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We consider a homogeneous birth-death process with three different sampling schemes. First, individu-
als can be sampled through time and included in a reconstructed phylogenetic tree. Second, they can be
sampled through time and only recorded as a point ‘occurrence’ along a timeline. Third, extant individ-
uals can be sampled and included in the reconstructed phylogenetic tree with a fixed probability. We fur-
ther consider that sampled individuals can be removed or not from the process, upon sampling, with
fixed probability. We derive the probability distribution of the population size at any time in the past
conditional on the joint observation of a reconstructed phylogenetic tree and a record of occurrences
not included in the tree. We also provide an algorithm to simulate ancestral population size trajectories
given the observation of a reconstructed phylogenetic tree and occurrences. This distribution can be read-
ily used to draw inferences about the ancestral population size in the field of epidemiology and
macroevolution. In epidemiology, these results will allow data from epidemiological case count studies
to be used in conjunction with molecular sequencing data (yielding reconstructed phylogenetic trees)
to coherently estimate prevalence through time. In macroevolution, it will foster the joint examination
of the fossil record and extant taxa to reconstruct past biodiversity.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Owing to seminal papers by Yule (1925), Kendall (1948), and
much later by Nee et al. (1994), birth-death models have become
ubiquitous in evolutionary biology. They are used as a population
dynamic model, parameterized via a birth and death rate, in stud-
ies spanning fields as diverse as paleontology, macroevolution, lin-
guistics, and epidemiology (see e.g. Foote, 2000; Heath et al., 2014;
Gray et al., 2009; Stadler et al., 2013). A major aim when using
these models is to reliably estimate the ancestral number of spe-
cies, languages or infected individuals, i.e. past biodiversity, past
prevalence, or more general past population sizes. In both
macroevolution and epidemiology, population dynamics infer-
ences can rely on occurrence data, i.e. the fossil record and the case
counts record. This data is modeled as a sampling of individuals
from the full population through time (Foote, 2000; Starrfelt and
Liow, 2016).

In recent years, impressive sequencing efforts targeting
present-day species and pathogens have enabled the reconstruc-
tion of phylogenies. Two main modeling approaches allow to
quantify past population sizes in the past using these trees. First,
phylodynamic tools have been developed to fit the birth and death
rates of a birth-death process on the reconstructed phylogenetic
tree of interest, while integrating over past population sizes
(Stadler, 2011; Morlon et al., 2011). In order to quantify past pop-
ulation sizes, typically the expected population sizes based on
these estimated birth and death rates are calculated (Morlon
et al., 2011; Ratmann et al., 2016; Billaud et al., 2019).

Thus, such population sizes are not directly conditioned on the
reconstructed phylogenetic tree. Instead, the statistical signal in
the tree is only used to compute rate estimates. Second, phylody-
namic tools have been developed to fit the expected population
size of a coalescent model on a reconstructed phylogenetic tree.
This modeling approach may appear as a better alternative, for it
is directly parametrized with the population size that we wish to
estimate. However, this comes at the cost of ignoring stochastic
fluctuations in small populations (Morlon et al., 2010; Ratmann
et al., 2016).

Statistical approaches stemming from the analysis of case count
data or from the analysis of reconstructed evolutionary trees have
been part of separate bodies of work for many years, historically
yielding conflicts between biodiversity estimates based on the fos-
sil record and estimates based on reconstructed phylogenies of
extant taxa (Quental and Marshall, 2010 but see also Morlon
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et al., 2011). A first path towards merging these disparate data was
introduced by the fossilized birth-death model of Stadler (2010),
which considered a birth-death model with sampling and inclusion
of individuals in the tree through time. This allowed taking into
account infection trees reconstructed from pathogen sequences
sampled throughout an epidemic (Stadler et al., 2011). In
macroevolution, it paved the way to more precise phylogenetic
dating using well-conserved fossil taxa which could be placed on
a reconstructed phylogeny using morphological characters
(Gavryushkina et al., 2016). Not so well-conserved fossils (i.e.
occurrences) have also been used with this model, using a Markov
Chain Monte Carlo (MCMC) scheme to integrate over all possible
placements along a fixed tree (Heath et al., 2014). Analytical devel-
opments around this new model have been made by Gupta et al.
(2019), which derived an analytical formula for the probability
density of an outcome of the process, which consists of a recon-
structed phylogenetic tree along with a record of occurrences.
Again, all these methods do not quantify population sizes directly,
but estimate birth and death rates while analytically integrating
over population sizes.

Very recently, Vaughan et al. (2019) introduced a Monte-Carlo
particle filtering algorithm allowing direct quantification of past
population sizes and birth and death rates conditioned on recon-
structed phylogenetic trees and occurrences (see Andrieu et al.,
2010 for details about particle filtering methods). As such, it can
produce more accurate population size estimates than the meth-
ods mentioned above as the estimates directly condition on all
data, i.e. the occurrence record (e.g. poorly preserved fossils, or
case count epidemiological record) and the reconstructed phyloge-
netic tree.

In this paper, we build on the analytical developments pre-
sented by Gupta et al. (2019), to calculate the past population size
distribution as originally targeted by Vaughan et al. (2019). Our
approach here is more analytic, leading to much faster numerical
calculations compared to the particle filtering method previously
developed. The efficiency of our method paves the way towards
considering much bigger datasets, and towards extending the
method to multi-type or density-dependent birth-death processes.

In Section 2, we present the model, notation, and an overview of
the strategy to express the targeted distribution. In Section 3, we
adapt the main results of Gupta et al. (2019) to compute the prob-
ability density of observations made after a given time, condi-
tioned on the past population size. In Section 4, we provide a
way to compute the joint density of the past population size and
observations made before a given time. Combining results of Sec-
tions 3 and 4 in Section 5, we compute the distribution of past pop-
ulation sizes conditional on the full outcome of the process, and
perform sanity checks against previously published methods
achieving similar tasks (Stadler, 2010; Vaughan et al., 2019;
Gupta et al., 2019). We finally discuss applications and potential
extensions of the model.
2. Model and notation

2.1. Parameters of the process

We consider a population of individuals, any of which can give
birth to another individual at rate k or die at rate l. The process
starts at time tor in the past with one individual, and evolves until
reaching present time 0, i.e. time is oriented from the present
towards the past. In the rest of the manuscript, something happen-
ing at time t will thus always refer to an event taking place t units
before present.

We superimpose to this background population dynamics three
different sampling schemes. First, individuals can be w-sampled at
2

rate w throughout their lifetime. When w-sampled, the individual
will be included in the reconstructed phylogenetic tree. Second,
individuals can be x-sampled at rate x throughout their lifetime.
When x-sampled, the individual is not included in the recon-
structed phylogenetic tree, but its sampling time is nevertheless
recorded and called ‘an occurrence’. Last, the process finishes upon
reaching the present time 0, and each extant individual at that time
is q-sampled with fixed probability q, leading to their inclusion in
the reconstructed phylogenetic tree. The sum of all per-capita rates
will be called for short c ¼ kþ lþ wþx.

Following Vaughan et al. (2019), we also include in the model
an effect of the w- andx-sampling through time on the population
dynamics. We consider that, upon sampling, an individual is either
removed from the process with probability r 2 0;1ð Þ, or is unaf-
fected by the sampling with probability 1� rð Þ. The overall number
of individuals, denoted Itð Þ, thus follows a linear birth-death pro-
cess with birth rate k and death rate lþ wþxð Þr. Note that,
because the q-sampling step occurs here at the end of the process,
it does not matter whether or not individuals are removed upon q-
sampling.

2.2. Introducing useful probabilities

Some aspects of this process have been previously investigated
thoroughly. We now use two key probabilities. First, we will call ut

the probability that a process starting at time t with only one indi-
vidual remains unsampled up to and including the present time
(time 0). We recall that ut satisfies the ordinary differential equa-
tion (ODE) (Maddison et al., 2007)

u0 ¼ z
_ut ¼ ku2

t � cut þ l:
ð2:1Þ

The solution of this for a particular initial condition z being the
following

u t; zð Þ ¼ x1 x2 � zð Þ � x2 x1 � zð Þe�
ffiffiffi
D

p
t

x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

ð2:2Þ

where D ¼ c2 � 4kl > kþ lð Þ2 � 4klP k� lð Þ2 > 0 and x1; x2 are
the two roots of the polynomial kx2 � cxþ l,

x1 ¼ c�
ffiffiffiffi
D

p

2k
and x2 ¼ cþ

ffiffiffiffi
D

p

2k
:

Second, we call pt the probability that a process starting at time
t with one individual precisely leads to one sampled individual at
present time 0. Writing the ODE governing the evolution of this
quantity leads to

p0 ¼ 1� z
_pt ¼ 2ku t; zð Þ � cð Þpt :

ð2:3Þ

The solution of this being the following

p t; zð Þ ¼ 1� zð Þ D
k2

x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

� ��2
e�
ffiffiffi
D

p
t: ð2:4Þ

These formulas are well known, and correspond respectively to
quantities called p0 tð Þ and p1 tð Þ in Stadler (2010). When z ¼ 1� q,
we will drop the dependence on z and use the shorter notation
ut ; pt . We recall standard ways to derive these expressions in
Appendix A.

2.3. Strategy of the paper

The process with sampling leads to the observation of two dis-
tinct objects T ;Oð Þ illustrated in Fig. 1.
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The reconstructed phylogenetic tree T , on the one hand, rep-
resents the evolutionary relationships between all w-sampled
and q-sampled individuals. We further consider that w-
sampled individuals are labeled either as ‘removed’ or ‘non-
removed’. All w-sampled removed individuals are necessarily
leaves of T , whereas w-sampled non-removed ones can either
stand as leaves (when the descent of the individual is not sam-
pled) or as vertices along a branch (when the descent of the
individual is further sampled), in which case they are referred
to as sampled ancestors.

The record of occurrences O, on the other hand, is an ordered
list of all x-sampling times. We also consider that these sampling
times are labeled as either ‘removed’ or ‘non-removed’.

In this paper, we are interested in computing the probability
distribution of the number of individuals in the past, conditioned
on the observed outcome T ;Oð Þ of the process. If kt denotes the
number of sampled lineages in T at time t, we call our target
distribution,

8t P 0;8i 2 N0 ¼ 0;1;2; . . .f g; K ið Þ
t :¼ P It ¼ kt þ ijT ;Oð Þ: ð2:5Þ

We will refer to epochs as the maximal time slices within
which no sampling event in O, nor branching event in T , hap-
pened. These epochs are delimited by the union of sampling
times in O, branching times in the tree T , and sampling times
of leaves and sampled ancestors in T . All pooled together, we
call these ordered times thð Þnh¼0, starting at present time t0 ¼ 0
and ending at the origin time tn ¼ tor .

At any time t P 0 we also introduce:
Fig. 1. General setting of the method. a) the full process with sampling. Pink dots tran
sequencing). Blue dots translate as dots in T and correspond to w-sampling (sampling th
events. Filled or unfilled dots correspond respectively to sampling with or without rem
Reconstructed phylogenetic tree. e) Number of individuals in reconstructed phylogene
legend, the reader is referred to the web version of this article.)

