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Macroevolution
Comparative approach

Concrete questions :
1. What determines the color, size, shape of the gills ?
2. What did the ancestor of all nudibranchs look like ?
3. How to classify them in distinct species ?
4. What is the tempo of speciation and extinction events ?

Comparative approach :
1. Compare traits observed in the wild.

2. Propose scenarios of evolution:
I probabilistic models
I process-based models

3. Fit these models to observed data.
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Stochastic modeling
For three types of observations

I Phylogenies
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I Phenotypes I Genetic sequences

A minimalist individual-based model with out-of-equilibirium metapopulation dynamics.
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Traits implicated in inter-specific interactions.
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Punctual evolution of some genetic sequences.
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State of the art
The modeling approach
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I Empirical trees are unbalanced.
I They show nodes quite close to the root.
I Could we reproduce such observations with a minimalist individual-based model ?

Aldous, 2001, Stat. Sci.
Blum and François, 2006, Syst. Biol.
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State of the art
Lineage-based models

temps

0

Each species :
I gives birth at rate b.
I is independent of all others.
I dies at rate d .

Produces trees :
I too balanced.
I too tippy.

Nee, May and Harvey, 1994, Phil. Trans. Biol. Sci.
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State of the art
Individual-based modeling

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of a parent in

the previous generation.

Superimposition of a
speciation model.

Hubbell, 2001, The Unified Neutral Theory of Biodi-
versity and Biogeography.
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The species definition in modeling work
From a genealogy to a phylogeny

I Models produce species that are non-monophyletic
groups of individuals.

I Leads to a difficulty to build the phylogeny from the
genealogy.

I Simulated trees are enough unbalanced, but are way
too tippy.

Jabot and Chave, 2009, Ecol. Lett.
Davies and al., 2011, Evolution. 1 2 3 4 5 6 7 8 9
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The species definition in modeling work
Proposing two new definitions

Loose The finest monophyletic partition such that any two individuals from distinct
clusters are always phenotypically different.

Lacy The coarsest monophyletic partition such that any two individuals from the
same cluster are always phenotypically similar.

1 2 3 4 5 6 7 8 9

1 2 3

4 5 6 7

8 9

Manceau and Lambert, 2018, Bull. Math. Biol. (under revision).
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Application to diversification studies
Two new hypotheses

I Individual-based birth-death model. I Loose species definition.

temps

0

T

Manceau, Lambert and Morlon, 2015, Ecol. lett.
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Application to diversification studies
Comparison to empirical trees

The model generates trees with compatible
I branching times distribution.
I balance level.
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Application to diversification studies
An inference method

I We numerically compute the likelihood of an observed tree.

Bovinae Calomys

Dipodomys Macaca

I We estimate parameters by numerically optimizing the likelihood.
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Application to diversification studies
An inference method

I Estimates of b − d and ν are unbiased.
I But we have no signal for b.
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An inference method

I Estimates of b − d and ν are unbiased.
I But we have no signal for b.
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Application to diversification studies
Project summary

An individual-based model of diversification proposing two unconventional hypotheses:
1. population dynamics given by a birth-death process,
2. the loose species definition.

Individual
based
modeling

Diversification
modeling

Conclusion and perspectives:
I Compatible with empirical tree shapes.
I What is the relative importance of the two hypotheses ?
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State of the art
Central hypothesis: independent lineages

We compare:
I traits of different species.
I which phylogenies is known

(fixed).

Modeling framework:
I the trait at the root is drawn in a

given law.
I along a branch it follows a given

stochastic trajectory.
I it is copied in two independent

processes at each branching
event.

Felsenstein, 1973, Am. J. Hum. Genet.
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State of the art
Stochastic process along a fixed tree

Overview of some stochastic trajectories:
Brownian motion dXt = σdBt

Ornstein-Uhlenbeck dXt = ψ(θ − Xt)dt + σdBt

Drifted Brownian motion dXt = adt + σdBt
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Coevolution of traits from different species
Attraction or repulsion in the trait space

I Some examples of non-independent traits:

Mimicry attraction toward
the mean trait of a
community.

Mutualism coevolution of traits in two clades.

