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Abstract How to define a partition of individuals into species is a long-standing question called

the species problem in systematics. Here, we focus on this problem in the thought experiment where

individuals reproduce clonally and both the differentiation process and the population genealogies

are explicitly known. We specify three desirable properties of species partitions: (A) Heterotypy

between species, (B) Homotypy within species and (M) Monophyly of each species. We then ask:

How and when is it possible to delineate species in a way satisfying these properties?

We point out that the three desirable properties cannot in general be satisfied simultaneously,

but that any two of them can. We mathematically prove the existence of the finest partition

satisfying (A) and (M) and the coarsest partition satisfying (B) and (M). For each of them, we

propose a simple algorithm to build the associated phylogeny out of the genealogy.
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The ways we propose to phrase the species problem shed new light on the interaction between

the genealogical and phylogenetic scales in modeling work. The two definitions centered on the

monophyly property can readily be used at a higher taxonomic level as well, e.g. to cluster species

into monophyletic genera.
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Introduction

Models in macro-evolution have traditionally been centered on species. The so-called lineage-based

models of diversification form a wide class of models considering species as key evolutionary units,

thought of as particles that can give birth to other particles (i.e., speciate) during a given lifetime

(i.e., before extinction) (see Stadler 2013; Pyron and Burbrink 2013; Morlon 2014 for reviews).

In contrast, evolutionary processes amenable to direct empirical measurement (differentiation,

reproduction, selection) are usually described at the level of individuals or populations.

The Neutral Theory of Biodiversity (NTB) (Hubbell 2001) opened a new way of thinking about

species in macro-evolution. The birth, death, differentiation and speciation processes are described

at the level of individuals, under the assumption of selective neutrality. In the last two decades, a

popular way of studying macro-evolution has followed, consisting in performing computer-intensive

simulations of individual-based stochastic processes of species diversification (Jabot and Chave

2009; Aguilée et al. 2011; Rosindell et al. 2015; Gascuel et al. 2015; Missa et al. 2016). These
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models rely on three major steps: (i) The genealogy of individuals is produced under a stochastic

scenario of population dynamics; (ii) A process of phenotypic differentiation superimposed on the

genealogy generates a partition of individuals into phenotypic groups; (iii) A species definition is

postulated and is used to cluster individuals into different species, in relation to both the genealogy

and phenotypic groups. These three steps allow modelers to track the evolutionary history of

species, where extinction and speciation events emerge from the genealogical history of individual

organisms.

The scenario of population dynamics (i) has for example been modeled with theWright-Fisher or

the Moran model from population genetics or with density-dependent branching processes (Durrett

2008). We will not focus on that step, but we will nonetheless consider throughout the paper that

individuals reproduce clonally. The genealogical relationships within a sample X of present-day

individuals will thus be a known rooted tree denoted T . Each tip of T is labelled by an element

of X , each internal vertex corresponds to some ancestor of elements of X , and an edge between

vertices represents a parent-child relationship. After running through step (ii), all individuals in X

can be grouped into clusters of individuals on the basis of their phenotype. We call the associated

X -partition the phenotypic partition, denoted P.

In this paper, we review how steps (ii) and (iii) have been handled in the literature, before

asking the following theoretical question:

How and when is it possible to delineate species, in a way satisfying biologically meaningful

properties, in an ideal situation where the phenotypic partition P is specified and the entire

genealogy T is known?

Because we work under the simplifying assumption of clonally reproducing organisms, this question

is formally identical to the problem of defining and delineating genera when the species phylogeny

is known, or any similar question formulated at a higher-order level (Aldous et al. 2008, 2011).

In the biological literature, the problem of agreeing on what should be considered as the most rele-

vant concept of species is a long-standing question called the species problem. The species problem

is both a conceptual question (defining the species concept) and a practical problem (classifying

individuals into species) (Bock 2004). Several of the most notable evolutionary biologists (e.g. Dar-
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win, Dobzhansky, Mayr, Simpson, Hennig...) took a stand on the species problem often leading to

vigorous debates (see Mayden 1997; De Queiroz 2007 for overviews of historical disagreements).

In the very simple setting that we are looking at, two classes of species concepts appear relevant

in the quest for biologically meaningful properties of species. The ‘typological species concepts’

(Regan 1925; Sneath 1976) correspond to the clustering of individuals on the sole basis of their

observed phenotype. This can be translated into two desirable properties: (A) any two individuals

in distinct clusters differ for at least one characteristic, (B) individuals belonging to the same cluster

all share the same characteristics. The later foundation and spread of cladistics by Hennig (Hennig

1965) marked a radical change of paradigm in the systematic classification, which quickly resulted

in the proposition of so-called ‘phylogenetic species concepts’ (De Queiroz and Donoghue 1988;

Avise and Ball 1990; Baum 2009). These definitions, which brought to the forefront the notion of

common ancestry, provide us with a third desirable property: (M) species are monophyletic groups

of individuals, i.e. any two individuals in one cluster are more closely related to each other than

either is to any individual in another cluster.

Ideally, defining putative species in our framework amounts to finding clusters of individuals

satisfying these three desirable properties that we will denote throughout the paper:

(A) Heterotypy between species

(B) Homotypy within species

(M) Monophyly

We quickly observe that by definition, the phenotypic partition P satisfies the two desirable

properties: (A) and (B). Unfortunately, phenotypically similar individuals may not be more ge-

nealogically related to one another than to any different individual. In other words P does not in

general satisfy (M). Convergence and reversal events, by making a trait either appear several times

independently in different parts of the tree or by making a trait disappear in subtrees, are classically

invoked to explain the non-monophyly of P. However, let us stress that even with traits evolving

without convergence or reversal, individuals characterized by an ancestral phenotype may define

a non-monophyletic subset of X , a phenomenon called ‘ancestral type retention’ or ’plesiomorphy’

(see Figure 1).
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

a) Convergence b) Reversal c) Plesiomorphy

Fig. 1: Different scenarios leading to non-monophyletic phenotypic partitions, for the ‘red’ phenotype. a) The same

phenotype arises twice independently in two branches. b) A new phenotype arises, and disappears later. c) The

group of individuals showing the ancestral phenotype is not monophyletic.