3

T "
t :¼ the tree T starting at the origin time tor and cut at time t

T #
t :¼ the collection of trees or forestð Þ obtained by cutting T

at time t; and considering all subtrees descending from cut lineages
O"

t :¼ Oj t;torð Þ

O#
t :¼ Oj 0;tð Þ

The general strategy – and outline – of the paper is the follow-
ing. We will traverse the tree and record of occurrences breadth-
first, i.e. level-by-level through time. In a backward traversalwe will
compute the probability density of observations made between
time t and 0 conditioned on the population size at time t. We call
this probability density,

8i 2 N0; L ið Þ
t :¼ P T #

t ;O
#
t jIt ¼ kt þ i

� �
: ð2:6Þ

In a forward traversalwe will then compute the joint probability
density of the observations made prior to time t and the population
size at time t. We call this density,

8i 2 N0; M ið Þ
t :¼ P T "

t ;O
"
t ; It ¼ kt þ i

� �
: ð2:7Þ

Provided we get expressions of Ltð Þtort¼0 and Mtð Þtort¼0, our target
distribution can then be expressed by combining both, noting that

K ið Þ
t :¼ P It ¼ kt þ ijT ;Oð Þ

/ P It ¼ kt þ i; T "
t ;O

"
t ; T

#
t ;O

#
t

� �
¼ P T #

t ;O
#
t jIt ¼ kt þ i; T "

t ;O
"
t

� �
P It ¼ kt þ i; T "

t ;O
"
t

� �
¼ L ið Þ

t M ið Þ
t

ð2:8Þ
where the last line holds because, conditionally on It ¼ kt þ i, the
future of the (Markov) process is independent of what happened
before.
slate as dots in O and correspond to x-sampling (sampling through time without
rough time with sequencing). Yellow dots correspond to all present-day q-sampling
oval. b) Population size through time. c) Observed occurrences through time. d)

tic tree through time. (For interpretation of the references to colour in this figure
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In the process of getting the probability density of T ;O under
the same model, Gupta et al. (2019) provided an analytical formula
and an algorithm to compute the first ingredient Lt in the case
where all individuals are removed upon sampling (i.e. r ¼ 1). We
thus recall their main result, and adapt it to our slightly different
framework, in the next section.

3. Calculation of Lt – The density of observations below t
conditioned on past population size

We start this section by presenting the ODEs satisfied by the
probability density Lt . This provides us with a numerical algorithm
to compute Lt , which we subsequently simplify with analytical
results for specific sets of parameters.

3.1. Set of ODEs satisfied by Lt

We can derive the probability density Lt by studying its evolu-
tion through time. First, observe that we can express L0 at present
time 0. Indeed, provided we know the exact number of individuals
living at time 0, the probability to see the tips of the tree is directly
driven by the q-sampling,

8i 2 N0; L ið Þ
0 ¼ qk0 1� qð Þi: ð3:1Þ

We now derive the ODE driving the evolution of Lt through time
across any given epoch. We consider an infinitesimal time step dt
and list the events which could have happened in the full process
between t þ dt and t, leading to our observations. Suppose the
number of observed lineages in this epoch is k, and the total num-
ber of individuals alive is kþ i. We emphasize three cases, illus-
trated in Fig. 2:

1. nothing happened with probability 1� c kþ ið Þdtð Þ
2. a birth event happened

(a) among the k sampled lineages in T #
t , and it leads to an

extinct or unsampled subtree to the left or to the right, with
probability 2kkdt.

(b) among the i other individuals, with probability kidt.
3. a death event happened among the i particles, with probability

lidt.

These allow us to write, 8i 2 N0,

L ið Þ
tþdt ¼ 1� c kþ ið Þdtð ÞL ið Þ

t þ k 2kþ ið ÞdtL iþ1ð Þ
t þ lidtL i�1ð Þ

t :

Note that for i ¼ 0; L i�1ð Þ
t is not defined, but the term cancels out

thanks to the factor i.

Subtracting L ið Þ
t from both sides, dividing by dt and letting

dt ! 0, we get the following set of ODEs driving the evolution of Lt ,

8i 2 N0; L ið Þ
0 ¼ qk0 1� qð Þi

_L ið Þ
t ¼ �c kþ ið ÞL ið Þ

t þ k 2kþ ið ÞL iþ1ð Þ
t þ liL i�1ð Þ

t :
ð3:2Þ
Fig. 2. Four unobservable scenarios taken into
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Last, we need to study how Lt changes at punctual events. We
call unsampled lineages the lineages that do not appear on the
reconstructed phylogenetic tree, i.e. have not been q- or w-
sampled. Note that these unsampled lineages might still be subject
to x-sampling events.

There are 6 types of punctual events that we can come across at
time t in the past, listed below and illustrated in Fig. 3. We denote
Ltþ the probability just before (i.e. up) the punctual event and Lt�
the probability immediately after (i.e. down). One directly gets
Ltþ by decomposing it into what must occur below t�, multiplied
by the rate of the specific event happening on the infinitesimal
time window t�; tþð Þ. We can either find,

1. a leaf of T #
t , labeled as removed. This is a w-sampling with

removal event for which the number of unsampled lineages
remains constant, and the number of sampled lineages
increases by one (going backward in time). It thus gives,
L ið Þ
tþ ¼ wrL ið Þ

t� : ð3:3Þ

2. a leaf of T #
t , labeled as non-removed. This is a w-sampling with-

out removal event for which one of the unsampled lineage
becomes a sampled one (going backward in time). It thus gives,
L ið Þ
tþ ¼ w 1� rð ÞL iþ1ð Þ

t� : ð3:4Þ

3. a sampled ancestor along a branch of T #
t , necessarily labeled as

non-removed. This is a w-sampling without removal event, not
impacting the number of sampled or unsampled lineages. It
thus gives,
L ið Þ
tþ ¼ w 1� rð ÞL ið Þ

t� : ð3:5Þ

4. an occurrence in O#
t , labeled as removed. This is a x-sampling

with removal event, for which the number of unsampled lin-
eages increases by one (going backward in time). It thus gives,
L ið Þ
tþ ¼ xriL i�1ð Þ

t� : ð3:6Þ

Note that here also, for i ¼ 0; L �1ð Þ
t is not defined but the term

cancels out thanks to the factor i.
5. an occurrence in O#

t , labeled as non-removed. This is a x-
sampling without removal event, not impacting the number
of sampled or unsampled lineages. It thus gives,
L ið Þ
tþ ¼ x kþ ið Þ 1� rð ÞL ið Þ

t� : ð3:7Þ

6. a branching event between two branches of T #
t . The number of

sampled lineages decreases by one (going backward in time). It
thus gives,
acc
L ið Þ
tþ ¼ kL ið Þ

t� : ð3:8Þ
ount to derive the ODEs 3.2 and 4.1.
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Note that these updates can be adapted to the case when we
don’t observe the removal status of individuals. The update corre-
sponding to a leaf of T is the sum of updates (3.3) and (3.4), the
update corresponding to an occurrence event is the the sum of
updates (3.6) and (3.7), while updates (3.5) and (3.8) are
unchanged.

This set of ODEs (3.2) together with update Eqs. (3.3)–(3.8) can
be numerically approximated. To do so, we fix a finite upper bound
N on the number of hidden individuals and numerically integrate a
truncated ODE system. We detail this in the following algorithm to
compute an approximation of Lt at any time t.

Algorithm 1: Computes a numerical approximation of Lt for a
specific set of times

Input:
Observed tree and occurrence data T ;Oð Þ,
parameters tor ; k;l;w;x;q; rð Þ,
set of time points sj

� �S
j¼1 for which we want to compute the

density L ið Þ
sj ,

and the truncation N setting the accuracy of the algorithm.
Output: A numerical approximation of Lt at times

sj
� �S

j¼1;
eL ið Þ
sj

� �
i 2 0;1; . . . ;Nf g
j 2 1;2; . . . ; Sf g

. 1: Pool all sj
� �

and all

branching and sampling times of T ;Oð Þ in an ordered list
thð Þnh¼1

2: Set j ¼ 1 and initialize B as a S� N þ 1ð Þ empty matrix

3: Set 8i 2 0;1; . . . ;Nf g; eL ið Þ
0 ¼ qk0 1� qð Þi

4: for h ¼ 1;2; . . . ;n

5: Numerically solve the ODE _eLt ¼ AeLt on th�1; thð Þ, by
computing eLth ¼ e th�th�1ð ÞAeLth�1 ,

6: where matrix A is a N þ 1ð Þ � N þ 1ð Þ tridiagonal matrix
with entries given by,

8i 2 0;1; . . . ;Nf gA i;ið Þ ¼ �c kþ ið Þ
8i 2 0;1; . . . ;N � 1f gA i;iþ1ð Þ ¼ k 2kþ ið Þ
8i 2 1;2; . . . ;Nf gA i;i�1ð Þ ¼ li
5

Algorightm 2: (continued)

7: if th ¼ sj
8: Record 8i;B j;ið Þ ¼ eL ið Þ

th

9: Set j ¼ jþ 1
10: end if
11: if th ¼ tn or th ¼ sS then
12: return B
13: else if th is a removed leaf then

14: Set eLtþ
h
¼ wreLt�h

15: else if th is a non-removed leaf then

16: Set 8i < N; eL ið Þ
tþ
h
¼ w 1� rð ÞeL iþ1ð Þ

t�h
and eL Nð Þ

tþ
h

¼ 0

17: else if th is a sampled ancestor then

18: Set eLtþ
h
¼ w 1� rð ÞeLt�h

19: else if th is a removed occurrence then

20: Set 8i > 0; eL ið Þ
tþ
h
¼ xrieL i�1ð Þ

t�h
and eL 0ð Þ

t�h
¼ 0

21: else if th is a non-removed occurrence

22: Set eL ið Þ
tþ
h
¼ x 1� rð Þ kþ ið ÞeL ið Þ

t�h

23: else th is a branching event

24: Set eLtþ
h
¼ keLt�h

25: end if
26: end for
We also define a slight variation of this algorithm, that we will
refer to as Algorithm 1’, where no set of time points sj

� �
is required,

and the values of eLt are not recorded through time (i.e. matrix B

disappears). Instead, when reaching tn ¼ tor we simply return eL 0ð Þ
t ,

which by definition is an estimate of the probability density of
T ;Oð Þ. Note that this strategy is identical to what has been used
to compute the probability density of a reconstructed phylogenetic
tree under a logistic birth-death process (Leventhal et al., 2013).

