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Abstract

This document intends to present thoughts on exponential families in phylogenetics. We �rst describe what

exponential families are, and why they are so appreciated by statisticians. Then we turn to drawing up an

inventory of exponential families in phylogenetics, which, we hope, could foster the development of new statistical

methods.
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1 Basics on exponential families

1.1 Lexicon

Let's simply start with the de�nition.

De�nition 1 A family of probability distributions parametrized by a parameter θ is called an exponential family if
its probability mass function, or density, can be written as

f(x|θ) = h(x)eη(θ)tT (x)−A(η)

where, in the vectorial case, η(θ)tT (x) denotes the vectorial product
∑
i ηi(θ)Ti(x).

This de�nition comes with its own lexicon. The quantity η(θ) is called natural parameter, and the family is said
to be in its canonical form if ηi(θ) = θi. It is said to be curved if the dimension of θ is less than the dimension of
η(θ).

The quantity T (x) is called su�cient statistic, for this is all we need to know about a realisation to compute its
probability.

Finally, A(η) is called log-partition function, which is a term coming from physics, where the partition function
refers to the normalizing factor that ensures that f is a density, i.e.

A(η) = ln

(∫
x

h(x)eη
tT (x)dx

)

1.2 Why they are so used

First, exponential families have this really nice property that allows to summarize an arbitrary amount of iid
information with only a �xed number of values, through their su�cient statistics T (x).

Second, these families have conjugate priors (i.e. there exists a family of distributions such that f(θ) is in the
same family as f(θ|x). In a Bayesian framework, this makes them the perfect building blocks to get the posterior
distribution analytically.

In general, the conjugate prior of an exponential family which density is given in the same form as De�nition 1
has a density of the form

f(η|χ, ν) = p(χ, ν)eηχ−νA(η)

where χ, ν are hyperparameters. Indeed, one can check that the posterior is in the same family,

f(η|x, χ, ν) ∝ h(x)eηT (x)−A(η)p(χ, ν)eηχ−νA(η)

∝ eη(χ+T (x))−(ν+1)A(η)

There is also a nice general result for the moment generating function of the su�cient statistics, namely

MT (u) := E
(
eu

tT (x)|η
)

=

∫
x

h(x)e(η+u)tT (x)−A(η)dx

= eA(η+u)−A(η)

which allows one to easily derive the moments of the su�cient statistics through successive di�erentiation (and
evaluation at the origin u = 0) of Mt.

(Plus, write something about Generalized Linear Model).

1.3 A few examples of discrete distributions

The best way to get a feeling of what these families are is to go through a few examples, �rst in a discrete setting.

Example 1 The family of binomial distributions (B(n, p))p∈(0,1), i.e. with known n and only p as a parameter, is
an exponential family.
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The natural parameter is,

η(p) := ln
p

1− p
(a.k.a. logit function) ⇐⇒ p =

eη

1 + eη
(a.k.a. logistic function)

and the su�cient statistic is the number of successes T (x) = x.
Finally its conjugate prior is the Beta distribution,

p|α, β ∼ Beta(α, β)

=⇒ p|x, α, β ∼ Beta(α+ x, β + (n− x))

It's su�cient to rewrite the probability mass function of the binomial in the form given in De�nition 1.

f(x|p) =

(
n

x

)
px(1− p)n−x

=

(
n

x

)
ex ln p+(n−x) ln(1−p)

=

(
n

x

)
ex ln p

1−p+n ln(1−p)

Note that we see on this expression that it couldn't work with n as a parameter. As a general rule, it never
works when a parameter changes the support of the distribution.

Finally, let's have a look at the conjugate prior. Suppose p ∼ Beta(α, β), i.e.

f(p|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

We can derive the posterior distribution of p, simply keeping all parts that depend on p for simplicity,

f(p|x, α, β) ∝ f(x|p)f(p)

∝ px(1− p)n−xpα−1(1− p)β−1

∝ pα−1+x(1− p)β−1+(n−x)

Note that whenever it's possible, it helps to have an interpretation of hyperparameters. Here, p is estimated
observing α−1 successes and β−1 failures in a series of Bernoulli experiments. If one wants to have a non-informative
prior, Beta(1,1) is a good candidate.

Finally, the law of x|α, β is called Beta-binomiale.

Example 2 The family of geometric distributions with support in N, (G(p))p∈(0,1) is an exponential family.

The natural parameter is η(p) := ln(1 − p) and the su�cient statistic is the number of failures before the �rst
success, T (x) = x.

Finally, the conjugate prior is again a Beta distribution,

p|α, β ∼ Beta(α, β)

=⇒ p|x, α, β ∼ Beta(α+ 1, β + x)

We go quickly through this example, noting �rst that,

f(x|p) = (1− p)xp = ex ln(1−p)+ln p .

If p ∼ Beta(α, β), we get the posterior distribution

f(p|x, α, β) ∝ (1− p)xppα−1(1− p)β−1

∝ pα−1+1(1− p)β−1+x

which is very coherent with the previous interpretation of hyperparameters α, β.
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Example 3 The family of negative binomial distributions (NB(r, p))p∈(0,1), providing the distribution of the number
of successes before a �xed number of failures r in a series of Bernoulli experiments with probability of success p, is
an exponential family.

The natural parameter is η(p) := ln p and the su�cient statistic is the number of successes before the rth failure,
T (x) = x.

Finally, it won't be surprising at this point to seet a Beta distribution as conjugate prior, with,

p|α, β ∼ Beta(α, β)

=⇒ p|x, α, β ∼ Beta(α+ x, β + r)

The negative binomial distribution is indeed characterized with the following probability mass function,

f(x|p) =

(
x+ r − 1

x

)
(1− p)rpx

=

(
x+ r − 1

x

)
ex ln p+r ln(1−p)

and, as for the binomial distribution, we have to �x r (which governs the support of the distribution) to get an
exponential family.

If p ∼ Beta(α, β), we get the posterior distribution

f(p|x, α, β) ∝ (1− p)rpxpα−1(1− p)β−1

∝ pα−1+x(1− p)β−1+r

which is again coherent with the previous interpretation of hyperparameters α−1, β−1 as respectively the number
of successes and failures in a series of Bernoulli experiments.

Example 4 The family of Poisson distribution (P(λ))λ∈R+ is an exponential family.
Its natural parameter is η(λ) := lnλ and the su�cient statistic is T (x) = x.
The conjugate prior is a Gamma distribution, with

λ|α, β ∼ Γ(α, β)

=⇒ λ|α, β, x ∼ Γ(α+ x, β + 1)

Indeed, we have the following probability mass function,

f(x|λ) =
λxe−λ

x!
=

1

x!
ex lnλ−λ

Further, if λ ∼ Γ(α, β), we have

f(λ) =
1

Γ(α)
βαλα−1e−βλ

which leads to the following posterior distribution,

f(λ|x) ∝ λα−1+xe−(β+1)λ =⇒ λ|x Γ(α+ x, β + 1)

The hyperparameter α can be interpreted as the total number of points observed, while β is the total number
of intervals.

Example 5 The family of multinomial distributions with �xed number of categories k and �xed number of trials
n, and parametrized by the vector of individual events probabilities p = (p1, p2, ..., pk) such that

∑
pi = 1, is an

exponential family.
Its natural parameter is η(p) = (ln p1, ..., ln pk) and the su�cient statistic is the number of observations in each

categories, T (x) = x = (x1, x2, ..., xk).
The conjugate prior of p is a Dirichlet distribution, with

p|α ∼ Dirichlet(α)

=⇒ p|x, α ∼ Dirichlet(α+ x)
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The probability mass function of the distribution is

f(x) =
n!

x1!x2!...xk!

k∏
i=1

pxii =
n!

x1!x2!...xk!
e
∑k
i=1 xi ln pi

which gives to the su�cient statistic and natural parameter.
If α = (α1, α2, ...αk) with ∀i, αi ≥ 0, and p|α Dirichlet(α), this means that we have the following prior mass

function on p,

f(p) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

k∏
i=1

pαi−1
i

which in turn allows us to express the posterior as

f(p|x) ∝
k∏
i=1

pαi−1+xi
i =⇒ p|x ∼ Dirichlet(α+ x).

Note that the multinomial distribution with n = 1 is sometimes called categorical distribution. The categorical
distribution being the generalization of a Bernoulli distribution with k ≥ 2 categories, and the multinomiale distri-
bution being the generalization of a binomiale with k ≥ 2 categories (i.e. the sum of n categorical variables). The
Dirichlet distribution is also a generalization of a Beta distribution in higher dimension. As for the Beta-binomial
case, it is possible to integrate out the parameter p, in which case x|α ∼Dirichlet-multinomial(α).

Finally, I �nd it interesting to end up with a discrete example that is NOT an exponential family.

Example 6 The hypergeometric distribution, describing the distribution of the number of successes for a �xed
number n of draws without replacement in an urn containing a �xed total number N of balls among which M lead
to success, is not an exponential family. It nevertheless has a conjugate prior for the number M of balls leading to
success,

M |N,α, β ∼ Beta-binomial(N,α, β)

=⇒ M |x,N, α, β ∼ Beta-binomial(N,α+ x, β + (n− x))

One can convince himself/herself that it is not an exponential family by looking at

f(x|M) =

(
M
x

)(
N−M
n−x

)(
n
N

) ∀x ∈ [max(0, n+M −N),min(n,M)]

Finally, checking that the Beta-binomial distribution is a conjugate prior is quite messy, because the probability
mass function is full of combinatorial terms that we would have to arrange. Actually, I have never checked it myself,
so I hope the result claimed above really holds.

1.4 A few examples of continuous distributions

We start with an example which is not an exponential family, before turning to classical laws that are exponential
families.

Example 7 The family of uniform distributions (U(0, θ))θ∈R+ is not an exponential family. It nevertheless admits
a Pareto distribution as a conjugate prior.

The density of the distribution is given by

f(x) =
1

θ
1x∈(0,θ)

where we �nd back this general rule, that a family of distributions which support depends on a parameter value
cannot be an exponential family.

Nevertheless, assume that θ ∼ Pareto(xm, α). This means that

f(θ|xm, α) = αxαmθ
α+11θ≥xm)
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which in turn yields,

f(θ|x) ∝ θ−(α+1)1θ≥xm)θ
−11x∈(0,θ)

∝ θ−(α+2)1θ≥xm1θ≥x

which is another Pareto distribution with parameters (max(xm, x), α + 1). Note also that the family of Pareto
distributions with known xm is an exponential family.

Example 8 The family of exponential distributions (E(λ))λ∈R+ is an exponential family, with natural parameter
η := −λ and su�cient statistic T (x) = x.

It is conjugate to a Gamma distribution: if λ|α, β ∼ Γ(α, β), then λ|x, α, β ∼ Γ(α+ 1, β + x)

This comes quickly by rewriting the density as f(x|λ) = λe−λx = e−λx+lnλ.

Moreover, the Gamma distribution has probability density f(λ|α, β) = βα

Γ(α)λ
α−1e−βλ, which leads to the fol-

lowing Gamma posterior,

f(λ|x, α, β) ∝ λα−1+1e−(β+x)λ .

Note that α − 1 corresponds to the number of observations made, and β corresponds to the total sum of
observations made so far.

Example 9 The family of Gamma distributions (Γ(α, β))α>0,β>0 is an exponential family, with natural parameter
η = (α− 1,−β) and su�cient statistic T (x) = (lnx, x).

When the shape parameter α is �xed, a conjugate prior for β is another Gamma distribution. When it's not
�xed, the conjugate prior is something that does not have a name, but is easily expressed.