The paper is organized as follows. In Section 1, we review the main species definitions used in the

context of individual-based modeling of macro-evolution. In Section 2, we introduce the formalism

required to study species partitions, and we make some preliminary observations on the three

desirable properties. In Section 3, we prove that it mathematically makes sense to define the finest

species partition satisfying (A) and (M) and the coarsest species partition satisfying (B) and (M).

We call these respectively the loose and the lacy species partitions. Finally, we discuss the relevance

of these definitions from both empirical and theoretical points of view.

1 Five species definitions in individual-based models

We provide here an overview of five modes of speciation that have been proposed so far in the

context of individual-based models of diversification (see Kopp 2010 for a review and Figure 2 for

illustration). Among these five modes, only the second one is intended to model specifically the

geographical isolation of two subpopulations. The four other modes focus on modeling sympatric

speciation by means of gradual accumulation of mutations.

Speciation by point mutation. This mode of speciation was proposed in the original framework

of the NTB (Hubbell 2001; Jabot and Chave 2009). Differentiation occurs as the product of

neutral mutations modeled by a point process on the genealogy. Each mutation confers a new

type to the lineage carrying it (infinite-allele model) and to its descent before any new mutation
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Genealogy Species

Genealogy Species

Genealogy Species

a)  Speciation by point mutation b)  Speciation by random fission

c)  Protracted speciation d)  Speciation by genetic incompatibility (q=2)

e)  Speciation by genetic differentiation
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Fig. 2: The five modes of speciation proposed in individual-based models of macro-evolution. In each panel, the

genealogy (tree) of individuals (integer labels) is given on the left, along with mutations (crosses) that confer new

types (Greek letters) to individuals. The corresponding species partition is represented on the right of each panel

(subsets of labels circled).

arises downstream. Species are then defined as groups of individuals carrying the same type.

The phenotypic partition and the species partition thus coincide by definition.

Speciation by random fission, or peripheral isolates. These two closely related models have also

been proposed first in the framework of the NTB (Hubbell 2001, 2003), but see also Lambert

and Ma (2015). In these models, independently of the genealogy, each phenotypic class of

individuals, interpreted as a geographic deme, may split at random times into two new demes.

In Figure 2b, this is illustrated as mutations hitting simultaneously several lineages in the same

phenotypic class, which endows them with the same new phenotype. The two models differ only
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with regard to the size of the newly formed deme, whether the split is even (random fission) or

uneven (peripheral isolate).

Protracted speciation. This model intends to reflect the general idea that speciation is not instan-

taneous (Rosindell et al. 2010; Lambert et al. 2015; Etienne et al. 2014). The differentiation

process is usually assumed to be differentiation by point mutation under the infinite-allele

model. A new phenotypic class is called an incipient species but becomes a so-called good

species only after a fixed or random time duration. In other words, two individuals belong to

different species if they carry different phenotypes and if they diverged far enough in the past.

In Figure 2c, the species arisen from the mutation labelled γ and δ are still incipient at present

time. More complex models of protracted speciation feature several stages that incipient species

have to go through before becoming good species.

Speciation by genetic incompatibility. This generalization of the point mutation mode of speciation

(Melián et al. 2012) is inspired by the model of Bateson-Dobzhansky-Muller incompatibilities

(Orr 1995). Again, a first step consists in endowing the genealogy of individuals with neutral

mutations. Then two individuals are said compatible if there are fewer than q mutations on

the genealogical path linking them. Finally, species are the connected components of the graph

associated to the compatibility relationship between individuals. For q 6= 1, there can be incom-

patible pairs of individuals in the same species, as can be seen in Figure 2d with individuals

labelled 1 and 9 for example. Speciation by point mutation corresponds to the particular case

q = 1.

Speciation by genetic differentiation. This model of speciation also assumes that phenotypic dif-

ferentiation is driven by point mutations on the genealogy. Species are then defined as the

smallest monophyletic groups of individuals such that any pair of individuals carrying the same

phenotype are always in the same species (Manceau et al. 2015). We will show later that this

definition, hereafter called loose species definition, always makes sense once given a phenotypic

partition and a genealogy.

As can be seen in Figure 2, the first four models out of the five described in the previous section

yield partitions of individuals into species that are in general non-monophyletic with respect to the
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a) b) c)

Fig. 3: Building the phylogeny out of the genealogy. Left panel: A fixed genealogy with one mutational event giving

rise to a derived character responsible for partitioning {1, 2, 3} into the two distinct phenotypic groups {1, 3} and

{2}, assumed to be different species. Right panel: Phylogenies associated with three possible choices of divergence

times, from left to right: a) Shortest or b) Longest coalescence time between individuals of different species; c) Date

of origin of the derived character.

underlying genealogy. This is problematic when it comes to measuring the phylogenetic relationship

between species, reflecting their shared evolutionary history (Velasco 2008). In particular based on

the true genealogy, there are multiple, arbitrary ways of defining the divergence time between two

non-monophyletic species. We illustrate three of them in Figure 3.

