Phylodynamics modeling 00000	Trait evolution modeling ○○○○●	
Molecular evolution Example from the literature	: Lartillot (2006)		

- A nice illustration of Gibbs sampling using conjugacy properties and data augmentation,
- Comparison to an alternative MH-MCMC sampler.
- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.
- each step requires a costly data-augmentation step,
- but decorrelation time with Gibbs-MCMC is one order of magnitude smaller than with MH-MCMC.

Some basics 0000000	Phylodynamics modeling 00000	

Conclusion Take-home messages

Exponential families are beloved by statisticians, for good reasons.

- In phylogenetics we might want to think more about them.
- Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.
- Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.

Some basics	Phylodynamics modeling	Trait evolution modeling	
0000000	00000	00000	
Conclusion			

Take-home messages

Exponential families are beloved by statisticians, for good reasons.

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.

Some basics 0000000	Phylodynamics modeling 00000	
Conclusion		

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.

Some basics 0000000	Phylodynamics modeling 00000	
Conclusion		
Take-home messages		

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.

Some basics 0000000	Phylodynamics modeling 00000	
Conclusion		

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. *Systematic Biology*.

Some basics 0000000	Phylodynamics modeling 00000	
Conclusion		

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.

Some basics 0000000	Phylodynamics modeling 00000	
Conclusion		

In phylogenetics we might want to think more about them.

Among models of phylodynamics Kingman's coalescents, Yule trees, the continuously observed birth-death process, are exponential families.

Among models of trait evolution any continuously observed discrete space Markov process, BM, are exponential families.

Data augmentation with Gibbs sampling could represent a promising alternative to MH-MCMC.

A few relevant papers can be found here:

- Crawford, F. W., Ho, L. S. T., and Suchard, M. A. (2018). Computational methods for birth-death processes. Wiley Interdisciplinary Reviews: Computational Statistics, 10(2):–1423.
- Lartillot, N. (2006). Conjugate Gibbs sampling for Bayesian phylogenetic models. Journal of computational biology.
- Parag, K. V., Pybus, O. G., and Wu, C.-H. (2020). Are skyline plot-based demographic estimates overly dependent on smoothing prior assumptions? *bioRxiv*.
- Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., and Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology.