Prospecting for unconventional hypotheses in macroevolution modeling Presentation for Tanja Stadler's group in Basel

Marc Manceau

October 15, 2018

Introduction	Diversification	Phenotypic evolution	Molecular clock	
Macroevolution Comparative approach				
Concrete questi	ons :			

- 1. What determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction				
00	000000000	0000000	000000000	
Macroevolution Comparative approach				
Concrete question	ons :			

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction			
••			
Macroevolution Comparative approach			
Concrete question	ons :		

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction			
00			
Macroevolution Comparative approach	ı.		
Concrete questi	ons :		

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction	Diversification	Phenotypic evolution	Molecular clock	
Macroevolution Comparative approach				
Concrete question	ons :			

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction	Diversification	Phenotypic evolution	Molecular clock	
Macroevolution Comparative approach				
Concrete question	ons :			

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction				
0	000000000	000000	000000000	
Macroevolution Comparative approach	ı.			
Concrete questi	ons :			

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction		Phenotypic evolution	
•• Macroevolution Comparative approach			
Concrete question	ons :		

- $1. \ \mbox{What}$ determines the color, size, shape of the gills ?
- 2. What did the ancestor of all nudibranchs look like ?
- 3. How to classify them in distinct species ?
- 4. What is the tempo of speciation and extinction events ?

- 1. Compare traits observed in the wild.
- 2. Propose scenarios of evolution:
 - probabilistic models
 - process-based models
- 3. Fit these models to observed data.

Introduction ○●		Phenotypic evolution 0000000		
Stochastic model For three types of obs	ing servations			
Phylogen	ies	Phenotypes	Genetic sequences	
Stark	^{Vrha/e} disong turte			

A minimalist individual-based model with out-of-equilibirium metapopulation dynamics.

Introduction			
00			
Stochastic mode For three types of ob	ling		

Traits implicated in inter-specific interactions.

Introduction	Diversification 000000000	Phenotypic evolution	Molecula 00000	ar cloc				Conclusion
Stochastic modeli For three types of obs	ng ervations							
Phylogenia	es	Phenotypes	► G	enet	ic s	equ	ence	2S
			shark	tuna	whale	dugong	turtle	penguin
			А	i.	i.	i.	i.	1
			Т	' .	A	A	i.	1
			С	G	G	G	G	G
			G	1	1	1	1	1
			А	С	1	1	1	1
			А	Т	1	1	1	1
			G	1	1	1	A	А
eu,	ale ong rtte uin		С	1	1	1	1	1
14 AN	w, du _g , tu, Pen _g			÷	1	÷	÷	:

Punctual evolution of some genetic sequences.

Introduction

Macroevolution Stochastic modeling

Diversification

State of the art The species definition in modeling work Application to diversification studies

Phenotypic evolution

State of the art Coevolution of traits from different species Proposed framework Examples of applications

Molecular clock

State of the art A new relaxation Inference method

Conclusion

Diversification		

Introduction

Macroevolution Stochastic modeling

Diversification State of the art The species definition in modeling work

Application to diversification studies

Phenotypic evolution

State of the art Coevolution of traits from different species Proposed framework Examples of applications

Molecular clock

State of the art A new relaxation Inference method

Conclusion

	Diversification	Phenotypic evolution	
a a b			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification		
	• 00 0000000		
State of the art			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification		
	• 00 0000000		
State of the art			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification		
	• 00 000000		
State of the art			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification		
	• 00 000000		
State of the art			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification		
	• 00 0000000		
State of the art			

- Empirical trees are unbalanced.
- They show nodes quite close to the root.
- Could we reproduce such observations with a minimalist individual-based model ?

	Diversification	Phenotypic evolution	Molecular clock	Conclusion
	00000000			
State of the art Lineage-based models				

temps

0т

Each species :

- gives birth at rate b.
- is independent of all others.
- dies at rate d.

Produces trees :

- too balanced.
- too tippy.

Introduction 00	Diversification O●OOOOOOO	Phenotypic evolution 0000000	Molecular clock 0000000000	
State of the art Lineage-based models				
0				
Each species : gives birtl is independent dies at rage	h at rate <i>b</i> . Ident of all others. te <i>d</i> .	Produces trees :too balanced.too tippy.		

Introduction 00	Diversification	Phenotypic evolution	Molecular clock 000000000	
State of the art Lineage-based models				

Each species :

- ▶ gives birth at rate b.
- ▶ is independent of all others.
- dies at rate d.

Produces trees :

- too balanced.
- too tippy.

	Diversification	Phenotypic evolution	Molecular clock	Conclusion
	000000000			
State of the art				
Lineage-based model				

0 T	- I			
		1		
tem	os			

Each species :

- ▶ gives birth at rate b.
- ▶ is independent of all others.
- ▶ dies at rate *d*.

Produces trees :

- too balanced.
- too tippy.

Diversification		
00000000		

Each species :

- gives birth at rate b.
- is independent of all others.
- dies at rate d.

Produces trees :

- too balanced.
- too tippy.

Diversification		
000000000		

	Diversification			
00	00000000	000000	000000000	

	Diversification			
00	00000000	000000	000000000	

Introduction 00	Diversification 000000000	Phenotypic evolution 0000000														Mol 00	ecu 00	lar OC		ck 200	Conclusion
State of the art Individual-based mod	eling																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Population dyn	amics :	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
fixed size		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
discrete g	generations.	•																			
uniform of the previ	choice of a parent in ous generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	n of a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	lel.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Hubbell, 2001, The versity and Biogeogr	Unified Neutral Theory of Biodi-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		-	~	~											~	~	~	~	~	-	

	Diversification OO●0000000	Phenotypic evolution 0000000												Mol 00	ecu 00	lar (
State of the art Individual-based mod	deling																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Population dy	namics :	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
fixed siz	e.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
 discrete 	generations.		•		•															•	
uniform the prev	choice of a parent in vious generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Hubbell, 2001, The versity and Biogeog	Unified Neutral Theory of Biodi- graphy.)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

	Diversification 00●0000000	Phenotypic evolution															ecu 00				
State of the ar Individual-based m	t Iodeling																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	
Population of	dynamics :	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
fixed s	size.	٠	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	•	
discret	te generations.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
uniform the press uniform	m choice of a parent in evious generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	
Hubbell, 2001, T versity and Bioge	he Unified Neutral Theory of Biodi- eography.)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
								-												-	

		Diversification	Phenotypic evolution														/1010 200	ecul 200	ar c 200	lock DOC		
Stat Indiv	e of the art idual-based mod	eling																				
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
	Population dyr	iamics :	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	
	fixed size		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
	discrete ;	generations.																			•	
	 uniform the previ 	choice of a parent in ous generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
		n of o	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	
	Hubbell, 2001, The versity and Biogeogr	Unified Neutral Theory of Biodi- aphy.))	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	
			-		-		-		-		-	-				-		-	÷ .		-	

	Diversification 000000000			her	ioty DO	/pic 00										lole	cula 000	r cl	ock			
State of t Individual-b	he art ased modeling																					
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•			
Popu	lation dynamics :	٠	•	•	•	٠	٠	٠	•	٠	•	٠	٠	•	•	•			•			
►	fixed size.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•			
►	discrete generations.		•													•						
•	uniform choice of a parent in the previous generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			

.

.

.

	Diversification 00●0000000				not 00	ypic OC										10N 00	ecul DO	ar (00	00	:k)00	Conclusion
State of t Individual-b	the art nased modeling																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	
Popu	lation dynamics :	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	
►	fixed size.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
►	discrete generations.																			•	
•	uniform choice of a parent in the previous generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
															•			•	•	•	

	Diversification					ypic 00										1ole	cula				
State of tl Individual-ba	he art ased modeling																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		
Popula	ation dynamics : fixed size.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		
*	discrete generations. uniform choice of a parent in the previous generation.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		
	imposition of a tion model.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		

•••••••••••••••

Diversification		
00 0000000		

State of the art Individual-based modeling

Population dynamics :

- fixed size.
- discrete generations.
- uniform choice of a parent in the previous generation.

Superimposition of a speciation model.

Diversification		
00000000		

Population dynamics :

- fixed size.
- discrete generations.
- uniform choice of a parent in the previous generation.

Superimposition of a speciation model.

Hubbell, 2001, The Unified Neutral Theory of Biodiversity and Biogeography.

	Diversification			
00	000000000	0000000	0000000000	
State of the art				

	Diversification OO●○○○○○○	Phenotypic evolution	
<u> </u>			

Diversification OO●○○○○○○	Phenotypic evolution	

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Jabot and Chave, 2009, *Ecol. Lett.* Davies and al., 2011, *Evolution*.

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Jabot and Chave, 2009, *Ecol. Lett.* Davies and al., 2011, *Evolution*.

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Jabot and Chave, 2009, *Ecol. Lett.* Davies and al., 2011, *Evolution*.

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Jabot and Chave, 2009, *Ecol. Lett.* Davies and al., 2011, *Evolution*.

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Davies and al., 2011, Evolution.

Diversification		
00000000		

- Models produce species that are non-monophyletic groups of individuals.
- Leads to a difficulty to build the phylogeny from the genealogy.
- Simulated trees are enough unbalanced, but are way too tippy.

Jabot and Chave, 2009, *Ecol. Lett.* Davies and al., 2011, *Evolution*.

	Diversification ○○○○●○○○○○	Phenotypic evolution	
The species defin	ition in modeling wo	rk	

Proposing two new definitions

- Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.
- Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification ○○○○●○○○○○	Phenotypic evolution	
The species defin	ition in modeling wo	rk	

Proposing two new definitions

- Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.
- Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification ○○○○●○○○○○	Phenotypic evolution	
The species defin	ition in modeling wo efinitions	rk	

Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.

Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification	Phenotypic evolution	
The species defin Proposing two new de	ition in modeling wor efinitions	k	

Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.

Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification	Phenotypic evolution	
The species de Proposing two nev	finition in modeling v definitions	; work	

- Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.
- Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification	Phenotypic evolution	
The species definition Proposing two new de	ition in modeling wor finitions	k	

- Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.
- Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification	Phenotypic evolution	
The species defini Proposing two new de	ition in modeling wor finitions	k	

- Loose The finest monophyletic partition such that any two individuals from distinct clusters are always phenotypically different.
- Lacy The coarsest monophyletic partition such that any two individuals from the same cluster are always phenotypically similar.

	Diversification	Phenotypic evolution	
Application to div Two new hypotheses	versification studies		

Loose species definition.

Manceau, Lambert and Morlon, 2015, Ecol. lett.

	Diversification	Phenotypic evolution	
Application to div Two new hypotheses	versification studies		

	Diversification	Phenotypic evolution	
Application to di Two new hypotheses	versification studies		

Manceau, Lambert and Morlon, 2015, Ecol. lett.

	Diversification	Phenotypic evolution	
Application to di Two new hypotheses	versification studies		

Manceau, Lambert and Morlon, 2015, Ecol. lett.

	Diversification ○○○○●○○○○	Phenotypic evolution	
Application to di Two new hypotheses	versification studies		

Manceau, Lambert and Morlon, 2015, Ecol. lett.

	Diversification ○○○○●○○○○	Phenotypic evolution	
Application to div Two new hypotheses	versification studies		

Manceau, Lambert and Morlon, 2015, Ecol. lett.