The first two possibilities consist in relying on a time of divergence between individuals of the

newly derived species and individuals of the ancestral, mother, species. One could imagine taking

the shortest (scenario a), as well as the longest (scenario b), time of coalescence between these

two groups of individuals. Among these two, scenario a) is the preferred option among population

geneticists, for it provides a phylogeny consistent with the genealogy of alleles. A second possibility,

and the one which is in ordinary usage in NTB-based studies (Jabot and Chave 2009), is to consider

the date of appearance of the derived character as the time of divergence between the two species.

We now argue that none of these possibilities is really appropriate from an evolutionary point of

view.

Let us show for more clarity what these three possibilities lead to, in a scenario with three

species (See Fig. 4). While scenarios a) and b) provide an unnecessary multifurcating tree, scenario

c) even leads to a phylogeny topology distinct from what we would expect from the topology of

the genealogy. Any representation of a phylogeny for non-monophyletic species would suffer such

inconsistencies with the genealogy. To the contrary, the phylogeny of monophyletic species can be
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a) b) c)

1 2 3 4 5 6 7 8 1,2,8 3,4 5,6,7 1,2,8 3,4 5,6,7 1,2,8 3,4 5,6,7

Fig. 4: Building the phylogeny out of the genealogy with three species. Left panel: A fixed genealogy with mutational

events giving rise to three species. Right panel: Phylogenies associated with three possible choices of divergence times,

from left to right: a) Shortest or b) Longest coalescence time between individuals of the ancestral and the derived

species; c) Date of origin of the derived character.

obtained from the genealogy by considering as phylogenetic nodes all genealogical nodes that are

most recent common ancestors between present-day species. As part of the current effort to bridging

the gap between micro- and macro-evolution (Graham and Fine 2008; Rosindell et al. 2011; Pennell

and Harmon 2013), it appears crucial to interlock the genealogical and phylogenetic scales. This is

the rationale behind considering monophyly as a desirable property of species constructions.

In Sections 2 and 3, we will consider as given the genealogical tree T of the set of all present-

day organisms X , and the partition P of X into phenotypic groups. The tree T may have been

generated under any model of population dynamics and the partition P may have been produced

by any process of differentiation unfolding through time. With these data at hand, we formalize

the three desirable properties of the species partition mentioned in the introduction and then study

different ways to fulfill them.

2 Three desirable properties of species definitions

For each internal node of T , by a slight abuse of terminology, we call clade the subset of X

comprising exactly all tips descending from this node. We denote by H the collection of all clades

of T . Note that as a subset of X , X itself is an element of H , and that for every x ∈ X , the singleton

{x} is an element of H . Moreover, any two clades C and D elements of H , are always either nested

or mutually exclusive, meaning that C ∩ D can only be equal to C, D or ∅. Mathematically, a

collection of nonempty subsets of X satisfying these properties is called a hierarchy, and it can be
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shown that to any hierarchy corresponds a unique rooted tree with tips labelled by X . Therefore,

we will equivalently speak of T or of its hierarchy H . For a nice discussion around the notion of

hierarchy and neighboring concepts, see Steel (2014).

One should keep in mind that H and P are both collections of subsets of X , but that H is

not a partition. With this formalism, we define the species problem as : Given H and P find a

partition S of X , called the species partition, whose elements are called species clusters or simply

species, satisfying one or more of the following three desirable properties:

(A) Heterotypy between species. Individuals in different species are phenotypically different, i.e. for

each phenotypic cluster P ∈P and for each species cluster S ∈ S , either P ⊆ S or P ∩S = ∅;

(B) Homotypy within species. Individuals in the same species are phenotypically identical, i.e. for

each phenotypic cluster P ∈P and for each species cluster S ∈ S , either S ⊆ P or P ∩S = ∅.

(M) Monophyly. Each species is a clade of T , i.e. S ⊆H ;

As mentioned in the introduction, if S satisfies both (A) and (B), then it is immediate from the

preceding definitions that S = P. If in addition S satisfies (M) then P = S ⊆ H . We record

this as a first observation.

Observation 1 Unless we are given P and H such that P ⊆H (that is, each phenotypic cluster

is a clade in the first place), no species partition satisfies simultaneously (A), (B) and (M).

Then our next question is: ‘Is there a species partition S for which two of them hold?’ For X,

Y equal to A, B or M, we will write (XY) the property (X AND Y).

We already saw that S = P satisfies (AB). Now let us go for species partitions S satisfying

(M). To fulfill (A), each S ∈ S must contain all the phenotypic clusters it intersects. So in

particular the partition S1 := {X} fulfills (AM). This trivial solution corresponds to assigning

all the individuals of X to one single species. Symmetrically, to fulfill (B), each S ∈ S must be

contained in all the phenotypic groups it intersects. So in particular the partition S0 made of all

singletons fulfills (BM). This trivial solution corresponds to assigning each individual of X to a

different species. This is recorded in the following observation.

Observation 2 For any P and H and for any two desirable properties among (A), (B) and (M),

there is at least one species partition S satisfying both properties.
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The species partitions S1 and S0 are obviously not biologically relevant. In particular, we

would like to find species partitions that are finer than assigning all individuals to one single

species, and coarser than assigning each individual to a different species.

We use the standard notions of finer and coarser partitions of a set (Bóna 2011). Let S and

S ′ be two partitions of the set X . We say that S is finer than S ′, and we write S ≤ S ′ if for

each S ∈ S and each S′ ∈ S ′, either S ⊆ S′ or S ∩ S′ = ∅. If S ≤ S ′, we say equivalently that

S is finer than S ′ or that S ′ is coarser than S .

Remark that two species partitions S and S ′ cannot always be compared, in the sense that

they can satisfy neither S ≤ S ′ nor S ′ ≤ S . The relation ≤ is thus not a linear order on all the

partitions of X , but is known to be a partial order (see Appendix A for details).

Now observe that properties (A) and (B) can precisely be stated in terms of inequalities asso-

ciated with the partial order ≤ as follows.

Observation 3 Consider a given phenotypic partition P and a species partition S .

S satisfies (A) if and only if P ≤ S , and S satisfies (B) if and only if S ≤P.

As a consequence, if SA satisfies (A) and SB satisfies (B), then

SB ≤ P ≤ SA

This leads us to investigate the possibility of defining ‘the finest partition satisfying (AM)’ as well

as ‘the coarsest partition satisfying (BM)’.

3 The lacy and loose species definitions

In general, there is no guarantee that the coarsest or finest partition of a given collection of

partitions does belong to this collection. In particular, there is no guarantee that the coarsest (resp.

finest) partition satisfying (BM) (resp. (AM)), does itself satisfy (BM) (resp. (AM)). However, we

state the following result that ensures the existence of the finest partition satisfying (AM) and the

coarsest partition satisfying (BM).

Theorem 1 Given P and H , there exists a unique finest partition of X satisfying (AM), and a

unique coarsest partition of X satisfying (BM).
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This result is proved in Appendix B. It allows us to highlight and name two new different

species definitions:

The loose species definition is the finest partition satisfying (AM).

The lacy species definition is the coarsest partition satisfying (BM).

For any species partition S satisfying (M), there is a unique phylogenetic tree TS which represents

the evolutionary relationships between the species in S consistently with the genealogy T . For

every species S, since S is monophyletic there is a unique internal node u(S) of T such that S is

exactly constituted of the labels of the tips subtended by u(S). Then TS is obtained from T by

merging, for every species S, the subtree descending from u(S) into a single edge. This is expressed

in terms of hierarchies in the following observation.

Observation 4 Consider a given genealogical hierarchy H and species partition S satisfying

(M). The hierarchy HS corresponding to the phylogenetic tree TS can be defined by

HS := {H ∈H : ∃S ∈ S , S ⊆ H}.

So for both the loose and the lacy species partition, there is a phylogeny consistent with the

genealogy. Figure 5 shows both the lacy phylogeny and the loose phylogeny associated with a

simple genealogy and a simple phenotypic partition.

For any genealogy T and phenotypic partition P, we now describe a procedure to get the phy-

logeny corresponding either to the lacy or to the loose definition, without requiring the knowledge

of species partitions. Interestingly, building HS this way offers a quick way to get S under the

lacy and loose definitions, because species are the smallest sets of labels in HS . The different steps

of the algorithm are explained hereafter, illustrated in Figure 6 and formalized in Appendix C.

First, we classify all interior nodes of the genealogy as convergent node or divergent node. An

interior node is convergent if there are at least two tips, one in each of its two descending subtrees,

carrying the same phenotype. Otherwise the node is said to be divergent. Note that convergent

nodes may be ancestors of divergent nodes when the phenotypic partition is not monophyletic.

Second, we build a phylogeny by deciding which interior nodes are phylogenetic nodes, that is,

appear in the phylogeny.
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1 2 3 4 5 6 7 8 9

1 2 3

4 5 6 7

8 9

Genealogy Species Phylogenies

loose phenotypic lacy
 1,2,3,

4,5,6,7 8,9 1,2
3,6,

7 4,5 8,9 1,2 3 4,5 6,7 8,9

Fig. 5: Species partitions associated to each of three definitions. Left panel: The fixed genealogy with point muta-

tions (infinite-allele model) leading to the phenotypic partition P = {{1, 2}, {3, 6, 7}, {4, 5}, {8, 9}}. Middle panel:

Inclusion relations between the three species partitions, as discussed in Observation 3, the loose partition is coarser

than the phenotypic partition, which is coarser than the lacy partition. Right panel: Phylogenies corresponding to

the three species partitions, from left to right: loose, phenotypic (under the arbitrary convention that divergence

times are taken as mutation times), lacy.

Observation 5 The loose phylogeny is obtained by declaring non-phylogenetic (i) all convergent

nodes and (ii) all divergent nodes descending from a convergent node. Other nodes are declared

phylogenetic.

The lacy phylogeny is obtained by declaring phylogenetic (i) all divergent nodes and (ii) all conver-

gent nodes ancestral to divergent nodes. Other nodes are declared non-phylogenetic.

The last observation holds due to the following reasons:

By definition, the two clades C and C ′ subtended by a convergent node satisfy C ∩P 6= ∅ and

C ′ ∩ P 6= ∅ for some phenotypic cluster P ∈ P. As a consequence, these two clades have to be

included in the same species cluster in a species partition satisfying the heterotypy property (A),

that is, a convergent node cannot appear in a phylogeny satisfying (A). Conversely, any phylogeny

whose nodes are included in the set of divergent nodes of the genealogy satisfies (A). The finest

partition satisfying (A) corresponds to the phylogeny containing the largest number of divergent

nodes, and only divergent nodes, as in the construction of the loose phylogeny proposed in the

observation.

Symmetrically, for the two clades C,C ′ subtended by a divergent node, we have that C∩P 6= ∅

implies C ′ ∩P = ∅ for any phenotypic cluster P ∈P. As a consequence, these two clades have to

belong to two different species clusters in a species partition satisfying the homotypy property (B),
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convergent / divergent     nodes
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o
se

 

phylogenetic / non-phylogenetic    nodes Phylogenies

la
cy

a)

b)

d)

c)

e)

Fig. 6: Construction of the phylogeny under the lacy and loose species definitions. Greek letters correspond to pheno-

types. a) The genealogy with interior nodes classified as convergent (light yellow) or divergent (dark blue). bd) The

genealogy with interior nodes classified as non-phylogenetic (white) or phylogenetic (black). ce) The corresponding

phylogeny. b) Loose: Light nodes and dark nodes descending from light nodes are colored white. d) Lacy: Dark

nodes and light nodes ancestors of a dark node are colored black.

that is, any divergent node has to appear in a phylogeny satisfying (B). Conversely, any phylogeny

whose nodes contain all divergent nodes of the genealogy satisfies (B). The coarsest partition

satisfying (B) corresponds to the phylogeny containing the smallest number of convergent nodes,

but all divergent nodes, as in the construction of the lacy phylogeny proposed in the observation.