Indeed, recall that the density of the distribution is,

f(x|α, β) =
βα

Γ(α)
xα−1e−βx

= e(α−1) ln x−βx+α ln β−ln Γ(α)

In case α is �xed, suppose β|α0, β0 ∼ Γ(α0, β0). Then,

f(β|x, α, α0, β0) ∝ βα0−1+αe−(β0+x)β

which is a Γ(α0 + α, β0 + x).
In case α is not �xed, the conjugate prior on α, β has the following density with 4 hyperparameters a, b, c, d,

f(α, β|a, b, c, d) ∝ aα−1e−βbΓ(α)−cβαd

in which case the posterior is obtained by updating (a, b, c, d) with (ax, b+ x, c+ 1, d+ 1).

Example 10 The 3 family of Gaussian distributions with one parameter �xed or not, i.e. (N (µ, σ2))µ∈R (N (µ, σ2))σ2∈R+

(N (µ, σ2))µ∈R,σ2∈R+ , are exponential families.
Their natural parameters are, respectively, η = (µ/σ2), η = −1/(2σ2), η = (µ/σ2,−1/(2σ2)), and their su�cient

statistics are T (x) = x, T (x) = x2 − 2µx, T (x) = (x, x2).
Finally, they are conjugate to the following priors: µ ∼ N (µ0, σ

2
0), σ2 ∼ Γ−1(α, β), σ2 ∼ NΓ−1(µ0, λ, α, β).

It is su�cient to rewrite carefully the density of the distribution depending on which parameters are �xed or
not,

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 =
1√
2π

exp

(
− x2

2σ2
+
µx

σ2
− µ2

2σ2
− ln |σ|

)
Suppose now that µ ∼ N (µ0, σ

2
0). To ease algebra here, we introduce the precision of the distribution to be

τ0 = 1/σ2
0 . The posterior is then given by,

f(µ|x, τ, µ0, τ
2
0 ) ∝ exp

(
−τ0

µ2

2
+ τ0µ0µ

)
exp

(
τµx− τ µ

2

2

)
∝ exp

(
−µ2 τ0 + τ

2
+ µ(τ0µ0 + τx)

)
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where we recognize another normal distribution with precision τ ′ = τ0 +τ and product µ′τ ′ = τ0µ0 +τx =⇒ µ′ =
(τ0µ0 + τx)/(τ0 + τ).

We now consider the case where σ2 is a parameter and µ is �xed. Again, for simplicity, we will consider a
parametrization in terms of the precision τ = 1/σ2. Assume that τ ∼ Γ(α, β), then,

f(τ |x, µ, α, β) ∝ τα−1e−βτ τ
1
2 e−τ

(x−µ)2
2

∝ τα+ 1
2−1e−τ(β+

(x−µ)2
2 )

where we recognize another Gamma distribution with parameters
(
α+ 1

2 , β + (x−µ)2

2

)
. Note that if τ ∼ Γ(α, β),

we call inverse Gamma with the same parameters (and denote Γ−1(α, β)) the law of 1/τ = σ2.
Finally, we consider the case where µ, τ are not �xed. Suppose that τ |α, β ∼ Γ(α, β), and that µ|µ0, τ, λ ∼

N
(
µ0,

1
λτ

)
. When this is the case, we say that µ, τ follows a Normal-Gamma distribution with parameters

(µ0, λ, α, β). We anyway get the following posterior,

f(µ, τ |µ0, λ, α, β) ∝ τα−1e−βτ τ
1
2 e−

λτ
2 (µ−µ0)2τ

1
2 e−

τ
2 (x−µ)2

∝ τα+ 1
2−1e−βτ τ

1
2 e−µ

2 τ(λ+1)
2 +µτ(λµ0+x)− τ2 (λµ2

0+x2)

∝ τα+ 1
2−1e−τ(β+

λµ20+x2

2 )τ
1
2 e−µ

2 τ(λ+1)
2 +µτ(λ+1)

λµ0+x
λ+1

which is another Normal-Gamma distribution with updated parameters
(
λµ0+x
λ+1 , λ+ 1, α+ 1

2 , β +
λµ2

0+x2

2

)
. Again,

we call Normal Inverse Gamma distribution the distribution of µ, σ2 instead of µ, τ . Note that, when we observe n
values (xi)

n
i=1, the updates of λ and α are easily written as λ(n) = λ+ n and α(n) = α+ n

2 . However, we then have
to carefully write what happens to µ0 and β. Provided that what is written above is right, one can show with a

short recursion that, in fact, µ
(n)
0 =

λµ0+
∑
i xi

λ+n and β(n) = β+ 1
2

∑
(xi− x̄)2 + λn

λ+n
(x̄−µ0)2

2 (according to Wikipedia,
I didn't double check).