	Diversification	Phenotypic evolution	
Application to div Two new hypotheses	versification studies		

Manceau, Lambert and Morlon, 2015, Ecol. lett.

Diversification		
0000000000		

Application to diversification studies Comparison to empirical trees

The model generates trees with compatible

- branching times distribution.
- balance level.

Diversification		
0000000000		

Application to diversification studies Comparison to empirical trees

The model generates trees with compatible

- branching times distribution.
- balance level.

	Diversification			
00	0000000000	0000000	000000000	
A 12	10 10 11 1 11 11			

We numerically compute the likelihood of an observed tree.

We estimate parameters by numerically optimizing the likelihood

	Diversification		
	0000000000		
A 12 12	10° 11 11		

We numerically compute the likelihood of an observed tree.

We estimate parameters by numerically optimizing the likelihood.

	Diversification		
	0000000000		
Application t	o diversification studi	6C	

Estimates of b - d and ν are unbiased.

But we have no signal for b.

	Diversification		
	0000000000		
Application t	a diversification studie		

Estimates of b - d and ν are unbiased.

But we have no signal for b.

	Diversification		
	000000000		
Application t	o diversification studies		

- Estimates of b d and ν are unbiased.
- But we have no signal for b.

An inference method

	Diversification			
	000000000			
Application to diversification studies				

Application to diversification studies Project summary

An individual-based model of diversification proposing two unconventional hypotheses:

- 1. population dynamics given by a birth-death process,
- 2. the loose species definition.

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?

	Diversification ○○○○○○○○○●	Phenotypic evolution	
Application to Project summary	diversification studies		

- 1. population dynamics given by a birth-death process,
- 2. the *loose* species definition.

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?

	Diversification	Phenotypic evolution	
Application to Project summary	diversification studies	5	

- 1. population dynamics given by a birth-death process,
- 2. the loose species definition.

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?

	Diversification ○○○○○○○○○	Phenotypic evolution 0000000	
Application to Project summary	diversification studies		

- 1. population dynamics given by a birth-death process,
- 2. the loose species definition.

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?

	Diversification ○○○○○○○○○	Phenotypic evolution 0000000	
Application to Project summary	diversification studies		

- 1. population dynamics given by a birth-death process,
- 2. the loose species definition.

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?
| | Diversification
○○○○○○○○○ | Phenotypic evolution | |
|-----------------------------------|------------------------------|----------------------|--|
| Application to
Project summary | diversification studies | | |

An individual-based model of diversification proposing two unconventional hypotheses:

- 1. population dynamics given by a birth-death process,
- 2. the loose species definition.

Conclusion and perspectives:

- Compatible with empirical tree shapes.
- What is the relative importance of the two hypotheses ?

Introduction

Macroevolution Stochastic modeling

Diversification

State of the art The species definition in modeling work Application to diversification studies

Phenotypic evolution

State of the art Coevolution of traits from different species Proposed framework Examples of applications

Molecular clock

State of the art A new relaxation Inference method

Conclusion

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

traits of different species.

which phylogenies is known (fixed).

Modeling framework:

- the trait at the root is drawn in a given law.
- along a branch it follows a given stochastic trajectory.
- it is copied in two independent processes at each branching event.

Felsenstein, 1973, Am. J. Hum. Genet.

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

- traits of different species.
- which phylogenies is known (fixed).

Felsenstein, 1973, Am. J. Hum. Genet.

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

- traits of different species.
- which phylogenies is known (fixed).

Modeling framework:

- the trait at the root is drawn in a given law.
- along a branch it follows a given stochastic trajectory.
- it is copied in two independent processes at each branching event.

Felsenstein, 1973, Am. J. Hum. Genet.

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

- traits of different species.
- which phylogenies is known (fixed).

Modeling framework:

- the trait at the root is drawn in a given law.
- along a branch it follows a given stochastic trajectory.
- it is copied in two independent processes at each branching event.

Felsenstein, 1973, Am. J. Hum. Genet.

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

- traits of different species.
- which phylogenies is known (fixed).

Modeling framework:

- the trait at the root is drawn in a given law.
- along a branch it follows a given stochastic trajectory.
- it is copied in two independent processes at each branching event.

Felsenstein, 1973, Am. J. Hum. Genet.

	Phenotypic evolution	
	• 0 00000	

State of the art Central hypothesis: independent lineages

We compare:

- traits of different species.
- which phylogenies is known (fixed).

Modeling framework:

- the trait at the root is drawn in a given law.
- along a branch it follows a given stochastic trajectory.
- it is copied in two independent processes at each branching event.

Felsenstein, 1973, Am. J. Hum. Genet.

		Phenotypic evolution ○●○○○○○	
State of the art Stochastic process alo	ng a fixed tree		

Overview of some stochastic trajectories:

Brownian motion $dX_t = \sigma dB_t$

Ornstein-Uhlenbeck $dX_t = \psi(heta - X_t)dt + \sigma dB_t$

Drifted Brownian motion $dX_t = adt + \sigma dB_t$

		Phenotypic evolution ○●○○○○○	
State of the art Stochastic process alc	ng a fixed tree		

Overview of some stochastic trajectories:

Brownian motion $dX_t = \sigma dB_t$

Ornstein-Uhlenbeck $dX_t = \psi(\theta - X_t)dt + \sigma dB_t$

Drifted Brownian motion $dX_t = adt + \sigma dB_t$

		Phenotypic evolution ○●○○○○○	
State of the art Stochastic process alc	ong a fixed tree		

Overview of some stochastic trajectories:

Brownian motion $dX_t = \sigma dB_t$ Ornstein-Uhlenbeck $dX_t = \psi(\theta - X_t)dt + \sigma dB_t$ Drifted Brownian motion $dX_t = adt + \sigma dB_t$

		Phenotypic evolution			
		000000			
Coevolution of traits from different species					

Attraction or repulsion in the trait space

Some examples of non-independent traits:

Mimicry attraction toward the mean trait of a community. Mutualism coevolution of traits in two clades.