Discussion

The present study builds on recent attempts to describe evolutionary trees on various scales simul-

taneously. The multi-species coalescent is one of the most influential of these attempts (Maddison

1997). In this model, a species tree is first specified and given the species tree, the gene genealogies

are drawn from a censored coalescent (i.e., ancestral lineages can coalesce only if they lie in the

same ancestral species). In particular, this approach has been used to assess the relevance of the

reciprocal monophyly criterion to recognize species (Hudson and Coyne 2002; Mehta et al. 2016).
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Note that this framework introduces a top-down coupling between the macro-evolutionary scale

and the micro-evolutionary scale, thus relying on an external species definition. In contrast, the

bottom-up approach that we adopted consists in assuming that macro-evolutionary patterns are

shaped by micro-evolutionary processes. Let us point out two studies similar in spirit to ours, which

make several proposals to lump together lower-order taxa (e.g. species) in order to build trees on

higher-order taxa (e.g. genera) (Aldous et al. 2008, 2011). The authors ground their definitions on

the knowledge of a phylogeny with point mutations, the main differences being that each branch-

ing event distinguishes a mother and a daughter lineage, and that monophyly is not a desirable

property in their work.

On the contrary, we put to the forefront the monophyly property (M), together with (A)

heterotypy between species and (B) homotypy within species. We explicitly defined and compared

three species definitions, each of these satisfying a different set of properties: Phenotypic (AB),

Loose (AM) and Lacy (BM).

Additionally, we stress that the most popular way of defining species in individual-based

modeling studies of macro-evolution (i.e., speciation by point mutation) in general leads to non-

monophyletic species. In contrast, the loose species definition, previously used in the context of

macro-evolution (Manceau et al. 2015), systematically yields monophyletic species. Here we ex-

tended this study and compared it to a third species definition also satisfying (M), the lacy species

definition. Finally, we provided a standardized procedure to build the lacy and loose species par-

titions given a genealogy and a phenotypic partition.

In practice, the task of systematists is the inference of ancestral relationships between individual

organisms from molecular sequence and phenotype data and the characterization of species from

those data. Classifying diversity is notoriously difficult for many reasons, including the difficulty of

choosing the appropriate level of description, the ubiquitous presence of convergent evolution and

reversal events, and the difficulty to agree on a unique species concept (Mayden 1997; De Queiroz

2007; Baum 2009).

On the other hand, the task of modelers, assuming a fully known individual-based evolutionary

history, appears at first sight trivial. They face, however, the same difficulty in defining a proper
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species concept. Even within the very simple framework that we considered, three distinct species

definitions came out. They all fit the general species definition of ‘separately evolving metapopu-

lation lineages’ (De Queiroz 2007), while satisfying distinct desirable properties. We argue that

comparing species definitions based on the properties they fulfill in simple models might help shed

light on the species problem.

Let us draw parallels between our theoretical considerations and the habits of taxonomists.

Practically, the sole phenotypic information is usually sufficient do decide whether a taxon above

the species level is monophyletic. And indeed in systematics, monophyly has long been a criterion

for defining taxa above the species level, even before the rise of molecular methods. On the contrary,

phenotypic information alone is certainly not sufficient to diagnose monophyletic species. The use

of molecular markers has brought the question of intra-species monophyly (M) to the forefront.

Today, it is standard to use multiple sequence alignments to automatically delineate putative

species: from a single-locus phylogeny (Fujisawa and Barraclough 2013), from multiple gene trees

(Yang and Rannala 2010), or from the raw alignment (Puillandre et al. 2012). Species descriptions

based on these methods are thus more likely to concern monophyletic groups of individuals than

earlier. This recent requirement for species monophyly puts taxonomists in front of new dilemmas.

Loose or lacy? Crudely speaking, one could say that ‘splitter’ taxonomists more often lean for

the lacy definition, while ‘lumper’ taxonomists are more willing to use the loose definition. More

precisely, the diagnosis of species as phenotypically homogeneous groups of individuals that can be

separated solely on a molecular basis into what is known as cryptic species (Bickford et al. 2007)

corresponds to the lacy definition. On the contrary, taxonomists preferring to ensure that species

are diagnosable and monophyletic units, two properties stressed as ‘priority taxon naming criteria’

(Vences et al. 2013) use the loose definition.

Note that advanced theoretical work has been undertaken in a context of sexually-reproducing

organisms (Dress et al. 2010; Kwok 2011; Alexander 2013; Alexander et al. 2015). While we based

our study on the knowledge of only one genealogy, even the genealogical history of supposedly

‘asexual’ real-world organisms such as bacteria shows evidence for horizontal gene transfer events

(Puigbò et al. 2013). The genealogical history of organisms should in general be represented as a
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non-tree network, or as a collection of gene genealogies, making far more complex the question of

grouping individuals into taxa (Hudson and Coyne 2002; Samadi and Barberousse 2006). Their

framework is closer to biological reality, but much less connected to most modeling studies in

macro-evolution.