These two algorithms will prove useful to deal with the general
case. Furthermore, we may obtain analytical expressions for Lt
when x ¼ 0 as well as when r ¼ 1 (Gupta et al., 2019). We reveal
these in the next two subsections.
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3.2. Special case x ¼ 0

Suppose we can express L ið Þ
t as the product L ið Þ

t ¼ ui
tWt where Wt

is a function of time only, and ut is defined as in Eq. 2.2. We first
get, from the initialization in Eq. (3.2), that W0 ¼ qk0 . Moreover,
substituting ui

tWt in the ODE leads to

_L ið Þ
t ¼ iui�1

t
_utWt þ ui

t
_Wt

¼ kiuiþ1
t � ciui

t þ liui�1
t

� �
Wt þ ui

t
_Wt:

Thus leading to the following ODE forWt , on any epoch th; thþ1ð Þ
where the number of sampled lineages remains fixed and equal
to k,

ui
t
_Wt ¼ �c iþ kð Þui

t þ k 2kþ ið Þuiþ1
t þ liui�1

t � kiuiþ1
t þ ciui

t � liui�1
t

� �
Wt

) _Wt ¼ 2kut � cð ÞkWt :

This is very close to the ODE (2.3) governing the evolution of pt ,
and it leads to (see derivation in Appendix A),

8t 2 th; thþ1ð Þ; Wt ¼ Wth

pt

pth

 !k

: ð3:9Þ

Last, because x ¼ 0, updates (3.3)–(3.8) simplify to only the
following w- and k-events,

if t is a removed leaf; Wtþ ¼ wrWt� ð3:10Þ

if t is a non-removed leaf; Wtþ ¼ w 1� rð ÞutWt� ð3:11Þ

if t is a sampled ancestor; Wtþ ¼ w 1� rð ÞWt� ð3:12Þ

if t is a branching time; Wtþ ¼ kWt� : ð3:13Þ

Combining these updates with Eq. (3.9) leads to the following
proposition.

Proposition 3.1. Whenx ¼ 0, at any time t across epoch th; thþ1ð Þ,
considering that we observed so far – i.e. on 0; thþ1ð Þ – v sampled
ancestors, w removed leaves at times tj 2 W, x branching events at
times tj 2 X , y non-removed leaves at times tj 2 Y, we get,
L ið Þ
t ¼ ui

tWt

where Wt ¼ kxwvþwþy 1� rð Þvþyrwpkt
t

Y
tj2X

ptj

Y
tj2Y

utjp
�1
tj

Y
tj2W

p�1
tj
:

Proof. We prove this proposition by induction across the epochs in
Appendix E, using as the main arguments the equation updates
(3.10)–(3.13), combined with Eq. (3.9).

Note that this proposition is very similar to what is presented in
Section 3 by Gupta et al. (2019). We nevertheless need to highlight
two differences.

The first one is that we allow here for removal or not of the indi-
vidual upon sampling, with a given probability r, whereas Gupta
et al. (2019) considered that all individuals were removed upon
sampling (r ¼ 1), and Stadler (2010) considered that individuals
were not removed upon sampling (r ¼ 0).

The second difference concerns the underlying framework
under which we derive our results. In Gupta et al. (2019), individ-
uals where distinguishable (say, each one is assigned a number and
they can be ordered), whereas in the present paper they are not.

When individuals are ordered, the probability density L ið Þ
t is chan-

ged by a factor kþið Þ!
i! , which is the number of ways we can arrange

kþ i elements in a list of size k, i.e. the number of ordered config-
urations of hidden individuals.
6

Note that, when reaching the origin of the tree, the formula in
Proposition 3.1 reduces to a very similar formula for the probabil-
ity density of T because i ¼ 0 and k ¼ 1. We summarize this as the
following corollary.

Corollary 3.1.1. When x ¼ 0, the probability density of a recon-
structed tree T with v sampled ancestors, w removed leaves at times
tj 2 W, y non-removed leaves at times tj 2 Y, and branching events at
times tj 2 X , is

P Tð Þ ¼ kwþyþk0�1wvþwþy 1� rð Þvþyrw
Y

tj2X[ torf g
ptj

Y
tj2Y

utjp
�1
tj

Y
tj2W

p�1
tj

ð3:14Þ
Proof. It directly follows from Proposition 3.1, by noting that
P Tð Þ ¼ L 0ð Þ

tor . Note also that a rooted binary tree with wþ yþ k0
leaves shows necessarily x ¼ wþ yþ k0 � 1 branching times.

Note that this formula is a straightforward generalization of for-
mulas provided in Stadler (2010) (where r ¼ 0) or Stadler et al.
(2011) (where q ¼ 0).

3.3. Special case r ¼ 1

When r ¼ 1, only three kinds of punctual events, corresponding
to updates (3.3), (3.6) and (3.8) need to be taken into account.
Because the number of unsampled individuals i goes into formula

(3.6), the simple expression L ið Þ
t ¼ ui

tWt cannot be considered any-
more, and one needs to find another expression. This has already
been done in Gupta et al. (2019) and we only need to adapt here
their result to our slightly different framework.

Proposition 3.2. When r ¼ 1, we can compute the L ið Þ
t values at

any time t as

L ið Þ
t ¼

Xq
‘¼0

i!
i� ‘ð Þ!u

i�‘
t W ‘ð Þ

t :

whereWt is a q dimensional time-varying vector which can be com-
puted following Algorithm 2 in Gupta et al. (2019).
Proof. The proof relies on the definition of a distinguishable version

of the probability L ið Þ
t as

L ið Þ
t ¼ kþ ið Þ!

i!
L ið Þ
t ð3:15Þ

which allows us to use results previously derived in Gupta et al.
(2019). Details are provided in Appendix B.

Note that when there is no x-sampling, then q ¼ 0 for all times
and W 0ð Þ

t is the same as Wt defined in the previous section.
This ends our section on the computation of Lt . It thus remains

to (i) present a way to computeMt and (ii) combine Lt andMt to get
the target distribution Kt at any time t. We do this in turn in the
next two sections.

4. Calculation of Mt – the joint density of observations above t
and past population size

Recall that we are now interested in computing the joint den-
sity of observations above time t and past population size at time

t, i.e. 8i 2 N0; M ið Þ
t :¼ P T "

t ;O
"
t ; It ¼ kt þ i

� �
. We start by presenting

the ODEs satisfied by Mt , before turning to its resolution for speci-
fic parameter sets. The approach is very similar to the one pre-
sented in the previous section to compute Lt , with the slight
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difference that we will need to traverse the tree forward in time
instead of backward in time.

4.1. Set of ODEs satisfied by Mt

At the time of origin of the process tor , we only observe one
starting lineage in T "

tor . This provides us with the following initial-
ization condition on M,

M ið Þ
tor ¼ P Itor ¼ 1þ ið Þ ¼ 1i¼0:

We then derive the ODEs driving the evolution of Mt across an
epoch on which the number of observed lineages is fixed and equal
to k. Suppose we know Mt , and we observe no punctual event on
the infinitesimal time interval t � dt; tð Þ. Unobservable events have
already been illustrated in Fig. 2. It allows us to get

M ið Þ
t�dt ¼ 1� c iþ kð Þdtð ÞM ið Þ

t þ k 2kþ i� 1ð Þdt1i>0M
i�1ð Þ
t þ l iþ 1ð ÞdtM iþ1ð Þ

t :

Subtracting M ið Þ
t from both sides, multiplying by -1,dividing by

dt and letting dt ! 0, we get the following set of ODEs driving
the evolution of Mt ,

8i 2 N0; M ið Þ
tor ¼ 1i¼0

_M ið Þ
t ¼ c iþ kð ÞM ið Þ

t � k 2kþ i� 1ð Þ1i>0M
i�1ð Þ
t � l iþ 1ð ÞM iþ1ð Þ

t :
ð4:1Þ

Last, we need to take into account the evolution of Mt at punc-
tual events. Again, there are 6 types of punctual events that we can
come across at time t in the past, listed below and illustrated in
Fig. 3. We denote Mt� the probability just after (i.e. below) the
punctual event and Mtþ the probability immediately before (i.e.
up). Because we are here deriving Mt forward in time, one needs
to carefully note differences with results derived in Section 3 relat-
ing to the number of lineages before and after the event. We can
indeed find the same punctual events, namely,

1. a leaf of T #
t , labeled as removed. This is a w-sampling with

removal event for which the number of sampled lineages
decreases by one and the number of unsampled lineages
remains unchanged. This gives,
M ið Þ
t� ¼ wrM ið Þ

tþ : ð4:2Þ
2. a leaf of T #
t , labeled as non-removed. This is a w-sampling with-

out removal event for which one sampled lineages becomes
unsampled. This gives,
M ið Þ
t� ¼ w 1� rð Þ1i>0M

i�1ð Þ
tþ : ð4:3Þ

3. a sampled ancestor along a branch of T #
t , necessarily labeled as

non-removed. This is a w-sampling without removal event
which does not affect the number of lineages. It gives,
M ið Þ
t� ¼ w 1� rð ÞM ið Þ

tþ : ð4:4Þ

4. an occurrence in O#
t , labeled as removed. This is a x-sampling

with removal event, for which the number of unsampled lin-
eages decreases by one. This gives,
M ið Þ
t� ¼ xr iþ 1ð ÞM iþ1ð Þ

tþ : ð4:5Þ

5. an occurrence in O#
t , labeled as non-removed. This is a x-

sampling without removal event which does not affect the
number of lineages. It gives,
M ið Þ
t� ¼ kþ ið Þx 1� rð ÞM ið Þ

tþ : ð4:6Þ
7

6. a branching event between two branches of T #
t .

This is a k-event increasing the number of sampled lineages by
one. This gives,
M ið Þ
t� ¼ kM ið Þ

tþ : ð4:7Þ

Finally, upon reaching present time 0, one needs to take into
account the q-sampling, leading to the following update,

M ið Þ
0� ¼ 1� qð Þiqk0M ið Þ

0þ : ð4:8Þ

Note, as for Lt , that these updates can be adapted to the case
when we do not observe the removal status of individuals. The
update corresponding to a leaf of T is the sum of updates (4.2)
and (4.3), the update corresponding to an occurrence event is the
the sum of updates (4.5) and (4.6), while updates (4.4) and (4.7)
are unchanged.

As already exhibited for Lt , we can build a similar algorithm to
compute Mt in the general case, relying on a numerical ODE solver
for approximating Eq. (4.1). As for Algorithm 1’ previously intro-
duced to compute the probability density of T ;Oð Þ, a slight varia-
tion of this algorithm would allow one to compute an estimate of

the probability density of T ;Oð Þ by summing the M ið Þ
0 ’s over all i.

Note that this strategy is identical to what has been used to com-
pute the probability density of a reconstructed phylogenetic tree
under a logistic birth-death process (Etienne et al., 2012;
Laudanno et al., 2020).

While this approach is in theory a good approximation, it
requires fixing arbitrarilly a truncation parameter N, and exponen-
tiating matrices of dimension N � N, leading to potential speed or
accurracy issues. In the remainder of this section, we derive analyt-
ical results to avoid resorting to a numerical ODE solver in specific
cases.