- We would like to study the traits in a similar framework.
- Without the independence hypothesis from traits evolving in distinct lineages.

	Phenotypic evolution	
	000000	

Coevolution of traits from different species Attraction or repulsion in the trait space

Some examples of non-independent traits:

Mimicry attraction toward the mean trait of a community.

Mutualism coevolution of traits in two clades.

We would like to study the traits in a similar framework.

Without the independence hypothesis from traits evolving in distinct lineages.

	Phenotypic evolution	
	000000	

Coevolution of traits from different species Attraction or repulsion in the trait space

- Some examples of non-independent traits:
 - Mimicry attraction toward the mean trait of a community.

Mutualism coevolution of traits in two clades.

- We would like to study the traits in a similar framework.
- Without the independence hypothesis from traits evolving in distinct lineages.

	Phenotypic evolution	
	000000	

Coevolution of traits from different species Attraction or repulsion in the trait space

- Some examples of non-independent traits:
 - Mimicry attraction toward the mean trait of a community.

Mutualism coevolution of traits in two clades.

- We would like to study the traits in a similar framework.
- Without the independence hypothesis from traits evolving in distinct lineages.

	Phenotypic evolution	
	000000	

The trait distribution at present is Gaussian.

• We show how to numerically compute its mean and variance.

Introduction Divers	sification	Phenotypic evolution	Molecular clock	Conclusion
00 000	0000000	00000	000000000	

The trait distribution at present is Gaussian.

• We show how to numerically compute its mean and variance.

Introduction Divers	sification	Phenotypic evolution	Molecular clock	Conclusion
00 000	0000000	00000	000000000	

- The trait distribution at present is Gaussian.
- We show how to numerically compute its mean and variance.

Included on the object of the	WORCHIAI CIOCK	
00 00000000 000000	000000000	

- The trait distribution at present is Gaussian.
- We show how to numerically compute its mean and variance.

Included on the object of the	WORCHIAI CIOCK	
00 00000000 000000	000000000	

- ▶ The trait distribution at present is Gaussian.
- We show how to numerically compute its mean and variance.

Included on the object of the	WORCHIAI CIOCK	
00 00000000 000000	000000000	

The trait distribution at present is Gaussian.

We show how to numerically compute its mean and variance.

Included on the object of the	WORCHIAI CIOCK	
00 00000000 000000	000000000	

- The trait distribution at present is Gaussian.
- We show how to numerically compute its mean and variance.

	Phenotypic evolution	

Proposed framework Most models fit within this framework

 $dX_t = (a - AX_t)dt + \Gamma dW_t$

	Phenotypic evolution	

Proposed framework Most models fit within this framework

 $dX_t = (a - AX_t)dt + \Gamma dW_t$

	Phenotypic evolution	

Proposed framework Most models fit within this framework

 $dX_t = (a - AX_t)dt + \Gamma dW_t$

	Phenotypic evolution	
	0000000	

Examples of applications Competition leading to trait displacement

Anolis lizards on Caribbean islands.

Traits under study:

- skull, jaws.
- femur, tibia, humerus, radius, …
- ▶ pelvis, tail.

Drury and al., 2016, Syst. Biol.

	Phenotypic evolution	
	0000000	

Examples of applications Competition leading to trait displacement

Anolis lizards on Caribbean islands.

Traits under study:

- skull, jaws.
- femur, tibia, humerus, radius, …
- pelvis, tail.

Drury and al., 2016, Syst. Biol.

	Phenotypic evolution	
	0000000	

Examples of applications Competition leading to trait displacement

Drury and al., 2016, Syst. Biol.

		Phenotypic evolution ○○○○○○●	
Examples of appl Coevolving traits in d	ications istinct clades		

- Coevolution of traits implicated in mutualistic interactions.
- Could be coupled with a model of interaction network evolution.

Introduction

Macroevolution Stochastic modeling

Diversification

State of the art The species definition in modeling work Application to diversification studies

Phenotypic evolution

State of the art Coevolution of traits from different species Proposed framework Examples of applications

Molecular clock

State of the art A new relaxation Inference method

Conclusion

		Phenotypic evolution	Molecular clock ●000000000	
State of the art The strict clock, back	in the 60's, with Zucker	kandl and Pauling		

> Pairwise differences are compatible with branch lengths of an ultrametric tree.

We can imagine that mutation happen through a constant rate Poisson process.

Zuckerkandl and Pauling, 1962.

		Phenotypic evolution	Molecular clock ●000000000	
State of the art	in the 60's. with Zuckerk	andl and Pauling		

> Pairwise differences are compatible with branch lengths of an ultrametric tree.

We can imagine that mutation happen through a constant rate Poisson process.

Zuckerkandl and Pauling, 1962.

	Phenotypic evolution 0000000	Molecular clock O●OOOOOOOO	
State of the art			

- We are given a stationary Markov chain on $\{A, T, G, C\}$.
- Nucleotides at the root are iid according to the stationary law.
- Each nucleotide evolves independently of the others along a branch.
- The process is split into two independent processes at each branching event.

Felsenstein, 1981, J. Mol. Evol.

		Phenotypic evolution	Molecular clock O●OOOOOOO	
State of the art Markovian model for	molecular evolution			

- We are given a stationary Markov chain on $\{A, T, G, C\}$.
- Nucleotides at the root are iid according to the stationary law.
- Each nucleotide evolves independently of the others along a branch.
- The process is split into two independent processes at each branching event.