Individual-based modeling is a promising avenue for understanding macro-evolution from first

principles, as it may allow evolutionary biologists to describe explicitly the stochastic demography

of whole metacommunities and the ecological interactions between different types of individuals

in each community. We believe that these processes may have left enough signal in both the

shape of evolutionary trees and the patterns of contemporary biodiversity, so as to be unraveled

by statistical inference. Understanding how species, the elementary units of macro-evolution, are

formed and deformed by these processes remains a major challenge, to which the present work

hopefully contributes.
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Appendix
The species problem from the modeler’s point of view

Some of the results stated in Sections A and B are classical results in combinatorics for partially ordered sets

(see Bóna 2011, chapter 16). For the sake of self-containment and because all readers may not be familiar with these

notions, we nevertheless expose them here.

A ‘Finer than’, a partial order relation on X -partitions

Definition 1 Let S1 and S2 be two X -partitions. We say that S1 is finer than S2, and we write S1 ≤ S2 if

∀S1 ∈ S1, ∀S2 ∈ S2, S1 ∩ S2 ∈ {∅, S1}.

We detail here the three criteria that make the ‘finer than’ relation a partial order on the set of X -partitions.

Proof One must check the reflexivity, antisymmetry and transitivity properties.

– Reflexivity. Take any X -partition S . Then for all S1, S2 ∈ S we either have S1 ∩ S2 = S1 if S1 = S2, or

S1 ∩ S2 = ∅ otherwise. It follows that S ≤ S .

– Antisymmetry. Take two X -partitions denoted S1 and S2, verifying S1 ≤ S2 and S2 ≤ S1. Then for all

(S1, S2) ∈ S1 ×S2, S1 ∩ S2 ∈ {∅, S1} and S1 ∩ S2 ∈ {∅, S2}.

If S1 ∩ S2 6= ∅, it follows that S1 = S2, and finally S1 = S2.

– Transitivity. Take now three X -partitions denoted S1,S2,S3, verifying S1 ≤ S2 and S2 ≤ S3. Let S1 ∈ S1

and S3 ∈ S3 and assume that S1 ∩ S3 6= ∅. Then there is x ∈ S1 ∩ S3 and we let S2 be the unique element of

S2 such that x ∈ S2. Thus S1 ∩ S2 6= ∅ and S2 ∩ S3 6= ∅, which implies by assumption that S2 ∩ S1 = S1 and

S2 ∩ S3 = S2. So we see that S1 ⊆ S2 ⊆ S3, so that S1 ∩ S3 = S1. ut

B Proof of Theorem 1

Here we will consider sets of partitions verifying one or two desirable properties. Hence the following definitions

ΣA := {X -partitions satisfying (A)}

ΣB := {X -partitions satisfying (B)}

ΣM := {X -partitions satisfying (M)}

ΣAM := {X -partitions satisfying (AM)} = ΣA ∩ΣM

ΣBM := {X -partitions satisfying (BM)} = ΣB ∩ΣM

ΣAB := {X -partitions satisfying (AB)} = ΣA ∩ΣB
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We will see that the collection of X -partitions ΣM plays a singular role in Theorem 1. This is due to the charac-

terization of ΣM by the fact that there is a hierarchy H (here the hierarchy associated with the genealogy T ) such

that

S ∈ ΣM ⇐⇒ S ⊆ H .

Also recall that the collections of X -partitions ΣA and ΣB can be defined as follows

S ∈ ΣA ⇐⇒ ∀P ∈P, ∀S ∈ S , P ∩ S ∈ {∅, P}

S ∈ ΣB ⇐⇒ ∀P ∈P, ∀S ∈ S , P ∩ S ∈ {∅, S}.

In this section, we aim at giving a proof of Theorem 1 which can now be restated as follows

∃Sloose ∈ ΣAM , such that ∀S ∈ ΣAM , Sloose ≤ S

∃Slacy ∈ ΣBM , such that ∀S ∈ ΣBM , S ≤ Slacy

The proof is divided into two parts. First, given a set of partitions Σ (resp. Σ ⊆ ΣM ), we prove the existence of

the finest (resp. coarsest) partition finer (resp. coarser) than any element of Σ, which we call inf Σ (resp. supΣ).

Second, we show that inf ΣAM ∈ ΣAM and supΣBM ∈ ΣBM , hence yielding the definitions Sloose := inf ΣAM

and Slacy := supΣBM .

B.1 Defining the supremum and the infimum of a set of X -partitions

Definition 2 For any non-empty collection Σ of X -partitions, we define the two relations RΣ and RΣ on X by

∀(x, y) ∈ X 2, x RΣ y ⇐⇒ ∀S ∈ Σ, ∃S ∈ S , x ∈ S and y ∈ S

x RΣ y ⇐⇒ ∃S ∈ Σ, ∃S ∈ S , x ∈ S and y ∈ S.

Lemma 1 For any non-empty collection Σ of X -partitions, RΣ is an equivalence relation. For any non-empty

collection Σ of X -partitions such that Σ ⊆ ΣM , RΣ is an equivalence relation.

Proof The reflexivity and symmetry of the two relations are easily seen. Now let us prove their transitivity. Let

Σ be a non-empty collection of X -partitions, and (x, y, z) ∈ X 3 such that x RΣ y and y RΣ z. Let S ∈ Σ. By

definition,

∃S1 ∈ S , x ∈ S1 and y ∈ S1

∃S2 ∈ S , y ∈ S2 and z ∈ S2

It follows that y ∈ S1 ∩ S2, and because S is a partition, S1 = S2. Finally, with S := S1 = S2, there exists S ∈ S

such that x ∈ S and z ∈ S, so that x RΣ z and we can conclude that RΣ is transitive.
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Now let Σ ⊆ ΣM be a non-empty collection of X -partitions and (x, y, z) ∈ X 3 such that x RΣ y and y RΣ z.