I We would like to study the traits in a similar framework.
I Without the independence hypothesis from traits evolving in distinct lineages.
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Proposed framework
Using linear stochastic differential equations

time

I The trait distribution at present is Gaussian.
I We show how to numerically compute its mean and variance.

Manceau, Lambert and Morlon, 2016, Syst. Biol.
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Proposed framework
Most models fit within this framework

dXt = (a − AXt)dt + ΓdWt
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Examples of applications
Competition leading to trait displacement

Anolis lizards on Caribbean is-
lands.

Traits under study:
I skull, jaws.
I femur, tibia, humerus,

radius, ...
I pelvis, tail.

Drury and al., 2016, Syst. Biol.
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Examples of applications
Coevolving traits in distinct clades

I Coevolution of traits implicated in mutualistic interactions.
I Could be coupled with a model of interaction network evolution.
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State of the art
The strict clock, back in the 60’s, with Zuckerkandl and Pauling

I Pairwise differences are compatible with branch lengths of an ultrametric tree.
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I We can imagine that mutation happen through a constant rate Poisson process.

Zuckerkandl and Pauling, 1962.
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State of the art
Markovian model for molecular evolution

I We are given a stationary Markov chain on {A,T ,G,C}.
I Nucleotides at the root are iid according to the stationary law.
I Each nucleotide evolves independently of the others along a branch.
I The process is split into two independent processes at each branching event.

time

A T

G C

Felsenstein, 1981, J. Mol. Evol.
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State of the art
The strict or fully relaxed versions
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State of the art
The many relaxations

 
 

I Branch lengths follow a prior law.
I The substitution rate can vary amon branches, in an auto-correlated way...
I ... or in a non-auto-correlated way.

Lepage et al., 2007, Mol. Biol. Evol.
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State of the art
The datation principle
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A new relaxation
Biological motivation: genomics of speciation

New hypothesis: what if deviations from the strict clock were punctual ones ?

Strong divergent selection at speciation :
I use of distinct resources,
I adaptation to distinct habitats,
I recognition of sexual partners.

Could lead to:
I genomic islands of speciation,
I short rise of the substitution rate.
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A new relaxation
Introduction of spikes of mutations

From the whole process ...
I Birth-death process,
I probability ν of having a spike at birth.

... to the reconstructed tree:.
I probability ν of having a spike at a

branching time,
I an inhomogeneous Poisson process along

branches.

time

0

T

I Markovian evolution along branches,
I On a spike, each nucleotide of the sequence mutates with probability κ.
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Inference method
Spikes on the reconstructed tree
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Inference method
Summary

Model and methodological developments:
I A strong link between the speciation and

substitution process.
I A preliminary inference procedure.

Perspectives :
I Test the relative support for gradual /

punctuated relaxations of the molecular clock.
I Scan sequences to look for genes likely to

evolve in a punctual way.
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Phylogenetic reconstruction
Bayesian framework
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Individual-based models
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I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

1,2

3,6,7

4,5

8,9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

1,2,8

3,9

4,5,6,7

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

1,2,3,6,7

4,5

8,9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

The many models of speciation
Individual-based models

Population dynamics :
I fixed size.
I discrete generations.
I uniform choice of the parent in

the previous generation.

Superimposition of a model of specia-
tion.

1 2 3 4 5 6 7 8 9

1,2,3,6,7,8,9

4,5

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

Where does the paraphyly come from ?

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

a) Convergence b) Reversal c) Plesiomorphy

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

From a genealogy to a phylogeny

convergent / divergent     nodes
 

lo
o
se

 

phylogenetic / non-phylogenetic    nodes Phylogenies

la
cy

a)

b)

d)

c)

e)

Presentation in Basel Marc Manceau



Intro Chap 2 Chap 3 Chap 4 Chap 5 Conclu

A three-types process
Laws of reconstructed phylogenies

The law of reconstructed phylogenies, under our model, is the same as:
I a three-types branching process with types,

type 0 the clonal family survives until present.
type 1 the clonal family does not survive until present.

type gelé two clonal families survive until present.
I inhomogeneous in time, with known transition rates.
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Influence of parameter values on the phylogenetic tree shape
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With a prior on our parameters
Posterior distribution of α, κ, ν conditioned on branch-lengths and alignment
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Perspectives SGD
What if b, d and ν change through time ?
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