		Phenotypic evolution	Molecular clock O●OOOOOOOO	
State of the art Markovian model for i	molecular evolution			

- We are given a stationary Markov chain on $\{A, T, G, C\}$.
- Nucleotides at the root are iid according to the stationary law.
- Each nucleotide evolves independently of the others along a branch.
- ▶ The process is split into two independent processes at each branching event.

Felsenstein, 1981, J. Mol. Evol.

		Phenotypic evolution	Molecular clock O●OOOOOOOO	
State of the art Markovian model for	molecular evolution			

- We are given a stationary Markov chain on $\{A, T, G, C\}$.
- Nucleotides at the root are iid according to the stationary law.
- Each nucleotide evolves independently of the others along a branch.
- The process is split into two independent processes at each branching event.

Felsenstein, 1981, J. Mol. Evol.
		Phenotypic evolution	Molecular clock O●OOOOOOOO	
State of the art Markovian model for	molecular evolution			

- We are given a stationary Markov chain on $\{A, T, G, C\}$.
- Nucleotides at the root are iid according to the stationary law.
- Each nucleotide evolves independently of the others along a branch.
- The process is split into two independent processes at each branching event.

Felsenstein, 1981, J. Mol. Evol.

		Molecular clock	Conclusion
		000000000	
State of the art The strict or fully rel	axed versions		

		Phenotypic evolution	Molecular clock OO●OOOOOOO	
State of the art	laxed versions			

	Phenotypic evolution	Molecular clock OO●OOOOOO	
State of the art			

The strict or fully relaxed versions

	Phenotypic evolution	Molecular clock OO●OOOOOO	
State of the art			

State of the art The strict or fully relaxed versions

	Phenotypic evolution	Molecular clock 000●000000	
State of the art			

The many relaxations

Branch lengths follow a prior law.

- The substitution rate can vary amon branches, in an auto-correlated way...
- ... or in a non-auto-correlated way.

Lepage et al., 2007, Mol. Biol. Evol.

	Diversification	Phenotypic evolution	Molecular clock	Conclusion
00	000000000	0000000	000000000	
State of the art The many relaxations				

- Branch lengths follow a prior law.
- ▶ The substitution rate can vary amon branches, in an auto-correlated way...
- ... or in a non-auto-correlated way.

Lepage et al., 2007, Mol. Biol. Evol.

	Diversification	Phenotypic evolution	Molecular clock	Conclusion
00	000000000	0000000	000000000	
State of the art The many relaxatior	ıs			

- Branch lengths follow a prior law.
- The substitution rate can vary amon branches, in an auto-correlated way...
- ... or in a non-auto-correlated way.

Lepage et al., 2007, Mol. Biol. Evol.

OO		OOOOOOO		Conclusion
State of the art The datation principle				
рата	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G G - - penguin - - G G - -	G C	orgeong turte Peqeum	
MODEL				
RESULT	th at t ^{trins}	^{briade} digong turne Borg an	0 time ¥ 1	

	O000000000	Phenotypic evolution	Molecular clock	Conclusion
State of the art The datation principle				
DATA	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G G - - penguin - - G G - -	G C	olikong turtio Panguri	
MODEL			\mathcal{T} = Tree	
			$\mathbb{P}(\mathcal{T})$	
RESULT	lite, Interior	tates	0 time	

Presentation in Basel

OO		OOOOOOO		Conclusion
State of the art The datation principle				
рата	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G G - - penguin - - G G - -	G C	^{-14c} ^{-14c} ^{14th} ^{14th}	
MODEL		$\mathcal{R} = \text{Substitution rate}$ $\mathbb{P}(\mathcal{R} \mid \mathcal{T})$	$\mathcal{T} = \operatorname{Tree}_{\mathbb{P}(\mathcal{T})}$	
RESULT	li ar	^{by} Aa _{le} dogong turthe Pangaug	0 time ¥ 1	

	O000000000	Phenotypic evolution	Molecular clock	Conclusion
State of the art The datation principle				
рата	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G G - - penguin - - G G - -	G C	di@cyage turrie Pacration	
MODEL	$ \begin{array}{c} \land & & \uparrow \\ c & c \\ \end{array} $ $ \begin{array}{c} \mathcal{A} = \text{Alignment} \\ \mathbb{P}(\mathcal{A} \mid \mathcal{T}, \mathcal{R}) \end{array} $	$\mathcal{R} = \text{Substitution rate}$ $\mathbb{P}(\mathcal{R} \mid \mathcal{T})$	$\mathcal{T} = \operatorname{Tree}_{\mathbb{P}(\mathcal{T})}$	
RESULT	the second s	¹⁴ NM ₆ ¹⁰ NM ₆	0 time ¥ 1	

Presentation in Basel

		Phenotypic evolution	Molecular clock ○○○○●●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock ○○○○○●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock ○○○○○●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock ○○○○●●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock ○○○○○●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock ○○○○●●○○○○	
A new relaxation Biological motivation:	genomics of speciation			

Strong divergent selection at speciation :

- use of distinct resources,
- adaptation to distinct habitats,
- recognition of sexual partners.

- genomic islands of speciation,
- short rise of the substitution rate.

		Phenotypic evolution	Molecular clock	
A new re Introduction	laxation n of spikes of mutations			
From	the whole process	to the red	constructed tree:.	
►	Birth-death process,	probab	pility $ u$ of having a <i>spike</i> at a	
►	probability ν of having a <i>spike</i> a	t birth. branching time,		
	01.1	an inhorithe branch		

2223

• On a spike, each nucleotide of the sequence mutates with probability κ .

Т

time

		Phenotypic evolution	Molecular clock	
A new relax	xation of spikes of mutations			
From tl	he whole process	to the recons	tructed tree:.	
► B	irth-death process, robability ν of having a <i>spike</i>	probability branching	u u of having a <i>spike</i> at a time,	
-		an inhomo		

Presentation in Basel

	Phenotypic evolution	Molecular clock ○○○○○○●○○○	
A new relaxation			

A new relaxation Introduction of spikes of mutations

From the whole process ...