By definition,

∃S1 ∈ Σ, ∃S1 ∈ S1, x ∈ S1 and y ∈ S1

∃S2 ∈ Σ, ∃S2 ∈ S2, y ∈ S2 and z ∈ S2

Because Σ ⊆ ΣM , S1 ⊆ H and S2 ⊆ H , so that S1 ∈ H and S2 ∈ H . From the definition of hierarchy, we get

S1 ∩ S2 ∈ {∅, S1, S2}. Since y ∈ S1 ∩ S2, we have S1 ∩ S2 6= ∅.

Suppose that S1 ∩ S2 = S2. It follows that ∃S1 ∈ Σ, ∃S1 ∈ S1, x ∈ S1 and z ∈ S1.

Suppose that S1∩S2 = S1. It follows that ∃S2 ∈ Σ, ∃S2 ∈ S2, x ∈ S2 and z ∈ S2. So x RΣ z and we can conclude

that RΣ is transitive. ut

Definition 3 For any non-empty collection Σ of X -partitions, we call inf Σ the X -partition induced by the equiva-

lence relation RΣ . For any non-empty collection Σ of X -partitions such that Σ ⊆ ΣM , we call supΣ the X -partition

induced by the equivalence relation RΣ .

Readers familiar with lattice theory will note that these definitions match the usual ‘meet’ and ‘join’ operators

used for lattices, and in particular the lattice of partitions of a set, ordered by refinement. For the other readers,

recall first that any equivalence relation on a set X induces an X -partition obtained by placing all elements in

relation in one cluster. Further, the following lemma justifies the notation inf and sup.

Lemma 2 Let Σ be any non-empty collection of X -partitions. Then for any S ∈ Σ, inf Σ ≤ S . Let Σ be any

non-empty collection of X -partitions such that Σ ⊆ ΣM . Then for any S ∈ Σ, S ≤ supΣ.

Proof Let Σ be any non-empty collection of X -partitions and S ∈ inf Σ. Let also S ∈ Σ and S′ ∈ S . We need to

prove that S ∩ S′ ∈ {∅, S}. Assume that S ∩ S′ 6= ∅ and S ∩ S′ 6= S. Then there is x ∈ S ∩ S′ and y ∈ S such that

y 6∈ S′. Because x, y ∈ S, by definition of inf Σ, we have x RΣ y and by definition of RΣ , ∃S′′ ∈ S , x, y ∈ S′′. So

S′ and S′′ are both elements of S containing x, which implies that S′ = S′′ and contradicts y 6∈ S′.

Now let Σ be any non-empty collection of X -partitions such that Σ ⊆ ΣM and S ∈ supΣ. Let also S ∈ Σ and

S′ ∈ S . We need to prove that S ∩S′ ∈ {∅, S′}. Assume that S ∩S′ 6= ∅ and S ∩S′ 6= S′. Then there is x ∈ S ∩S′

and y ∈ S′ such that y 6∈ S. Because x ∈ S and y 6∈ S, by definition of supΣ, x and y are not in relation RΣ and

by definition of RΣ , either x 6∈ S′ or y 6∈ S′ and we get a contradiction. ut

Note that, in general, we can have inf Σ /∈ Σ and supΣ /∈ Σ. Here are two examples to provide the reader with

some intuition.
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Example 1.Take

X = {1, 2, 3, 4}

S = {{1}, {2}, {3, 4}}

S ′ = {{1, 2}, {3}, {4}}

Σ = {S ,S ′}

In this case, we get inf Σ = {{1}, {2}, {3}, {4}}, which does not belong to Σ. Moreover, if we define the hierar-

chy H := {{1, 2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}}, we have Σ ⊆ ΣM , which allows us to consider supΣ =

{{1, 2}, {3, 4}} which again does not belong to Σ.

Example 2.Take

X = {1, 2, 3, 4}

S = {{1, 3, 4}, {2}}

S ′ = {{1, 2}, {3, 4}}

Σ = {S ,S ′}

In this case, we get inf Σ = {{1}, {2}, {3, 4}}, which does not belong to Σ. Moreover, there is no X -hierarchy H

such that S ,S ′ ∈ H . Then we can see that the relation RΣ is not an equivalence relation on X , because 1 RΣ 2

and 1 RΣ 3, but we do not have 2 RΣ 3. Thus, supΣ is not defined.

B.2 Proving that inf ΣAM ∈ ΣAM and supΣBM ∈ ΣBM

In order to prove that inf ΣAM ∈ ΣAM and supΣBM ∈ ΣBM , we will rely on properties of inf Σ and supΣ

presented in the following lemma.

Lemma 3 For any non-empty collection Σ of X -partitions, for any S ∈ inf Σ, S can be written in the form of the

following non-empty intersection

S =
⋂

S∈Σ:S⊆S∗∈S

S∗ (S1)

For any non-empty collection Σ of X -partitions such that Σ ⊆ ΣM , for any S ∈ supΣ, S can be written in the

form of the following non-empty union

S =
⋃

S∈Σ:S⊇S∗∈S

S∗ (S2)

In addition,

∃S ∈ Σ, ∃S∗ ∈ S , S∗ = S. (S3)
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Proof We begin with proving (S1). Let Σ be any non-empty collection of X -partitions and consider S ∈ inf Σ. Now

set

S′ :=
⋂

S∈Σ:S⊆S∗∈S

S∗

and let us prove that S = S′. According to Lemma 2 that for any S ∈ Σ, inf Σ ≤ S so ∃!S∗ ∈ S such that S ⊆ S∗.