Now that we described quite in details what happens with the normal distribution, we turn to its multivariate
extension, without so many details.

Example 11 The family of multivariate normal distributions (Nd(µ,Σ)) with mean vector µ ∈ Rd and covariance
matrix Σ is an exponential family. It is here also interesting to parametrize it using the inverse of the covariance
matrix, called the precision matrix, Λ := Σ−1, so that we get a natural parameter (Λµ,− 1

2Λ) and su�cient statistics
T (x) = (x, xtx).

When Λ is �xed, it is conjugate to another multivariate normal distribution for µ. When µ is �xed, it is conjugate
to a Wishart distribution for Λ. When both are parameters, it is conjugate to a Normal-Wishart distribution for
(µ,Λ).

I simply recall here the density of a multivariate normal distribution,

f(x|µ,Σ) = (2π)−
d
2 |Σ|− 1

2 exp

(
−1

2
t(x− µ)Σ−1(x− µ)

)
The Wishart distribution is a generalization of the Gamma distribution to higher dimension. It has support

in positive de�nite matrices. This is also another exponential family. When combined with a multivariate normal
distribution in the same way as Gamma and Normal distributions where combined previsouly, it gives a Normal-
Wishart distribution. Details are quite ugly, so I refer to Wikipedia pages for the distribution de�nitions and the
updates of the hyperparameters of the conjugate prior.

2 Phylodynamics models

2.1 The Kingman coalescent

If T is a tree with n leaves and successive coalescence intervals (T2, T3, ..., Tn), where Ti := time elapsed to go from
i to i− 1 lineages, then it is said to follow a Kingman coalescent with parameter θ if the density is,

f(T |θ) =

n∏
i=2

θe−θ(
i
2)Ti = e−θ

∑n
i=2 (i2)Ti+(n−1) ln θ
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We thus have here an exponential family with natural parameter η = −θ and su�cient statistic
∑n
i=2

(
i
2

)
Ti.

It turns out that this is conjugate to a Gamma distribution. Assume θ ∼ Γ(α, β), then,

f(θ|T, α, β) ∝ θα−1e−βθe−θ
∑n
i=2 Tiθn−1

∝ θα−1+(n−1)e−θ(β+
∑n
i=2 (i2)Ti)

which means that θ|T, α, β ∼ Γ(α+ n− 1, β +
∑n
i=2

(
i
2

)
Ti).

2.2 The pure-birth (Yule) tree

If xi is the depth of leaf i, then we have the following density for a Yule tree,

f(T |λ) = λn−1
n−1∏
i=0

e−λxi

It's more or less equivalent to observing n−1 iid E(λ) random variables, and we thus have the following Gamma
conjugate prior.

λ ∼ Γ(α, β) =⇒ λ|x ∼ Γ(α+ n− 1, β +
n−1∑
i=0

xi)

2.3 Birth-death reconstructed trees

With the same notation as above, the density of the reconstructed tree is,

f(T |λ, µ) = λn−1
n−1∏
i=0

p(xi|λ, µ)

xhere p(xi|λ, µ) =

(
λ− µ

λ− µe−(λ−µ)xi

)2

e−(λ−µ)xi = exp
(
−(λ− µ)xi + 2 ln(λ− µ)− 2 ln(λ− µe−(λ−µ)xi)

)
This function p is not an exponential family, since we cannot factorize η(θ)T (x) within the exponential. Finding

a conjugate prior seems thus very optimistic. On the one hand, we could easily deal with the numerator part with
some components, say, (λ−µ)αe−(λ−µ)β . But unfortunately, it seems very optimistic to deal with the denominator.