- Birth-death process,
- probability ν of having a *spike* at birth.
- ... to the reconstructed tree:.
 - probability v of having a spike at a branching time,
 - an inhomogeneous Poisson process along branches.

- Markovian evolution along branches,
- On a spike, each nucleotide of the sequence mutates with probability κ .

		Phenotypic evolution	Molecular clock ○○○○○○●○○○○	
A new relaxa	ition spikes of mutations			
From the	whole process	to the recons	tructed tree:.	
Birt	th-death process,	probability	ν of having a <i>spike</i> at a	
pro	• probability ν of having a <i>spike</i> at birth		time,	

- Markovian evolution along branches,
- On a spike, each nucleotide of the sequence mutates with probability κ .

		Phenotypic evolution 0000000	Molecular clock ○○○○○○○○○○	
A new relaxat Introduction of sp	ion pikes of mutations			
From the v	vhole process	to the recons	structed tree:.	
Birth	-death process,	probability	/ $ u$ of having a <i>spike</i> at a	
proba	probability v of having a spike at birth	th. branching	time,	
C]	an inhomo branches.	ogeneous Poisson process al	long

- Markovian evolution along branches,
- On a spike, each nucleotide of the sequence mutates with probability κ .

		Phenotypic evolution	Molecular clock ○○○○○○○○○○	
A new relaxation Introduction of spi	D n kes of mutations			
From the wh	nole process	to the recons	structed tree:.	
Birth-	death process,	probability	u of having a <i>spike</i> at a	
probability v of having a spike at birth.		rth. branching	time,	
ol	1	an inhomo branches.	ogeneous Poisson process al	ong

Markovian evolution along branches,

On a spike, each nucleotide of the sequence mutates with probability κ.

		Phenotypic evolution 0000000	Molecular clock ○○○○○○●○○○	
A new relaxation Introduction of spike	ı s of mutations			
From the who Birth-de	le process ath process, ity w of having a sp <i>ike</i> at hir	to the reconstruc ▶ probability ν o branching time	ted tree:. of having a <i>spike</i> at a e,	
		 an inhomogen branches. 	eous Poisson process alc	ong

- Markovian evolution along branches,
- > On a spike, each nucleotide of the sequence mutates with probability κ .

00	0000000000	0000000	0000000000	
Inference method Spikes on the reconst	ructed tree			
DATA	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G - - - penguin - - G - - -	G C A A E ^r E ^r	dugang turne Peurgauin	
MODEL		S := Spikes $\mathbb{P}(S \mid \mathcal{T})$	$\mathcal{T} := \operatorname{Tree}_{\mathbb{P}(\mathcal{T})}$	
RESULT	$\mathbb{P}\left(\mathcal{S}\mid\mathcal{A},\mathcal{T}\right)$	$\propto \mathbb{P}(\mathcal{A} \mid S, \mathcal{T}) \mathbb{P}(S \mid \mathcal{T})$		

			0000000000	
Inference method Spikes on the reconst	ructed tree			
DATA	shark A T C G A A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G - - - penguin - - G - - -	G C A transformed and transformed an	th gong	
MODEL		$\mathcal{S} := \text{Spikes}$ $\mathbb{P}(\mathcal{S} \mid \mathcal{T})$	$\mathcal{T} := \operatorname{Tree}_{\mathbb{P}(\mathcal{T})}$	
RESULT	$\mathbb{P}\left(\mathcal{S}\mid\mathcal{A},\mathcal{T}\right)$	$\propto \mathbb{P}(\mathcal{A} \mid \mathcal{S}, \mathcal{T}) \mathbb{P}(\mathcal{S} \mid \mathcal{T}) \mathbb{I}$		

Molecular clock

00	0000000000	0000000	00000000000	
Inference method Spikes on the reconst	ructed tree			
DATA	shark A T C G A tuna - - G - C T whale - A G - - - dugong - A G - - - turtle - - G - - - penguin - - G - - -	A G C A A X ^e y y ^e y	^{cliceog}	
MODEL		$S := Spikes$ $\mathbb{P}(S \mid \mathcal{T})$	$\mathcal{T}_{i=\text{Tree}} \\ \mathbb{P}(\mathcal{T})$	
RESULT	$\mathbb{P}\left(\mathcal{S}\mid\mathcal{A},\mathcal{T}\right)$	$\propto \mathbb{P}(\mathcal{A} \mid \mathcal{S}, \mathcal{T}) \mathbb{P}(\mathcal{S} \mid \mathcal{T})$		

Molecular clock

Presentation in Basel

	Molecular clock	
	0000000000	

Inference method Posterior of spikes conditioned on branch-lengths and alignment

	Phenotypic evolution	Molecular clock ○○○○○○○○●○	

Inference method Posterior of spikes conditioned on branch-lengths and alignment

	Phenotypic evolution	Molecular clock ○○○○○○○○●○	

Inference method

Posterior of spikes conditioned on branch-lengths and alignment

	Phenotypic evolution 0000000	Molecular clock ○○○○○○○○○	
1			

Inference method Summary

Model and methodological developments:

- A strong link between the speciation and substitution process.
- A preliminary inference procedure.

Perspectives :

- Test the relative support for gradual / punctuated relaxations of the molecular clock.
- Scan sequences to look for genes likely to evolve in a punctual way.

	Phenotypic evolution	Molecular clock ○○○○○○○○○	
I			

Inference method Summary

Model and methodological developments:

- A strong link between the speciation and substitution process.
- A preliminary inference procedure.