4.2. The corresponding generating function

We introduce now the generating function corresponding to the
density Mt , which will prove useful to get analytical results,

bM t; zð Þ :¼
X1
i¼0

ziM ið Þ
t :

The initial condition on M translates into, 8z; bM tor; zð Þ ¼ 1. The
ODE (4.1) furthermore translates into the following partial differ-
ential equation (PDE),

@t
bM ¼

X1
i¼0

zi c iþ kð ÞM ið Þ
t � k 2kþ i� 1ð Þ1i>0M

i�1ð Þ
t � l iþ 1ð ÞM iþ1ð Þ

t

� �
¼ ck

X1
i¼0

ziM ið Þ
t þ c

X1
i¼1

iziM ið Þ
t � k

X1
i¼0

ziþ1 2kþ ið ÞM ið Þ
t � l

X1
i¼1

izi�1M ið Þ
t

¼ ck bM þ cz@z
bM � 2kkz bM � kz2@z

bM � l@z
bM

¼ �k 2kz� cð Þ bM � kz2 � czþ l
� �

@z
bM :

Our target generating function bM is thus the solution of the fol-
lowing PDE problem across a given epoch th�1; thð Þ, on which the
number of observed lineages remains constant and equal to k,

bM th; zð Þ ¼ F zð Þ
@t
bM þ kz2 � czþ l

� �
@z
bM þ k 2kz� cð Þ bM ¼ 0:

ð4:9Þ

Solving this PDE problem allows us to obtain an analytical

expression of bM for any time across an epoch, provided we know

the expression of bM th; zð Þ at the end of the epoch.
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Proposition 4.1. The solution to the PDE problem (4.9) is given bybM t; zð Þ ¼ F u th � t; zð Þð ÞR th � t; zð Þk

where we introduce R t; zð Þ ¼ p t; zð Þ= 1� zð Þ to ease the notation.
Proof. We used the method of characteristics to solve this first
order linear PDE, see derivations in Appendix C.

Between epochs, one must also update bM according to
punctual events taking place. Previously presented updates of M

(Eqs. (4.2)–(4.7)) translate into the following updates for bM ,

if t is a removed leaf;

bM t�; zð Þ ¼
X1
i¼0

zi wrM ið Þ
tþ

� �
¼ wr bM tþ; zð Þ ð4:10Þ

if t is a non-removed leaf;

bM t�; zð Þ ¼
X1
i¼0

zi w 1� rð Þ1i>0M
i�1ð Þ
tþ

� �
¼ w 1� rð Þz bM tþ; zð Þ ð4:11Þ

if t is a sampled ancestor;

bM t�; zð Þ ¼
X1
i¼0

zi w 1� rð ÞM ið Þ
tþ

� �
¼ w 1� rð Þ bM tþ; zð Þ ð4:12Þ

if t is a removed occurrence;

bM t�; zð Þ ¼
X1
i¼0

zi xr iþ 1ð ÞM iþ1ð Þ
tþ

� �
¼ xr@z

bM tþ; zð Þ ð4:13Þ

if t is a non-removed occurrence;

bM t�; zð Þ ¼
X1
i¼0

zi x 1� rð Þ kþ ið ÞM ið Þ
tþ

� �
¼ x 1� rð Þ k bM tþ; zð Þ þ z@z

bM tþ; zð Þ
� �

ð4:14Þ

if t is a branching event;

bM t�; zð Þ ¼
X1
i¼0

zi kM ið Þ
tþ

� �
¼ k bM tþ; zð Þ: ð4:15Þ

If we are interested in the distribution at some point, we can
thus start the formula at tor with F zð Þ ¼ 1, and then iteratively
alternate between the updates at punctual events and the use of
Proposition 4.1 over each epoch. When reaching present time 0,
the step of q-sampling expressed in Eq. (4.8) moreover translates
into,

bM 0�; zð Þ ¼
X1
i¼0

zi 1� qð Þiqk0M ið Þ
0þ ¼ qk0 bM 0þ; 1� qð Þz

� �
: ð4:16Þ

While this procedure in theory allows us to get the analytical

formula of bM at any time, updates (4.13) and (4.14) require differ-
entiating the generating function, greatly complicating the expres-
sion of the function after a few occurrences. When x ¼ 0, these
two updates disappear and a nice recursion leads to a closed-
form formula that we will detail in Proposition 4.3.

We implemented this procedure in the SageMath programming
language able to deal with symbolic calculus. We were however
not able to make it find concise expressions, and computing these
successive derivatives was too time-consuming to be applicable to
standard datasets in the field. Instead, when x–0.

We suggest another strategy for computing the M ið Þ
t ’s, namely

approximating bM across punctual events by a polynomial of order

N ,
PN

l¼0
eM lð Þ

t zl, while still relying on Proposition 4.1 to drive the
evolution of the probability generating function between events.
This is a more efficient alternative to numerically solving the
8

ODE system. We only need to derive the expression of the generat-
ing function at punctual events as given in the following Proposi-
tion 4.2.

Proposition 4.2. The derivatives in z ¼ 0 of a generative function
which can be expressed as

bM th � t; zð Þ :¼ R th � t; zð Þk
XN
l¼0

eM lð Þ
th
u th � t; zð Þl

can be numerically computed using the formula

@i
z
bM th � t; zð Þ

� �
z¼0

¼ D
k2
e�
ffiffiffi
D

p
th�tð Þ

� �kXi

a¼0

XN
l¼a

eM lð Þ
th

i

a

� �
l!

l�að Þ!

Yi�a�1

m¼0

2kþ lþmð Þ
 !

x1x2ð Þl�a

�x1 þ x2e�
ffiffiffi
D

p
th�tð Þ

� �a
1� e�

ffiffiffi
D

p
th�tð Þ

� �lþi�2a
x2 � x1e�

ffiffiffi
D

p
th�tð Þ

� �� 2kþlþi�að Þ
:

Proof. The derivation is detailed in Appendix D.1.

This derivation is at the heart of Algorithm 2, allowing to follow

the evolution of the eM ið Þ
t ’s through each epoch, as well as at times

when we want to record them.
We will refer to Algorithm 2’ as the slight variation of this algo-

rithm aimed at computing the density of T ;Oð Þ. No set of time

points sj
� �

is required, and the values of eMt are not recorded
through time (i.e. matrix B0 disappears). Instead, when reaching

th ¼ t0 we simply return
PN

i¼0qk0 1� qð Þi eM ið Þ.

Algorithm 2: Computes a numerical approximation of Mt for
a specic set of times

Input:
Observed tree and occurrence data T ;Oð Þ,
parameters tor; k;l;w;x;qð Þ,
set of time points sj

� �S
j¼1 for which we want to compute the

density,
and the truncation N setting the accuracy of the algorithm.

Output: A numerical approximation of Mt at times

sj
� �S

j¼1;
eM ið Þ
sj

� �
i 2 0;1; . . . ;Nf g
j 2 1;2; . . . ; Sf g

.

1: Pool all sj
� �

and all branching and sampling times of
T ;Oð Þ in an ordered list thð Þnh¼1

2: Set j ¼ S and B0 as a S� N þ 1ð Þ empty matrix

3: Set 8i 2 0;1; . . . ;Nf g; eM ið Þ ¼ 1i¼0

4: Set k ¼ 1
5: for h ¼ n� 1;n� 2; . . . ;0 do
6: Compute the values right before the punctual event,

feM ið Þ ¼ D
k2
e�
ffiffiffi
D

p
th�tð Þ

� �kXi

a¼0

XN
l¼a

eM lð Þ
th

l

a

� �
1

i�að Þ!

Yi�a�1

m¼0

2kþ lþmð Þ
 !

�x1 þ x2e�
ffiffiffi
D

p
th�tð Þ

� �a
x1x2ð Þl�a 1� e�

ffiffiffi
D

p
th�tð Þ

� �lþi�2a
x2 � x1e�

ffiffiffi
D

p
th�tð Þ

� �� 2kþlþi�að Þ

7: if th ¼ sj then

8: Record the result in B0 : 8i;B0 j;ið Þ ¼ feM ið Þ

9: Set j ¼ j� 1.
10: end if
11: if th ¼ 0 or th ¼ sS
12: return B0

13: els if th is a removed leaf

14: Update 8i; eM ið Þ ¼ wr ~eM ið Þ
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Algorightm 2: (continued)

15: Set k ¼ k� 1
16: else if th is a non-removed leaf

17: Update eM 0ð Þ ¼ 0 and 8i > 0; eM ið Þ ¼ w 1� rð Þ ~eM i�1ð Þ

18: Set k ¼ k� 1
19: else if th is a sampled ancestor

20: Update 8i; eM ið Þ ¼ w 1� rð Þ ~eM ið Þ

21: else if th is a removed occurrence

22: Update 8i < N; eM ið Þ ¼ xr iþ 1ð Þ ~eM iþ1ð Þ and eM Nð Þ ¼ 0
23: else if th is a non-removed occurrence

24: Update 8i; eM ið Þ ¼ x 1� rð Þ kþ ið Þ ~eM ið Þ

25: else th is a branching event

26: Update 8i; eM ið Þ ¼ k
~eM ið Þ

27: Set k ¼ kþ 1
28: end if
29: end for
Note that we tried to follow an analogous generating function
approach as an alternative to Algorithm 1 to compute Lt as well.
This leads to another PDE problem, described in Appendix F, that
will require further work to be solved.

4.3. Special case x ¼ 0

We were not able to come with any analytical simplification, as
in the previous section, for the case r ¼ 1. However, for the special
case x ¼ 0, corresponding to the special case leading to the obser-
vation of O ¼ £, a nice recursion leads to a closed-form formula

for bM .

Proposition 4.3. When x ¼ 0, at any time t, considering that we
have observed so far –i.e. on t; torð Þ – v sampled ancestors, w
removed leaves at times tj 2 W, x branching events at times tj 2 X ,
y non-removed leaves at times tj 2 Y, we get,
bM t; zð Þ ¼ kxwvþwþyrw 1� rð Þvþy
Y

tj2X[ torf g
R tj � t; z
� �Y

tj2W
R tj � t; z
� ��1Y

tj2Y
u tj � t; z
� �

R tj � t; z
� ��1

:

Proof. We prove this result by induction across the epochs of T in
Appendix E, using as the main arguments the update Eqs. (4.10),
(4.11), (4.12), (4.15), combined with Proposition 4.1 driving the
evolution across an epoch.

As a simple corollary of this result, when th ¼ 0 is the present,
we get back the same probability density formula of T as provided,
e.g. in Theorem 3.5 in Stadler (2010) (when r ¼ 0), in Section 3 in
Gupta et al. (2019) (when r ¼ 1), or in our previous Corollary 3.1.1.

Indeed, Proposition 4.3 offers yet another proof of Corollary
3.1.1 by noting that

P Tð Þ ¼
X1
i¼0

M ið Þ
0� ¼ bM 0�;1ð Þ ¼ qk0 bM 0þ;1� q

� �
where the last equality follows from Eq. (4.16) taking into account
the q-sampling at present. Note that this alternative proof is also
presented in (Laudanno et al., 2020).