Some hope could have come from the special case λ = µ. However, here again, the function p cannot be
factorized, see the following expression,

p(xi|λ) = (λxi + 1)−2 = e−2 ln(λxi+1)

Finally, another option consists in looking for the probability distribution of U,D, Tpart, the su�cient statistics
of the fully observed linear birth-death process (respectively, number of steps up, number of steps down, and total
particle time). Knowing these, the fully observed birth-death process is an exponential family.

3 Trait evolution along a �xed tree

3.1 Molecular evolution with a 4 states Markov process

Let's take as �rst example a JC69 model, with rate of transition from any two di�erent nucleotides α. If we only
observe X1 at time t1 and X2 at time t2, then the probability of the observation is,

P(X1, X2|t, α) =
3

4

(
1− e−4αt

)
1X1 6=X2

+
1

4

(
1 + 3e−4αt

)
1X1=X2

which is not an exponential family.
What about the continuously observed process (Xt)t∈(t1,t2) then ?

P ((Xt)|(qij)) =

4∏
i=1

e−qiiTi
∏
j 6=i

q
Uij
ij
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which is an exponential family with su�cient statistics,

Ti :=

∫ t2

t1

1Xt=idt (total time spent in state i)

Uij := number of steps from i to j

Depending on the complexity of the model, we get di�erent T (x) with di�erent dimensions. For example, the
JC69 model simpli�es to e−3αtαU where U is simply the number of steps.

Note that this seems a bit weird because t is considered to be �xed and we observe the full trajectory of X. The
analogy for a Poisson process would be to have the density λNte−λt for the full process. But then, we get

P(Nt = n) =

∫
t1,t2,...tn

P(Xt)dt1dt2...dtn = λne−λt
∫
t1...tn

dt1...dtn =
(λt)n

n!
e−λt

and by analogy for JC69, we get,

P(Ut = n) = e−3αt (αt)
n

n!

Let's have a quick look at what it gives us on a very simple tree, with 3 leaves labeled 1, 2, 3, one internal node
4 joining leaves 1 and 2, and the last internal node 5 joining 3 and 4. We �x this topology and the time at which
leaves 1, 2, 3 live. We would like to have three remaining parameters: (t4, t5, α). We get,

P(U14, U24, U45, U35|t4, t5, α)

=e−3α((t4−t1)+(t4−t2)+(t5−t4)+(t5−t3)) (α(t4 − t1))U14

U14!

(α(t4 − t2))U24

U24!

(α(t5 − t4))U45

U45!

(α(t5 − t3))U35

U35!

∝ exp (U14 ln(α(t4 − t1)) + U24 ln(α(t4 − t2)) + U45 ln(α(t5 − t4)) + U35 ln(α(t5 − t3)))

which is an exponential family with su�cient statistic T (x) = (U14, U24, U45, U35) and natural parameter η =
(ln(α(t4 − t1)), ln(α(t4 − t2)), ln(α(t5 − t4)), ln(α(t5 − t3))). This is another example of a curved distribution, with
the dimension of η (4) greater than the dimension of θ (3). Note also that if we �x (t4, t5) and keep only α as a
parameter, this simpli�es to an exponential family with natural parameter lnα and su�cient statistic U14 + U24 +
U45 + U35.

3.2 Continuous trait evolution along a �xed tree

Suppose we have a BM running along a �xed tree T with n leaves and coalescence times between two leaves k, l
denoted tk,l. It the initial value is µ and the in�nitesimal variance σ2, then, we have the following tip distribution,

(Xf ) ∼ Nn
(
µV, σ2ΣT

)
where (ΣT )k,l = tk,l and V = (1, 1, ..., 1).

We could �rst dream of not �xing T at all. We would then start with σ2Σ ∼ Inverse Wishart. As a result, we
could get some posterior of σ2Σ|(Xf ) and hope this would help us reconstruct the tree. But in fact, this would
have broader support than only covariance matrices corresponding to an (ultrametric or not) tree. Which means
that we would need to �nd a clever way of projecting this distribution in the correct matrix subspace, which �nally
does not sound like a great idea. Or at least not a simple one.