- Test the relative support for gradual / punctuated relaxations of the molecular clock.
- Scan sequences to look for genes likely to evolve in a punctual way.

	Phenotypic evolution	Molecular clock ○○○○○○○○○	
I			

Inference method Summary

Model and methodological developments:

- A strong link between the speciation and substitution process.
- A preliminary inference procedure.

- Test the relative support for gradual / punctuated relaxations of the molecular clock.
- Scan sequences to look for genes likely to evolve in a punctual way.

	Phenotypic evolution	Molecular clock ○○○○○○○○○	
I			

Inference method Summary

Model and methodological developments:

- A strong link between the speciation and substitution process.
- A preliminary inference procedure.

- Test the relative support for gradual / punctuated relaxations of the molecular clock.
- Scan sequences to look for genes likely to evolve in a punctual way.

Introduction

Macroevolution Stochastic modeling

Diversification

State of the art The species definition in modeling work Application to diversification studies

Phenotypic evolution

State of the art Coevolution of traits from different species Proposed framework Examples of applications

Molecular clock

State of the art A new relaxation Inference method

Conclusion

		Conclusion

Inference method

Manceau and Lambert, 2018, Bull. Math. Biol. (under revisions) Manceau, Lambert and Morlon, 2015, Ecol. Lett.

		Conclusion

Inference method

Manceau, Lambert and Morlon, 2016, Syst. Biol.

	Phenotypic evolution	Conclusion

Inference method

Ongoing work with Hélène, Amaury and Julie Marin.

		Phenotypic evolution	Conclusion
Acknowledgment	5		

Thank you for your attention !

Intro	Chap 2	Chap 3	Chap 4	Chap 5	
0000					
Evolution of tra	its along a tree				

Intro	Chap 2	Chap 3	Chap 4	Chap 5	Conclu
○●000	000	000	000	00	0000
Phylogenetic rec	onstruction				

Intro	Chap 2	Chap 3	Chap 4	Chap 5	
00000					
Phylogenetic rec Maximum likelihood	onstruction				

Intro	Chap 2	Chap 3	Chap 4	Chap 5	
○OO●O	000	000	000	00	
Phylogenetic rec	construction				

Intro	Chap 2	Chap 3	Chap 4	Chap 5	
○000●	000	000	000	00	
Phylogenetic rec	onstruction				

	Chap 2 ●○○	Chap 000								Cha OC	ap 4							Ch OC	ap 5 D		
The many mode Individual-based mod	ls of speciation																				
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		
		۰	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
		۰	•	٠	۰	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
		•	•	•	۰	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
Population dy	namics :	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
 fixed siz 	e.						•						•		•			•	•		
discreteuniform	generations. choice of the parent	• in	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		
the prev		•	•	٠	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
	on of a model of spec	cia- •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		
		•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	• •	•	•	٠		
		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		
		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•		
															•						

	Chap 2 ●○○	Chaj OOG								Chi OC	ap (00							Ch Oi			
The many mode Individual-based mo	els of speciation dels																				
				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
			•••	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		
Population dy	/namics :		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		
 fixed size discrete uniform 	ze. e generations.	in	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		
the prev	vious generation.		•••	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		
Superimposit tion.	ion of a model of spe	cia-		•	•	•	•	•	•	•	•	•		•	•	•		•	•		
			• •	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•		
				•	•	•	•	•	•	•	•	•	•	•					•		

	Chap 2 ●○○	Chap 00C								Cha OC	ap 4 00							C O				
The many mode Individual-based mod	ls of speciation dels																					
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
Population dy fixed siz	namics : e.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
 discrete uniform the prev 	generations. choice of the parent ious generation.	in •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
Superimposition.	on of a model of spec	ia- •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
			1					•	•	•	•	•		•	•	•	•					

	Chap 2 ●○○	Chap 000								Cha OC	ap 4 00							CI O				
The many mod Individual-based m	lels of speciation odels																					
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
Population of fixed s	dynamics : iize.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•			
 discret uniforr 	e generations. n choice of the parent	t in	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•			
tne pro Superimposi	tion of a model of spe	• cia-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•			
]	\ \)	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•			

	Chap 2 ●○○	Chap 3 000					Cha OC	ap 4 00							Chap ! DO			
The many mode Individual-based mod	ls of speciation ^{Jels}																	
Population dyu fixed sizu discrete uniform the prev Superimposition	namics : e. generations. choice of the parent ious generation. on of a model of speci	• • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			•	•	•			•	•	•	 . .<			
			V.		1	/	1	5		/	Λ	I		/	\square			

Intro 00000	Chap 2 ●○○	Chap 3 000							Chi OC	ap 4 00								hap 5 00			Conclu 0000
The many mode Individual-based mod	ls of speciation																				
Population dy Fixed siz discrete	namics : e. generations.	• • •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	• • • • • •			
 uniform the prev 	choice of the parent i ious generation.	n •	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•••			
Superimpositi tion.	on of a model of speci	a- •			· · · · · · · · · · · · · · · · · · ·		$\left\langle \right\rangle$						• • •)		- - -/					

	Chap 2 ●○○	Chap 3 000	Chap 4 000	Chap 5 Con 00 00	clu 00
The many mode Individual-based mod	ls of speciation dels				
Population dy fixed siz discrete uniform the prev Superimposition	namics : e. generations. choice of the parent ious generation. on of a model of speci	in 			

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many m	odels of specia	tion			

Population dynamics :

- fixed size.
- discrete generations.
- uniform choice of the parent in the previous generation.

Superimposition of a model of specia tion.

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many m	odels of specia	tion			

Population dynamics :

- fixed size.
- discrete generations.
- uniform choice of the parent in the previous generation.

Superimposition of a model of specia tion.