When x ¼ 0, Proposition 4.3 also offers an alternative to Algo-
rithm 2 for deriving Mt . Indeed, resorting to the generating func-
tion to get back the probability density, one can get the following
corollary.
9

Corollary 4.3.1. Whenx ¼ 0, at any time t, considering that we have
observed so far –i.e. on t; torð Þ – v sampled ancestors, w removed
leaves at times tj 2 W, x branching events at times tj 2 X , y non-

removed leaves at times tj 2 Y, we can compute M ið Þ
t using the

following recursion,
M 0ð Þ
t ¼ kxwvþwþyrw 1� rð Þvþy

Y
tj2X[ torf g

R tj � t; 0
� �Y

tj2W
R tj � t;0
� ��1Y

tj2Y
u tj � t; 0
� �

R tj � t;0
� ��1

M ið Þ
t ¼ 1

i

Xi

a¼1

M i�að Þ
t C að Þ

where we define

C að Þ ¼ 2 P
tj2X[ torf g

aatj�t � 2 P
tj2W

aatj�t � P
tj2Y

aatj�t þ batj�t

� �
at ¼ 1� e�

ffiffiffi
D

p
t

� �
x2 � x1e�

ffiffiffi
D

p
t

� ��1

bt ¼ x1 � x2e�
ffiffiffi
D

p
t

� �
x1x2 � x2x1e�

ffiffiffi
D

p
t

� ��1
:

Proof. The probability density M ið Þ
t can be found back by taking

M ið Þ
t ¼ 1

i!
@i
z
bM t; zð Þ

� �
z¼0

:

The result follows from the derivation of these derivatives in
Appendix D.2.

This special case ends the section. In the next section, we will
combine results from Sections 3 and 4 and use our ability to com-
pute Lt and Mt to compute Kt , the probability distribution of the
population size given T ;Oð Þ.

5. The distribution of past population size conditioned on
observations

5.1. The distribution at fixed times

In Section 3, we explained how to compute Lt , the probability
density of the observations below time t conditioned on the popu-
lation size at time t. This relies either on Algorithm 1 in the general
case, or on the more optimized Proposition 3.1 in case x ¼ 0, or
Proposition 3.2 in the case r ¼ 1.

In Section 4, we explained how to compute Mt , the probability
density of the observations above time t and the population size
at time t. This relies either on Algorithm 2 in the general case, or
on the more optimized Corollary 4.3.1 when x ¼ 0. We now com-
bine Lt and Mt to derive the probability distribution of the popula-
tion size given T ;Oð Þ. Provided we have stored numerical valueseL ið Þ

sj

� �
i 2 0;1; . . . ;Nf g
j 2 1;2; . . . ; Sf g

and eM ið Þ
sj

� �
i 2 0;1; . . . ;Nf g
j 2 1;2; . . . ; Sf g

for a set of time

points sj
� �S

j¼1, recall from the first section that we obtain

K ið Þ
sj ¼ P Isj ¼ ksj þ ijT ;O

� �
¼

L ið Þ
sj
M ið Þ
sj

P T ;Oð Þ

�
eL ið Þ
sj
eM ið Þ
sj

P T ;Oð Þ if i 6 N; and 0 otherwise:

Note that the denominator needs only be computed once, by

evaluating
PN

i¼0
eL ið Þ
sj
eM ið Þ
sj for example at time sj ¼ tor or sj ¼ 0 as

described in previous sections.
Depending on the parameter space that one wants to consider,

it thus remains to arrange pieces stemming from the previous sec-
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tions. We provide a flowchart in Fig. 4 to guide the reader to chose
the most efficient path.

5.2. Generator of trajectories

The previous result gives us the distribution of the population
size at any time in the past, but does not state anything about pop-
ulation size trajectories. We provide now an approximate way of
simulating population size trajectories conditioned on T ;Oð Þ.

Indeed, recall we have,

K ið Þ
t :¼ P It ¼ kt þ ijT ;Oð Þ / L ið Þ

t M ið Þ
t

_L ið Þ
t ¼ �c kt þ ið ÞL ið Þ

t þ k 2kt þ ið ÞL iþ1ð Þ
t þ liL i�1ð Þ

t

_M ið Þ
t ¼ c kt þ ið ÞM ið Þ

t � l iþ 1ð ÞM iþ1ð Þ
t � k 2kt þ i� 1ð Þ1i>0M

i�1ð Þ
t :

We thus get,

_K ið Þ
t / _L ið Þ

t M ið Þ
t þ L ið Þ

t
_M ið Þ
t

/ �c kt þ ið ÞL ið Þ
t M ið Þ

t þ k 2kt þ ið ÞL iþ1ð Þ
t M ið Þ

t þ liL i�1ð Þ
t M ið Þ

t

þc kt þ ið ÞM ið Þ
t L ið Þ

t � l iþ 1ð ÞM iþ1ð Þ
t L ið Þ

t � k 2kt þ i� 1ð Þ1i>0M
i�1ð Þ
t L ið Þ

t

/ k 2kt þ ið Þ L iþ1ð Þ
t

L ið Þ
t

K ið Þ
t þ li L

i�1ð Þ
t

L ið Þ
t

K ið Þ
t � k 2kt þ i� 1ð Þ1i>0

L ið Þ
t

L i�1ð Þ
t

K i�1ð Þ
t � l iþ 1ð Þ L ið Þ

t

L iþ1ð Þ
t

K iþ1ð Þ
t

/ Q i;ið Þ
t K ið Þ

t þ Q i�1;ið Þ
t K i�1ð Þ

t þ Q iþ1;ið Þ
t K iþ1ð Þ

t :

ð5:1Þ

We introduced in the last line the following notation,

Q iþ1;ið Þ
t ¼ �l iþ 1ð Þ L ið Þ

t

L iþ1ð Þ
t

Q i�1;ið Þ
t ¼ �k 2kt þ i� 1ð Þ1i>0

L ið Þ
t

L i�1ð Þ
t

Q i;ið Þ
t ¼ k 2kt þ ið Þ L iþ1ð Þ

t

L ið Þ
t

þ li L
i�1ð Þ
t

L ið Þ
t

:

Using these, we see that Q i;ið Þ
t ¼ � Q i;iþ1ð Þ

t þ Q i;i�1ð Þ
t

� �
. This allows

us to draw trajectories of the number of ancestors in the past as a
time-continuous Markov process with the (inhomogeneous) rates
Qt written above.

Observe that we could equally write these ODE coefficients

using the M ið Þ
t ’s. This gives,

_K ið Þ
t / k 2kt þ ið Þ M ið Þ

t

M iþ1ð Þ
t

K iþ1ð Þ
t þ li M ið Þ

t

M i�1ð Þ
t

K i�1ð Þ
t � l iþ 1ð ÞM iþ1ð Þ

t

M ið Þ
t

K ið Þ
t � k 2kt þ i� 1ð Þ1i>0

M i�1ð Þ
t

M ið Þ
t

K ið Þ
t

/ R iþ1;ið Þ
t K iþ1ð Þ

t þ R i�1;ið Þ
t K i�1ð Þ

t þ R i;ið Þ
t K ið Þ

t

ð5:2Þ

where we introduced in the last line the following notation,
Fig. 4. The most efficient results depending on the parameter space considered. In red, results already described in Stadler (2010) and Gupta et al. (2019). In blue, the new
contribution of this manuscript. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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R iþ1;ið Þ
t ¼ k 2kt þ ið Þ M ið Þ

t

M iþ1ð Þ
t

R i�1;ið Þ
t ¼ li M ið Þ

t

M i�1ð Þ
t

R i;ið Þ
t ¼ �k 2kt þ i� 1ð Þ1i>0

M i�1ð Þ
t

M ið Þ
t

� l iþ 1ð ÞM iþ1ð Þ
t

M ið Þ
t

:

This is a standard result for Markov chains that are conditioned
on a final state, and the shape of the newly derived transition ker-
nel is called a Doob’s transform (Levin and Peres, 2017). Note that
these transitions symplify for special cases when we have an ana-

lytical expression of either L ið Þ
t or M ið Þ

t .

5.3. Numerical implementation

Results of this paper have been implemented numerically and
the code is freely available on GitLab: https://gitlab.com/MMarc/pop
size-distribution/.

We used the numerical implementation to verify the correct-
ness of the results in several ways:

1. We verified that the values of the probability density of T ;Oð Þ
computed using Lt and Mt (i.e. respectively using Algorithms
1’ and 2’) were equivalent to values computed using already
known formulas when x ¼ 0; r ¼ 0ð Þ (Stadler, 2010) or when
r ¼ 1 (Gupta et al., 2019). See result in Fig. 5AB.

2. We verified that the values of the probability density of T ;Oð Þ
computed using Lt or Mt (Algorithms 1’ and 2’) were identical
on examples for which no previous formula was known. See
result in Fig. 5C.

3. We assessed the distribution of the population size against the
only numerical method performing the same goal, the particle
filtering developed in Vaughan et al. (2019). We compared val-
ues of a few quantiles computed using the two methods, see
result in Fig. 5DEF). Note that (Vaughan et al., 2019) considered
that we never have data on the removal status of individuals.
We thus adapted our developments to this scenario in this
specific comparison, by summing updates corresponding to
the removal or not of the sampled individuals.

On each of these sanity checks, we verified that different quan-
tities match across different k values. Note that we could equiva-
lently have chosen any other parameter to be varied.

We also illustrate in Fig. 6 our target distribution Kt of the past
population size conditioned on T ;Oð Þ, on a few simulated
examples.



Fig. 5. Assessment of the accuracy of the methods presented in this paper, on toy datasets. First row, probability density of data, A) against known analytical formula when
x ¼ 0 and l;q;w; rð Þ ¼ 1;0:5;0:3;0:2ð Þ; B) against known analytical formula when r ¼ 1 and l;q;w;xð Þ ¼ 1;0:5;0:3;0:6ð Þ; C) obtained using Algorithms 1’ or 2’ otherwise,
with l;q;w; r;xð Þ ¼ 1;0:5;0:3;0:2;0:6ð Þ. Second row, quantiles of the population size distribution, against the particle filter in Vaughan et al. (2019), with parameters
l;q;w; r;xð Þ ¼ 1;0:1;0:001;0:5;0:001ð Þ. D) quantile of level 0.2; E) median; F) quantile of level 0.8.
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6. Discussion

The results we have derived in this paper fit into two main cat-
egories. The first category concerns results allowing one to com-
pute the probability density of a tree and occurrences, while the
second category concerns results allowing one to compute the
probability distribution of the population size in the past. We dis-
cuss these two categories below, before presenting ideas for future
extensions of the model.

6.1. Using the probability density of the data

We present in this article new ways to compute the probability
density of the data, P T ;Oð Þ. For the special cases x ¼ 0; r ¼ 0ð Þ or
r ¼ 1ð Þ, efficient calculations are available in Stadler (2010), Gupta
et al. (2019). Our two Algorithms 1’ and 2’ have the potential to
improve the computation time of P T ;Oð Þ also when x–0 and
r–1. When analysing data, as described below, often this probabil-
ity density is conditioned on sampling at least one individual, using
utor (Stadler, 2012).

In the case that the tree is known, we can use
P T ;Ojk;l;q;w; r;x; torð Þ (with conditioning on sampling at least
one individual) to obtain maximum likelihood parameter esti-
mates for the birth-death parameters k;l as well as the sampling
parameters q;w; r;x. For special cases of this model, it has been
shown that not all sampling parameters are identifiable (see e.g.
Stadler et al., 2019). Future work will involve investigating which
of the sampling parameters in the general model can be estimated.

