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2. What are the drivers of trait evolution ? 2. Are some pathogen traits under selection ?
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P There is a hidden phylogenetic/transmission tree.

P Traits evolve along the tree.

P Propose scenarios of evolution: probabilistic models with mecanistic assumptions.
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» In epidemiology, samples are infected individuals.

» In macroevolution, samples are species.

But additional signal could come from:

P case count data, i.e. non-sequenced individuals,

t » undescribed fossils without any character data attached.

We call this a record of occurrences O.

What is the total number of individuals in the past ?
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P estimate 3\, [i using the full tree
> compute Eg , (/e |l = 1).

Fast, but not accurate

What has been proposed, with occurrences,

P simulate population size trajectories
conditioned on the full tree

> to approximate P (I, | T, O).

Accurate, but slower
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The ancestral population size
[e]ele] ]

Forward-backward traversal of the tree
A backward breadth-first traversal to compute L; = (IF‘( Tf. O'f | Iy = ke + I))

i>

time

As a by-product, we get the likelihood in the end,
L=P(T, Oy =1)
— 1

tor

| ]|
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Known corrolaries

Recall that M, verifies:

amy’ i i— i
T =i+ MP =A@k + i = DM — (i + MY
MY =1

We introduce the corresponding probability generating function:

M(t,z) = E ziMEi)
i=0

The initial condition translates as Vz, M(ty,z) =1
And the ODE translates as the following PDE:

O = —k(2Az — V)M — (A2 — vz + p)o, M

P This can be solved analytically to get M.

» and L; can also be solved analytically, so far only when r = 1.
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The ancestral population size

Known corrolaries

I need to consider the parameter space

A RN

Q w=20 r=1 w#0and r#1
=]

2,

g s Algorithm 1’

s - P(7,0) Corollary 3.2 Proposition 3.3 or Algorithm 2°
o

)

% ~ K Proposition 3.1  Proposition 3.3 Algorithm 1

3 t & Corollary 4.4 & Algorithm 2 & Algorithm 2
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> With only p-sampling (¢, w = 0, 0).
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Reconstructing past population size

> With only p-sampling (¢, w = 0, 0).
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Reconstructing past population size

> With p and 1-sampling (w = 0).
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Reconstructing past population size

> With p and 1-sampling (w = 0).
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Reconstructing past population size

> With p, 1, and w-sampling.

Iy

time

0 50 100 150 200 250
number of individuals

LJLL Math-Bio, June 2020




The ancestral population size
L ]

Reconstructing past population size

> With p, 1, and w-sampling.
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> With p, 1, and w-sampling.
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Goals:
1. Work with piecewise-constant parameters.
2. Implement the method to compute P(7, O).

3. Propose an easy post-analysis computation of K;.
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Overview of the project
With Antoine Zwaans and Jérémy Andréoletti

Goals:
1. Work with piecewise-constant parameters.
Implement the method to compute P(7, O).

Propose an easy post-analysis computation of K.

> wnN

lllustrate the approach on empirical datasets.

(A2, p2, Y2, w2, 72) |

(A1 pr Yry wi,71) ‘

ﬁ |
(Ao Ho, Yol wo 7o) |
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Implementation

P within the phylogenetic software revBayes,
» modular design based on graphical models,

P use to sample the Bayesian posterior.

~ el j Occurrence Birth-Death Model

7,0
Substitution Model|

ponanial exponontal
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fossilization rate.
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w =N
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Empirical case studies
@00

Cetacean diversity
After Marx et al. (2016) and the Paleobiology database

P Generic diversity P Bias 1: Uneven sampling of time periods/localities,

P Bias 2: Species abundances,

satnoptea
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Cetacean diversity

(8765 nt. nuclear sequences + 327 morphological characters
7410 nt. mitochondrial sequences) X (27 extant +.90 fossil taxa)
x 87 extant taxa
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Cetacean diversity
Preliminary results
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Covid-19 prevalence on the Diamond princess

P Diamond princess cruise ship,
P Very close to the model assumptions,

P With rates varying at known time points.

Event

W
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, lIL. |11 |

Cabin quarantine
Haibour quarantine

Increased testing
Sympt. testing Sequencing

New observations

Cruise

>
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Conclusion
o

Perspectives
Diversity-dependent diversification

Work in progress
P extension to logistic birth-death processes, with per-capita rates either:
Ai=A—ai or pui=p+pi
P design methods to test hypotheses regarding diversification scenarios,

> try to fit it to empirical data, either from epidemiology or macroevolution.

LJLL Math-Bio, June 2020



Take-home messages

Conclusion
( 1o}

Model birth-death model with a specific sampling scheme through time.

LJLL Math-

io, June 2020

time

pop size



Take-home messages

Conclusion
( 1o}

Model birth-death model with a specific sampling scheme through time.

Method to get the likelihood of a tree and a record of occurrences, as well as P (/; | O, T).

LJLL Math-

io, June 2020

time

pop size



Take-home messages

Conclusion
( 1o}

Model birth-death model with a specific sampling scheme through time.

Method to get the likelihood of a tree and a record of occurrences, as well as P (/; | O, T).

Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

LJLL Math-

io, June 2020

time

pop size



Conclusion
( 1o}

Take-home messages

Model birth-death model with a specific sampling scheme through time.
Method to get the likelihood of a tree and a record of occurrences, as well as P (/; | O, T).
Implementation with piecewise-constant parameters within the phylogenetic software revBayes.

Illustration on macroevolution and epidemiology datasets.

time

pop size

LJLL Math-Bio, June 2020




Conclusion
( 1o}

Take-home messages

Model birth-death model with a specific sampling scheme through time.

Method to get the likelihood of a tree and a record of occurrences, as well as P (/; | O, T).
Implementation with piecewise-constant parameters within the phylogenetic software revBayes.
Illustration on macroevolution and epidemiology datasets.

Perspectives e.g. for logistic density-dependence.

Thank you for your attention !

time

pop size
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Etienne et al. (2012) used backward Kolmogorov equations to compute the likelihood of trees, under a
logistic birth-death process.

Leventhal et al. (2013) used the forward Kolmogorov equations to compute the likelihood of trees, under
a logistic birth-death process.

Vaughan et al. (2018) introduced the model and a Monte-Carlo method to get P (I, | O, T).
Laudanno et al. (2019) did something similar to our analytical work on M.
Gupta et al. (2020) analytical development to compute P(7", ©) when r = 1.
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