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many mode	ls of speciation				
The many mode	is of speciation				
Individual-based mod	dels				

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many mode	els of speciation				
Individual-based mo	dels				

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many m	nodels of speciat	ion			
Individual-base	d models				

	Chap 2	Chap 3	Chap 4	Chap 5					
	000								
The many mode									
The many mode	is of speciation								
Individual-based models									

	Chap 2	Chap 3	Chap 4	Chap 5	
	000				
The many mode Individual-based mod	ls of speciation				

	Chap 2	Chap 3	Chap 4	Chap 5						
	000									
The many r	The many models of speciation									
Individual-base	ed models									

	Chap 2	Chap 3	Chap 4	Chap 5					
	000								
The many mode									
The many mode	is of speciation								
Individual-based models									

	Chap 2	Chap 3	Chap 4	Chap 5					
	000								
The many models of speciation									
Individual-based mo	dels								

	Chap 2	Chap 3	Chap 4	Chap 5				
	000							
<u>—</u> .								
The many models of speciation								
Individual-base	d models							

	Chap 2	Chap 3	Chap 4	Chap 5					
	000								
The many mode									
The many mode	is of speciation								
Individual-based models									

	Chap 2	Chap 3	Chap 4	Chap 5				
	000							
The many models of speciation								
Individual-based mo	dels							

	Chap 2	Chap 3	Chap 4	Chap 5				
	000							
<u>—</u> .								
The many models of speciation								
Individual-based	models							

	Chap 2	Chap 3	Chap 4	Chap 5							
	000										
Where doe	Where does the paraphyly come from ?										

Intro	Chap 2	Chap 3	Chap 4	Chap 5	Conclu			
00000		000	000	00	0000			
From a general agusta a phylography								

	Chap 2	Chap 3	Chap 4	Chap 5			
		• o o					
A three-types process							
Laws of reconstructed phylogenies							

The law of reconstructed phylogenies, under our model, is the same as:

a three-types branching process with types,

type 0 the clonal family survives until present. type 1 the clonal family does not survive until present. pe gelé two clonal families survive until present.

inhomogeneous in time, with known transition rates.

	Chap 2	Chap 3	Chap 4	Chap 5		
		000				
A three-types pro	ocess					
Laws of reconstructed phylogenies						

a three-types branching process with types,

type 0 the clonal family survives until present. type 1 the clonal family does not survive until present upe gelé two clonal families survive until present.

	Chap 2	Chap 3	Chap 4	Chap 5	
		• o o			
A three-types pro Laws of reconstructed	OCESS d phylogenies				

a three-types branching process with types,

type 0 the clonal family survives until present. type 1 the clonal family does not survive until present.

vpe gelé two clonal families survive until present

	Chap 2	Chap 3	Chap 4	Chap 5	
		•••			
A three-types pro Laws of reconstructed	ocess d phylogenies				

a three-types branching process with types,

type 0 the clonal family survives until present.

type $1 \;$ the clonal family does not survive until present.

ype gelé two clonal families survive until present.

	Chap 2	Chap 3	Chap 4	Chap 5	
		•••			
A three-types pro Laws of reconstructed	OCESS d phylogenies				

a three-types branching process with types,

type 0 the clonal family survives until present.

type $1 \;$ the clonal family does not survive until present.

ype gelé two clonal families survive until present.

	Chap 2	Chap 3	Chap 4	Chap 5	
		•••			
A three-types pro Laws of reconstructe	ocess d phylogenies				

- a three-types branching process with types,
 - type 0 the clonal family survives until present.
 - type $1\;$ the clonal family does not survive until present.
 - type gelé two clonal families survive until present.

	Chap 2	Chap 3	Chap 4	Chap 5	
		•••			
A three-types pro Laws of reconstructed	OCESS d phylogenies				

- a three-types branching process with types,
 - type 0 the clonal family survives until present.
 - type 1 the clonal family does not survive until present.
 - type gelé two clonal families survive until present.

	Chap 2	Chap 3	Chap 4	Chap 5	
		000			
A three-tvp	oes process				

Chap 2	Chap 3	Chap 4	Chap 5	
	000			

Influence of parameter values on the phylogenetic tree shape

	Chap 2 000	Chap 3 000	Chap 4 ●○○	Chap 5 OO	
Variance-covaria	nce matrix				

	Chap 2 000	Chap 3 000	Chap 4 ○●○	Chap 5 00	
Cartoon					

Chap 2	Chap 3	Chap 4	Chap 5	
		000		

Generalist Matching Mutualism

	Chap 2 000	Chap 3 000	Chap 4 000	Chap 5 ●○	
Relaxed molecul Biological results	ar clock				

Chap 2	Chap 3	Chap 4	Chap 5	
			00	

With a prior on our parameters

Posterior distribution of α, κ, ν conditioned on branch-lengths and alignment

Chap 2	Chap 3	Chap 4	Chap 5	
			00	

With a prior on our parameters

Posterior distribution of α, κ, ν conditioned on branch-lengths and alignment

Chap 2	Chap 3	Chap 4	Chap 5	
			00	

With a prior on our parameters

Posterior distribution of α, κ, ν conditioned on branch-lengths and alignment

	Chap 2	Chap 3	Chap 4	Chap 5	Conclu
					• 0 00
Perspectives SG	D				

What if b, d and ν change through time ?

	Chap 2	Chap 3	Chap 4	Chap 5	Conclu
	000	000	000	OO	O●○○
Conclu And with a Kingmar	n coalescent ?				

	Chap 2	Chap 3	Chap 4	Chap 5	Conclu
	000	000	000	00	○○●○
Links between	chapters				

	Chap 2	Chap 3	Chap 4	Chap 5	Conclu
00000	000	000	000	00	0000
~ .					

Other ways to model species and individuals in the literature

GMYC or multisecies coalescent