On the other hand, data may consist of sequencing data A and
occurrence data O. Bayesian tools are then typically employed to
obtain a sample from the posterior distribution of the parameters
using Markov chain Monte Carlo methods. The posterior distribu-
tion is,

f T ; h; k;l;q;w;x; torjO;Að Þ
/ f AjT ; hð Þf O; T jk;l;q;w; r;x; torð Þf k;l;q;w; r;x; h; torð Þ;
11
with h summarizing the parameters of the model of molecular evo-
lution and f k;l;q;w; r;x; h; torð Þ being the prior distribution on the
model parameters.
6.2. Probability distribution of past population sizes

The main results of this paper allow oneto compute the proba-
bility distribution of the population size in the past and to generate
population size trajectories conditioned on T ;Oð Þ (Section 5).

Given a tree and occurrences together with birth-death param-
eters (which may be the maximum likelihood parameters obtained
based on the tree and record of occurrences), we can simulate the
distribution of past population sizes as described in Section 5.2.
Furthermore, we can calculate the probability of a population size
at any time in the past as described in Section 5.1.

If we are instead provided with sequencing data A and occur-
rence data O, and want to generate a simulated ensemble charac-
terizing the posterior distribution of past population size
trajectories I , we can use the following strategy. The posterior dis-
tribution is,

f T ; I ; h; k;l;q;w;x; torjO;Að Þ
¼ f IjT ; h; k;l;q;w;x; tor;O;Að Þf T ; h; k;l;q;w;x; torjO;Að Þ

We have described above how to obtain a sample from the pos-
terior distribution f T ; h; k; l; q; w; x; tor jO; Að Þ using Markov
chain Monte Carlo. For each sample of T ; h; k; l; q; w; x; torð Þ thus
obtained, we can simulate an appropriately conditioned popula-
tion size trajectory I as described in Section 5.2. The ensemble of
trajectories thus generated has the required distribution. We can
employ an analogous procedure if we are interested in the poste-
rior probability distribution of the population size at a particular
time t. For each posterior sample of T ; h; k;l;q;w;x; torð Þ, we can
calculate the population size distribution at time t using Sec-
tion 5.1. The posterior population size at time t is then the average
over all these conditional distributions.



Fig. 6. Inferred population size distribution Kt using T ;Oð Þ matches the simulated population size trajectory It under three different processes: A) A homogeneous birth-
death with q-sampling at present; B) A homogeneous birth-death with q-sampling at present and w-sampling through time; C) A homogeneous birth-death process with q-,
w- and x-sampling. Note that we plot on the same graph kt , the number of observed lineages in the tree, as this is an obvious lower bound in our population size inference.
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6.3. Increased efficiency opens new research avenues

Both the density P T ;Oð Þ and the probability distribution of
the population size in the past Ktð Þ can be obtained using the
Monte-Carlo particle filtering algorithm developed in Vaughan
et al. (2019). The new approach presented in this paper is never-
theless appealing for two reasons. First, it provides a direct link
with previous analytical formulas developed in Stadler (2010),
Gupta et al. (2019), thus improving our understanding of these
processes and leading to very efficient results in the specific case
where x ¼ 0. Second, Algorithms 1 and 2 have the potential to be
more efficient alternatives to the Monte-Carlo particle filtering
algorithm. Computing quantiles shown in Fig. 5DEF using the par-
ticle filtering took a few days, as compared to a few minutes with
our method, mainly because it can be applied directly on a fixed
tree and does not need to be part of a MCMC. A more thorough
quantitative comparison of both approaches would require to
implement this work in a MCMC framework, which is beyond
the scope of this paper.

This increased efficiency could open up the possibility to anal-
yse much bigger datasets in the near future. In macroevolution,
the study of clades with a huge fossil record like cetaceans could
12
benefit from our approach. This dataset is characterized by a rather
small number of extant species and fossils with morphological data
available (respectively q-sampled and w-sampled species), but
includes a huge number of fossils without morphological data
(x-sampled species) (Morlon et al., 2011; Barido-Sottani et al.,
2019). For the cetaceans as well as many other clades, it will be
of great interest to compute diversity estimates under the
modelling framework presented here (assuming
q–0;x–0; r ¼ 0). Ultimately, all x-samples could be taken into
account to inform the tree and diversity estimates.

In the context of epidemiology, typically, the genetic sequences
of the pathogen are only available for a fraction of the infected
individuals. These correspond to w-samples, while other sampled
infected individuals correspond to x-samples. Further developing
our approach in a Bayesian framework, both the genetic sequences
and the record of occurrence could be jointly used to estimate the
underlying transmission tree and prevalence of the disease
through time. Depending on the cost of sequencing and the ability
of numerical methods to handle some critical amount of both
genetic sequences and number of occurrences, optimal sampling
procedure could be investigated, to make the most of both types
of data.
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Finally, while improving on current methods, these two Algo-
rithms 1 and 2 still only provide approximations of, respectively,
Lt and Mt , that critically rely on the truncation parameter of the
state space N. Increasing N leads to a more accurate approximation,
while increasing the runtime of the method. If the probability mass
of the number of hidden individuals is non-negligible above N,
both algorithms will lead to very poor approximations of Lt and
Mt . This value should thus be carefully chosen in empirical
applications, depending on what is expected with the data at hand.
We point out that the behaviour of these algorithms strongly relies
on the runtime and accurracy of the matrix exponentiation steps.
Numerous matrix exponentiation methods have been proposed
in the literature (Moler and Van Loan, 2003). In our current imple-
mentation, we rely on a recent matrix exponentiation method
already implemented in scipy (Al-Mohy and Higham, 2010). Future
avenues towards improving this specific step could focus on new
theoretical results adapted to tridiagonal matrices (Smith and
Shahrezaei, 2015) or alternatively try to adapt Laplace transform
approximations derived in Crawford et al. (2014), who present the-
oretical results bounding the errors made in their approximation.

6.4. Future extensions

Our proposed modelling framework lends itself well for various
biologically realistic extensions to allow closer fit to empirical data
in a variety of situations.

The first extension that we envision is to relax the assumption
of rate homogeneity and instead work with time-varying rates.
This has already been considered in different studies relying on
birth-death processes, either with exponentially varying functions
(Morlon et al., 2011) or with piecewise constant rates (a model
dubbed as skyline birth-death process, see Stadler et al., 2013;
Gavryushkina et al., 2016). As all our results can be straightfor-
wardly adapted to such a framework, this would not require much
theoretical work. However, the challenge would be to do so with-
out overfitting the data.

Another popular extension that has been described in the litera-
ture on birth-death processes for phylodynamics is to consider
multi-type birth-death processes (Maddison et al., 2007). Each indi-
vidual is assigned a type, which impacts its propensity to give birth
to other types. All sampling-related parameters can also be consid-
ered type-dependent. Themain challengehereboils down todealing
with an increase of dimensionality, because wewould be interested
in the joint distribution of all subpopulation sizes. This extension is
particularly interesting for epidemiological applications, when dif-
ferent populations of infected individuals, clustered according to
some characteristic (e.g. patient behaviour or geography) might
have very different dynamics (Stadler and Bonhoeffer, 2013).

Finally, we are very hopeful that this piece of work could be
applied as well to density-dependent birth-death processes, also
known as logistic birth-death models. Indeed, very similar ideas to
the breadth-first forward and backward traversals as applied in
Algorithms 1’ and 2’ appear in the context of logistic birth-death
models (Etienne et al., 2012; Leventhal et al., 2013; Laudanno
et al., 2020). Preliminary results obtained by adapting our numerical
algorithms to this framework are very encouraging, and we are cur-
rently in the process of deriving asmuch analytical results aswe can
to speed up the method. We are hoping to present this in a subse-
quent paper.

6.5. Conclusion

This manuscript presents a way to efficiently compute the dis-
tribution of the past population size in a linear birth-death process,
conditioned on the observation of a reconstructed phylogenetic
13
tree and a record of occurrences through time. Such data are very
common in macroevolution where the reconstructed phylogenetic
tree of extant species is available together with occurrences from
the fossil record. In epidemiology, pathogen genetic sequencing
data and case count data are a common data source. Our method
thus promises to allow efficient quantification of past population
sizes, representing past biodiversity or past prevalence, from these
rich datasets.

We believe that this method also paves the way for the consid-
eration of more complex and more realistic demographic scenarios,
assuming either time-dependent (Morlon et al., 2011; Stadler et al.,
2013; Gavryushkina et al., 2016) or density-dependent parameters
(Etienne et al., 2012; Leventhal et al., 2013), potentially catering for
populations with multiple demographic categories/types
(Maddison et al., 2007; Stadler and Bonhoeffer, 2013; Freyman
and Höhna, 2018). It is our hope that this manuscript will foster
important research advances for unravelling demographic histo-
ries in epidemiology, macroevolution, and any other fields where
birth-death processes form a relevant model framework.
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Appendix A. Solving well-known ODEs

A.1. The extinction probability

We first deal with Eq. (2.1) governing ut , and start by studying
the polynomial kx2 � cxþ l.

This polynomial has discriminant D ¼ c2 � 4kl > kþ lð Þ2�
4klP k� lð Þ2 P 0. Note that the first inequality holds in the case
we are interested in because we can assume that wþx > 0. When
this is not the case, one needs to consider that k–l. Roots are

x1 ¼ c�
ffiffiffiffi
D

p

2k
and x2 ¼ cþ

ffiffiffiffi
D

p

2k
:

Moreover, we know that both roots are positive because
D < c2 )

ffiffiffiffi
D

p
< c ) x1 > 0.

On an interval including zero and where the polynomial
remains positive (as �1; x1ð Þ for example), we can write,
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du
ku2�cuþl ¼ dt

() du
x1�uð Þ x2�uð Þ ¼ kdt

() 1
x2�x1

1
x1�u � 1

x2�u

� �
du ¼ kdt

() 1
x1�u � 1

x2�u

� �
du ¼

ffiffiffiffi
D

p
dt:

Integrating both sides between time 0 and t, we get

x2�ut
x1�ut

¼ x2�z
x1�z e

ffiffiffi
D

p
t

() x2 x1 � zð Þe�
ffiffiffi
D

p
t � ut x1 � zð Þe�

ffiffiffi
D

p
t ¼ x1 x2 � zð Þ � ut x2 � zð Þ

() ut x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

� �
¼ x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

() ut ¼ x1 x2�zð Þ�x2 x1�zð Þe�
ffiffi
D

p
t

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
t :

This is the result stated in Eq. (2.2). Note that this quantity is
called p0 tð Þ in Stadler (2010), or E tð Þ in Maddison et al. (2007).