However, considering that T is �xed, we can look for a conjugate prior for (µ, σ2). This task seems much simpler,
and in fact a Normal-inverse-Gamma seems to do the job. Indeed, we have,

f(x|µ, σ) = (2π)−
n
2 |σ2Σ|− 1

2 exp

(
−1

2
t(x− µV )(σ2Σ−1

T )(x− µV )

)
= (2π)−

n
2 σ−n|ΣT |−

1
2 exp

(
− 1

2σ2
txΣ−1

T x− µV Σ−1
T x− µtxΣ−1

T V + µ2tV Σ−1
T V

)
Assuming then that (µ, σ2) follows a Normal inverse-Gamma with parameters (µ0, λ, α, β) means that we have

the following prior density,

f(µ, σ2) ∝ σ−1σ−2(α+1) exp

(
−2β + λ(µ− µ0)2

2σ2

)
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which leads to the following posterior,

f(µ, σ2|x) ∝ σ−1σ−2(α+1)−n exp

(
− 1

2σ2

(
(2β + txΣ−1

T x) + µ2(λ+ tV σ−1
T V )− µ(2λµ0 + tV Σ−1

T x− txΣ−1
T V ) + λµ0

))
Provided there are not too many errors, this is likely to be another Normal inverse-gamma distribution with updated
parameters,

− 2(α′ + 1) = −2(α+ 1)− n =⇒ α′ = α+
n

2

λ′ = λ+ tV Σ−1
T V

2λ′µ′0 = 2λµ0 + 2tV Σ−1
T x =⇒ µ′0 =

λµ0 + tV Σ−1
T x

λ+ tV Σ−1
T V

λ′µ′20 + 2β′ = 2β + txΣ−1
T x+ λµ2

0 =⇒ β′ = β +
1

2
txΣ−1

T x+
1

2
λµ2

0 −
1

2
(λµ0 + tV Σ−1

T x)2

Note that we could build up slowly from simpler cases �rst, σ2 known, then µ known, and then both unknown.
It would be interesting to then write clearly what happens to the setting with multiple traits. This has already

been described in Tolko� et al. (2017), page 3.

4 Gibbs sampling in a phylogenetic setting

Lartillot (2006) introduced a Gibbs sampler in the context of molecular phylogenetics, using these conjugacy prop-
erties with data augmentation, for various parts of the model. He shows that it is more e�cient than a Metropolis-
Hastings MCMC sampling the same posterior.

Here is a short summary of the various components of the model he considers:

1. sites can either all have the same substitution process (SUB) or each has its own substitution process (MAX).

2. the substitution model Q depends on (ρij), the relative exchangeabilities and (πi), the stationary pro�le:
Qij = ρijπj In WAG, ρ is �xed throughout the sequence and π varies at each locus. In Poisson, ρij = 1∀i, j
and π varies at each locus. In GTR, π and ρ vary at each locus.

3. π ∼ Dirichlet(w), where w has total weight δ =
∑
i wi and center π0(a) = wa/δ.

4. the tree topology is �xed, but there is an exponential prior on branch-lengths: all lj are independent and
lj ∼ E(β).

5. all sites-speci�c rates are independent and Gamma distributed with mean one and parameter α, with p(ri) ∝
rα−1
i e−αri .

6. when they vary, relative exchangeabilities are all independent with ρij ∼ E(1).

The data-augmentation and Gibbs sampling steps correspond to, along each branch j, at any site i,

1. sampling nij the total number of substitutions, (tkij) the times at which substitutions occur, and (σkij) the
successive states.

2. sampling l given everything else. This is a Gamma distribution with known shape and scale parameters.

3. sampling r given everything else. This is a known Gamma distribution.

4. sampling π given everything else. This is a Dirichlet with known parameters (or product of Dirichlet for
MAX).

5. update the hyperparameters with a MH step, but using the posterior integrated over the variables for which
we have an analytic distribution (l, r, π).

Even though each step requires the costly data-agumentation step, the resulting decorrelation time for the
Gibbs-MCMC is always estimated to be at least one order of magnitude smaller than for the MH-MCMC.
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