This proves that the intersection in the definition of S′ is not empty. Now by definition of S′ we have S ⊆ S′, which

also implies S′ 6= ∅. We need to show now that S′ ⊆ S. Let x be any element of S′ and y be any element of S. Then

for any S ∈ Σ, there is (a unique) S∗ ∈ S such that S ⊆ S∗ and by definition of S′, we have x ∈ S∗. But since

S ⊆ S∗ we also have y ∈ S∗. This shows that for any S ∈ Σ there is S∗ ∈ S such that x ∈ S∗ and y ∈ S∗. This

can be expressed equivalently as x RΣ y, so that x and y are in the same element of inf Σ, that is x ∈ S.

Now let us prove (S2). Let Σ be any non-empty collection of X -partitions such that Σ ⊆ ΣM and let S ∈ supΣ.

Set

S′ :=
⋃

S∈Σ:S⊇S∗∈S

S∗

and let us prove that S = S′. According to Lemma 2 that for all S ∈ Σ, S ≤ supΣ, so ∃S∗ ∈ S such that S∗ ⊆ S.

In particular, the intersection in the definition of S′ is not empty and S′ 6= ∅. Now by definition of S′ we have

S′ ⊆ S. We need to show now that S ⊆ S′. Let x be any element of S and y be any element of S′. Since S′ ⊆ S,

y ∈ S so that x and y are in the same element of supΣ, which can be expressed equivalently as x RΣ y. Now by

definition of RΣ , there is S ∈ Σ and S∗ ∈ S such that x, y ∈ S∗. Now since S∗ ∩ S 6= ∅, we have S∗ ⊆ S, which

shows by definition of S′ that x ∈ S′.

It remains to show (S3)

∃S ∈ Σ, ∃S∗ ∈ S , S∗ = S.

Let us prove by induction on n ≥ 1 that for any F ⊆ S of cardinality n, there is S ∈ Σ and S∗ ∈ S such that

F ⊆ S∗ ⊆ S. The result will follow by taking F = S. For n = 1, the property holds due to to (S2). Let n ≥ 1

strictly smaller than the cardinality of S and assume that the property holds for all integers smaller than or equal

to n. Let F be any subset of S of cardinality n+1 and write F = F1 ∪ {x}, where x /∈ F1. Since F1 is of cardinality

n there is S1 ∈ Σ and S1 ∈ S1 such that F1 ⊆ S1 ⊆ S. Let y ∈ F1. There is also S2 ∈ Σ and S2 ∈ S2 such

that {x, y} ⊆ S2 ⊆ S. Now because S1,S2 ∈ Σ ⊆ ΣM , we have S1,S2 ⊆ H , so that S1 ∈ H and S2 ∈ H .

From the definition of hierarchy, we get S1 ∩ S2 ∈ {∅, S1, S2}. Since y ∈ S1 ∩ S2, we have S1 ∩ S2 6= ∅, so one of

the two, denoted S∗ contains the other one. In particular, F1 ⊆ S∗ ⊆ S and {x, y} ⊆ S∗ ⊆ S, which shows that

F = F1 ∪ {x} ⊆ S∗ ⊆ S and terminates the proof. ut

We can now go back to the proof of Theorem 1.

Proof (i) inf ΣAM ∈ ΣA: Consider S ∈ inf ΣAM and P ∈P. From Lemma 3, we get

S ∩ P = P ∩

 ⋂
S∈ΣAM :S⊆S∗∈S

S∗

 =
⋂

S∈ΣAM :S⊆S∗∈S

(P ∩ S∗)

Now for each S∗ ∈ S ∈ ΣAM , P ∩ S∗ ∈ {∅, P}, thus leading to S ∩ P ∈ {∅, P}, that is inf ΣAM ∈ ΣA.
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(ii) inf ΣAM ∈ ΣM : Consider S ∈ inf ΣAM . From Lemma 3, we get

S =
⋂

S∈ΣAM :S⊆S∗∈S

S∗

Now for each S∗ ∈ S ∈ ΣAM , S
∗ ∈ H . Moreover, the hierarchy H is closed under finite, non-disjoint

intersections, thus leading to S ∈ H , that is inf ΣAM ∈ ΣM .

(iii) supΣBM ∈ ΣB : Consider S ∈ supΣBM and recall from Lemma 3 that there is S ∈ ΣBM and S∗ ∈ S such

that S = S∗. Now for any P ∈P,

S ∩ P = S∗ ∩ P ∈ {∅, S∗} = {∅, S},

so that supΣBM ∈ ΣB .

(iv) supΣBM ∈ ΣM : Consider S ∈ supΣBM and S∗ = S as previously. Since S∗ ∈ H , S ∈ H , so that supΣBM ∈

ΣM .

This shows that inf ΣAM ∈ ΣAM and supΣBM ∈ ΣBM , which completes the proof of Theorem 1. ut

C Construction of the lacy and loose phylogenies

This section aims at formalizing mathematically the construction of the lacy and loose phylogenies presented in the

main text.

Recall that an interior node is convergent if there are two tips, one in each of its two descending subtrees,

carrying the same phenotype, otherwise this node is said to be divergent. We will say that the two clades subtended

by a convergent (resp. divergent) node are convergent (resp. divergent). We define Hd as the collection of divergent

clades, that is

Hd = {h ∈ H : ∃h′, h′′ ∈ H , h′ = h ∪ h′′, ∀P ∈P, h ∩ P = ∅ or h′′ ∩ P = ∅} ∪ X

We similarly consider phylogenetic and non-phylogenetic clades for either the loose or the lacy definition. We call

Hloose and Hlacy the collection of phylogenetic clades for the loose and lacy definitions respectively. The procedure

described in the main text amounts to defining

Hloose = H \{h ∈ H : ∃hc ∈ H \Hd, h ⊆ hc}

Hlacy = {h ∈ H : ∃h′ ∈ H , h ∪ h′ ∈ H , h ∩ h′ ∈ {∅, h′}, ∃hd ∈ Hd, hd ⊆ h′}