A.2. Probability to leave only one sampled descendent

We aim here to integrate a slight variation of Eq. (2.3) governing
pt when k ¼ 1. The equation we are interested in is,

dWs

ds
¼ 2ku s; zð Þ � cð ÞkWs ðA:1Þ

dWs
Ws

¼ 2kk x1 x2�zð Þ�x2 x1�zð Þe�
ffiffi
D

p
s

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
s � ck

� �
ds

¼ 2kkx1ffiffiffi
D

p
ffiffiffi
D

p
x2�zð Þe

ffiffi
D

p
s

x2�zð Þe
ffiffi
D

p
s� x1�zð Þ

� 2kkx2ffiffiffi
D

p x1�zð Þ
ffiffiffi
D

p
e�
ffiffi
D

p
s

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
s
� ck

� �
ds:

All these three terms can be integrated visually between some
time th and t, leading to,

ln Wt
Wth

¼ 2kkx1ffiffiffi
D

p ln x2 � zð Þe
ffiffiffi
D

p
s � x1 � zð Þ

� �h it
th
� 2kkx2ffiffiffi

D
p ln x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
s

� �h it
th
� ck t � thð Þ

¼ 2kkx1ffiffiffi
D

p ln x2�zð Þe
ffiffi
D

p
t� x1�zð Þ

x2�zð Þe
ffiffi
D

p
th � x1�zð Þ

� 2kkx2ffiffiffi
D

p ln x2�zð Þ� x1�zð Þe�
ffiffi
D

p
t

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
th
� ck t � thð Þ

¼ � 2kk x2�x1ð Þffiffiffi
D

p ln x2�zð Þ� x1�zð Þe�
ffiffi
D

p
t

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
th
� ck t � thð Þ þ 2kkx1 t � thð Þ

¼ �2k ln x2�zð Þ� x1�zð Þe�
ffiffi
D

p
t

x2�zð Þ� x1�zð Þe�
ffiffi
D

p
th
� k

ffiffiffiffi
D

p
t � thð Þ:

Leading to the final expression below

Wt ¼ Wth

x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
th

 !�2k

e�k
ffiffiffi
D

p
t�thð Þ: ðA:2Þ

Note that the case k ¼ 1; th ¼ 0 and W0 ¼ 1� z corresponds to
the probability pt given as Eq. (2.4),

p t; zð Þ ¼ 1� zð Þ D
k2

x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

� ��2
e�
ffiffiffi
D

p
t :

while the general case can be expressed using function p as

Wt ¼ Wth

p t; zð Þ
p th; zð Þ

� �k

:

A.3. A few useful properties

Solutions u t; zð Þ and p t; zð Þ to ODEs (2.1) and (2.3) satisfy two
properties relying on the semi-group property of solutions of ODEs,
namely,

u t2 � t1;u t1; zð Þð Þ ¼u t2; zð Þ ðA:3Þ

p t2 � t1;u t1; zð Þð Þ ¼ p t2; zð Þp 0;u t1; zð Þð Þ
p t1; zð Þ ¼ p t2; zð Þ 1� u t1; zð Þð Þ

p t1; zð Þ :ðA:4Þ

These two properties are useful in many calculations through-
out this document, e.g.
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� Solving the main PDE in Appendix C requires inverting u, using
the first property with,
z ¼ u t � th; z0ð Þ
() u th � t; zð Þ ¼ u th � t;u t � th; z0ð Þð Þ
() u th � t; zð Þ ¼ u 0; z0ð Þ
() z0 ¼ u th � t; zð Þ:

� The same Appendix section requires also composing func-
tion p and u, using

p t � th;u th � t; zð Þð Þ
p 0;u th � t; zð Þ ¼ p 0;zð Þ

p th�t;zð Þ :
�

� In the proof of Proposition 4.3, we switch to the notation
R t; zð Þ ¼ p t; zð Þ= 1� zð Þ and again compose R and u in the
same way,

p tj�t;u th�t;zð Þð Þ
p 0;u th�t;zð Þð Þ ¼ p tj�t;zð Þ

p th�t;zð Þ

() p tj�t;u th�t;zð Þð Þ
1�u th�t;zð Þ ¼ p tj�t;zð Þ

p th�t;zð Þ

() R tj � th;u th � t; zð Þ
� �

¼ R tj�t;zð Þ
R th�t;zð Þ :

Appendix B. Link with previous work by Gupta et al. (2019)

We aim here at providing details to link this work with results
previously derived by Gupta et al. (2019), allowing efficient com-

putation of L ið Þ
t in the special case r ¼ 1.

To do so, we define the distinguishable version of the probabil-

ity L ið Þ
t as

L ið Þ
t ¼ kþ ið Þ!

i!
L ið Þ
t : ðB:1Þ

We now derive the ODE for L ið Þ
t . Multiplying both sides of (3.2)

by kþið Þ!
i! we obtain

_L ið Þ
t ¼ �c kþ ið Þ kþið Þ!

i! L ið Þ
t þ k 2kþ ið Þ kþið Þ!

i! L iþ1ð Þ
t þ li kþið Þ!

i! L i�1ð Þ
t

¼ �c kþ ið Þ kþið Þ!
i! L ið Þ

t þ k kþ ið Þ 2kþið Þ iþ1ð Þ
kþiþ1ð Þ kþið Þ

h i
kþiþ1ð Þ!
iþ1ð Þ! L iþ1ð Þ

t þ l kþ ið Þ kþi�1ð Þ!
i�1ð Þ! L i�1ð Þ

t

¼ �c kþ ið ÞL ið Þ
t þ k kþ ið Þ/i;kL

iþ1ð Þ
t þ l kþ ið ÞL i�1ð Þ

t ;

ðB:2Þ

where

/i;k ¼
2kþ ið Þ iþ 1ð Þ

kþ iþ 1ð Þ kþ ið Þ ¼ 1� k k� 1ð Þ
kþ iþ 1ð Þ kþ ið Þ

is the probability that a coalescing pair of randomly chosen lineages
(from (kþ iþ 1) total lineages) does not consist of two sampled lin-

eages. This shows that L ið Þ
t satisfies the ODE (B.2) across any epoch.

One can see that at punctual events the transition conditions (3.3)

and (3.8) hold for L ið Þ
t for w-sampling and branching events respec-

tively. Moreover at x-sampling events the transition condition
(3.6) transforms to

L ið Þ
tþ ¼ x kþ ið ÞL i�1ð Þ

t� :

With these transition conditions and initial condition

L ið Þ
0 ¼ k0þið Þ!

i! L ið Þ
0 ¼ k0þið Þ!

i! 1� qð Þk0qi, the ODE (B.2) was solved explic-
itly in Gupta et al. (2019) and the solution is of the form

L ið Þ
tþ ¼

Xq
‘¼0

kþ ið Þ!
i� ‘ð Þ! u

i�‘
t W ‘ð Þ

t

where q is the number of x-sampling events in the time-interval
0; t½ Þ and the qþ 1ð Þ-dimensional time-varying vector

Wt ¼ W 0ð Þ
t ; . . . ;W qð Þ

t

� �
can be analytically computed following the
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approach in Gupta et al. (2019). Therefore from (B.1) we state
Proposition 3.2.

Appendix C. Solving the main PDE

We aim now at finding an analytical solution for the following

PDE, driving the evolution of bM across a given epoch th�1; thð Þ, on
which the number of observed lineages remains constant and
equal to k,bM th; zð Þ ¼ F zð Þ
@t
bM þ kz2 � czþ l

� �
@z
bM þ k 2kz� cð Þ bM ¼
C.1. Principle of the method of characteristics

This problem can be solved by the method of characteristics.

We suppose that we can write bM t; zð Þ ¼ bM t sð Þ; z sð Þð Þ where func-
tions t and z satisfy the ODEs,

dz
ds ¼ kz2 � czþ l
dt
ds ¼ 1:

This way, the function g sð Þ ¼ bM t sð Þ; z sð Þð Þ satisfies another ODE,
that we will have to solve,

dg
ds ¼ dz

ds @z
bM þ dt

ds @t
bM ¼ kz2 � czþ l

� �
@z
bM þ @t

bM
¼ �k 2kz� cð Þ bM

() dg
ds þ k 2kz� cð Þg ¼ 0:
C.2. Step 1, solve for t sð Þ; z sð Þ and g sð Þ

We start by integrating t sð Þ. We moreover fix that t 0ð Þ ¼ th, thus
leading to t sð Þ ¼ th þ s.

We now turn to z, and notice that it satisfies previously studied
ODE (2.1). Integrating between 0 and s leads to,

z sð Þ ¼ u s; z0ð Þ ¼ x1 x2 � z0ð Þ � x2 x1 � z0ð Þe�
ffiffiffi
D

p
t

x2 � z0ð Þ � x1 � z0ð Þe�
ffiffiffi
D

p
t

:

Last, g satisfies an ODE very similar to (A.1). Taking care of the
minus sign, it leads to the following result,

gs ¼ g0
1

R s; z0ð Þ

� �k

: ðC:1Þ
C.3. Step 2, express bM back as a function of t; z

We want to express our two unknown quantities s and z0 as
functions of t and z.

On a first hand, we get easily s ¼ t � th. We moreover can solve
for z0 in the following equation, remembering the semi-group
property of u,

z ¼ u t � th; z0ð Þ () z0 ¼ u th � t; zð Þ:

Substituting these into the previous expression (C.1) of gs then
leads to,bM t; zð Þ ¼ F u th � t; zð Þð ÞR t � th; u th � t; zð Þð Þ�k

¼ F u th � t; zð Þð ÞR th � t; zð Þk:

where the first to second equality relies on a property exposed in
A.3. This gives us the final formula which is stated in Proposition
4.1.
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Appendix D. Some useful algebra

This section of the Appendix pools together all bits of algebra
that are not really digestible, but are used in the main text.

D.1. Deivative of bM
We first modify a bit the expression of the generating function,

bM th � t; zð Þ ¼ R th � t; zð Þk
XN
l¼0

eM lð Þ
th
u th � t; zð Þl

¼ D
k2
e�
ffiffiffi
D

p
t

� �kXN
l¼0

eM lð Þ
th

x1 x2 � zð Þ � x2 x1 � zð Þe�
ffiffiffi
D

p
t

� �l
� x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlð Þ
:

Applying Leibniz’s derivation rule to the product, we get,

@i
z
bM th � t; zð Þ

� �
z¼0

¼ D

k2
e�
ffiffiffi
D

p
t

� �kXN
l¼0

eM lð Þ
th

Xi

a¼0

i

a

� �
@az x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� �l� �
z¼0

@i�a
z x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlð Þ
� �

z¼0
:

ðD:1Þ

The first of the two derivatives in the sum can be computed as,

@z x1 x2 � zð Þ � x2 x1 � zð Þe�
ffiffiffi
D

p
t

� �l
¼ l �x1 þ x2e�

ffiffiffi
D

p
t

� �
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� �l�1
1lP1

@2
z x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� �l
¼ l l� 1ð Þ �x1 þ x2e�

ffiffiffi
D

p
t

� �2
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� �l�2
1lP2

..

.

@az x1 x2 � zð Þ � x2 x1 � zð Þe�
ffiffiffi
D

p
t

� �l
¼ l!

l� að Þ! �x1 þ x2e�
ffiffiffi
D

p
t

� �a
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� �l�a
1lPa:

While the second gives us,

@z x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

� �� 2kþlð Þ
¼ 2kþ lð Þ 1� e�

ffiffiffi
D

p
t

� �
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlþ1ð Þ

@2
z x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlð Þ
¼ 2kþ lð Þ 2kþ lþ 1ð Þ 1� e�

ffiffiffi
D

p
t

� �2
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlþ2ð Þ

..

.

@i�a
z x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlð Þ
¼

Yi�a�1

m¼0

2kþ lþmð Þ
 !

1� e�
ffiffiffi
D

p
t

� �i�a
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �� 2kþlþi�að Þ
:

Applying these derivatives in z ¼ 0 in Eq. (D.1) yields,

@i
z
bM th � t; zð Þ

� �
z¼0

¼ D
k2
e�
ffiffiffi
D

p
t

� �kXi

a¼0

XN
l¼a

eM lð Þ
th

i

a

� �
l!

l�að Þ!

Yi�a�1

m¼0

2kþ lþmð Þ
 !

�x1 þ x2e�
ffiffiffi
D

p
t

� �a
x1x2ð Þl�a 1� e�

ffiffiffi
D

p
t

� �lþi�2a
x2 � x1e�

ffiffiffi
D

p
t

� �� 2kþlþi�að Þ
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which is the expression provided in Proposition (4.2).

D.2. Derivatives of bM when x ¼ 0

We wish here to derive the @ i
z
bM t; zð Þ where function bM is as

given in Proposition 4.3, i.e.

bM t; zð Þ ¼ kxwvþwþyrw 1� rð ÞvþyR tor � t; zð Þ
Y
tj2X

R tj � t; z
� �Y

tj2W
R tj � t; z
� ��1Y

tj2Y
u tj � t; z
� �

R tj � t; z
� ��1

:

We take for simplicity the derivative of the logarithm of bM and

express the derivatives of bM using these and Leibniz’s formula,

@z
bM ¼ bM@z ln bM� �

@2
z
bM ¼ @z

bM@z ln bM� �
þ bM@2

z ln bM� �
@3
z
bM ¼ @2

z
bM@z ln bM� �

þ 2@z
bM@2

z ln bM� �
þ bM@3

z ln bM� �
..
.

@i
z
bM ¼

Xi

a¼1

i� 1
a� 1

� �
@i�a
z
bM� �

@az ln bM� �� �
:

ðD:2Þ

In order to compute the derivatives of ln bM , one needs to get the
derivatives of lnR t; zð Þ and lnu t; zð Þ. We have

lnR t; zð Þ ¼ �2 ln x2 � zð Þ � x1 � zð Þe�
ffiffiffi
D

p
t

� �
þ ln D

k2
�

ffiffiffiffi
D

p
t

@z lnR t; zð Þ ¼ 2 1� e�
ffiffiffi
D

p
t

� �
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��1

@2
z lnR t; zð Þ ¼ 2 1� e�

ffiffiffi
D

p
t

� �2
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��2

@3
z lnR t; zð Þ ¼ 4 1� e�

ffiffiffi
D

p
t

� �3
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��3

..

.

@az lnR t; zð Þ ¼ 2 a� 1ð Þ! 1� e�
ffiffiffi
D

p
t

� �a
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��a
:

Finally taking the function in z ¼ 0 leads to

@az lnR t;0ð Þ ¼2 a� 1ð Þ!aat ðD:3Þ

where we defined at :¼ 1� e�
ffiffiffi
D

p
t

� �
x2 � x1e�

ffiffiffi
D

p
t

� ��1
: ðD:4Þ

In the same way we get,

lnu t; zð Þ ¼ ln x1 x2 � zð Þ � x2 x1 � zð Þe�
ffiffiffi
D

p
t

� �
� ln x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� �
@z lnu t; zð Þ ¼ � x1 � x2e�

ffiffiffi
D

p
t

� �
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� ��1

þ 1� e�
ffiffiffi
D

p
t

� �
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��1

@2
z lnu t; zð Þ ¼ � x1 � x2e�

ffiffiffi
D

p
t

� �2
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� ��2

þ 1� e�
ffiffiffi
D

p
t

� �2
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��2

@3
z lnu t; zð Þ ¼ �2 x1 � x2e�

ffiffiffi
D

p
t

� �3
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� ��3

þ2 1� e�
ffiffiffi
D

p
t

� �3
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��3

..

.

@az lnu t; zð Þ ¼ a� 1ð Þ! � x1 � x2e�
ffiffiffi
D

p
t

� �a
x1 x2 � zð Þ � x2 x1 � zð Þe�

ffiffiffi
D

p
t

� ��ah
þ 1� e�

ffiffiffi
D

p
t

� �a
x2 � zð Þ � x1 � zð Þe�

ffiffiffi
D

p
t

� ��ai
:

Here also, we are interested in the function in z ¼ 0,

@az lnu t;0ð Þ ¼ a� 1ð Þ! aat � bat
� �

ðD:5Þ

where we defined bt :¼ x1 � x2e�
ffiffiffi
D

p
t

� �
x1x2 � x2x1e�

ffiffiffi
D

p
t

� ��1
:ðD:6Þ

Last ingredient needed to write the derivative of ln bM , we get,
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@az ln u t; zð ÞR t; zð Þ�1
� �� �

z¼0
¼ @az ln u t; zð Þ

� �
z¼0 � @az lnR t; zð Þ

� �
z¼0

¼ � a� 1ð Þ! aat þ bat
� �

:

ðD:7Þ

Finally, using Eq. (D.1)one can compute

@az ln bM t; zð Þ
� �� �

z¼0
¼ a� 1ð Þ!C að Þ

where we defined C að Þ :¼ 2aator�t þ 2
X
tj2X

aatj�t � 2
X
tj2W

aatj�t �
X
tj2Y

aatj�t þ batj�t

� �
:

Plugging this into Eq. D.2 and noting that @i
z
bM t; zð Þ

� �
z¼0

¼ i!M ið Þ
t ,

we get

M ið Þ
t ¼

Xi

a¼1

i� 1
a� 1

� �
i� að Þ! a� 1ð Þ!

i!
M i�að Þ

t C að Þ ¼ 1
i

Xi

a¼1

M i�að Þ
t C að Þ

which is the result stated in Corollary 4.3.1.

Appendix E. Inductions across the epochs

E.1. Proof of Proposition 3.1

We prove the proposition by induction across the epochs.
If we observe only the first epoch and the k0 leaves at present,

then we get at any time t across the first epoch

0; t1ð Þ; L ið Þ
t ¼ qk0 1� qð Þi ¼ ui

tp
k0
t , which satisfies Proposition 3.1.

Suppose we observed so far – i.e. on 0; thþ1ð Þ – v sampled ances-
tors, w removed leaves at times tj 2 W, x branching events at times
tj 2 X , y non-removed leaves at times tj 2 Y. And suppose that
Proposition 3.1 is verified across epoch th; thþ1ð Þ. Let us have a look
at what happen across epoch thþ1; thþ2ð Þ.

The observed punctual event thþ1 can either be,

1. a removed ancestral leaf. Update (3.10) then applies. Subse-
quently, the number of sampled lineages increases by one and
formula (3.9) applies on the next epoch, leading to
L ið Þ
t ¼ ui

tWt

where Wt ¼ kxwvþ wþ1ð Þþy 1� rð Þvþyrwþ1pk
thþ1

pt
pthþ1

� �kþ1Y
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj

¼ kxwvþ wþ1ð Þþy 1� rð Þvþyrwþ1pk
t

Y
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W[ thþ1f g

p�1
tj
:

2. a non-removed ancestral leaf. Update (3.11) then applies. Sub-
sequently, the number of sampled lineages increases by one
and formula (3.9) applies on the next epoch, leading to
L ið Þ
t ¼ ui

tWt

where Wt ¼ kxwvþwþ yþ1ð Þ 1� rð Þvþ yþ1ð Þrwpk
thþ1

uthþ1

pt
pthþ1

� �kþ1Y
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj

¼ kxwvþwþ yþ1ð Þ 1� rð Þvþ yþ1ð Þrwpkþ1
t

Y
tj2X

ptj

Y
tj2Y[ thþ1f g

utj p
�1
tj

Y
tj2W

p�1
tj
:

3. a non-removed sampled ancestor along a branch. Update (3.12)
then applies. The number of sampled lineages does not changes,
and formula (3.9) applies on the next epoch, leading to
L ið Þ
t ¼ ui

tWt

where Wt ¼ kxw vþ1ð Þþwþy 1� rð Þ vþ1ð Þþyrwpk
thþ1

pt
pthþ1

� �kY
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj

¼ kxwvþwþyþ1 1� rð Þvþyþ1rwpk
t

Y
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj
:

4. a branching event between two sampled lineages. Update (3.13)
then applies. The number of sampled lineages decreases by one,
and formula (3.9) applies on the next epoch, leading to
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L ið Þ
t ¼ ui

tWt

where Wt ¼ kxþ1wvþwþy 1� rð Þvþyrwpk
thþ1

pt
pthþ1

� �k�1Y
tj2X

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj

¼ kxþ1wvþwþy 1� rð Þvþyrwpk�1
t

Y
tj2X[ thþ1f g

ptj

Y
tj2Y

utj p
�1
tj

Y
tj2W

p�1
tj
:

In all four cases, Proposition 3.1 is satisfied across epoch
thþ1; thþ2ð Þ.

E.2. Proof of Proposition 4.3

This Proposition is also proven by induction across the epochs.
We start at tor ¼ tn with k ¼ 1 lineage. Across epoch tn�1; tnð Þ,

applying Proposition 4.1 with F zð Þ ¼ 1 and k ¼ 1, we getbM t; zð Þ ¼ R tor � t; zð Þ, which verifies Proposition 4.3.
Suppose now that Proposition 4.3 is verified across epoch

th; thþ1ð Þ and that we observed, on th; torð Þ, v sampled ancestors, w
removed leaves at times tj 2 W, x branching events at times
tj 2 X , y non-removed leaves at times tj 2 Y. Let us have a look at
what happens on th�1; thð Þ.

Punctual event th can either be,

1. a removed leaf. The number of sampled lineages then goes from
1þ x� y�w to x� y�w, and applying update (4.10) followed
by Proposition 4.1 leads to
bM t; zð Þ ¼ kxwvþ wþ1ð Þþyrwþ1 1� rð ÞvþyR tor � th;u th � t; zð Þð ÞR th � t; zð Þx�y�wY
tj2X

R tj � th;u th � t; zð Þ
� � Y

tj2W
R tj � th;u th � t; zð Þ
� ��1

Y
tj2Y

u tj � th;u th � t; zð Þ
� �

R tj � th;u th � t; zð Þ
� ��1

¼ kxwvþ wþ1ð Þþyrwþ1 1� rð Þvþy R tor�t;zð Þ
R th�t;zð Þ R th � t; zð Þx�y�w

Y
tj2X

R tj � t; z
� �

R th � t; zð Þ
Y
tj2W

R th � t; zð Þ
R tj � t; z
� �Y

tj2Y
u tj � t; z
� �R th � t; zð Þ

R tj � t; z
� �

¼ kxwvþ wþ1ð Þþyrwþ1 1� rð ÞvþyR tor � t; zð ÞY
tj2X

R tj � t; z
� � Y

tj2W[ thf g
R tj � t; z
� ��1Y

tj2Y
u tj � t; z
� �

R tj � t; z
� ��1

:

where the first to second equality is detailed in Appendix A, and
the second to third comes after canceling out the R th � t; zð Þ.

2. a non-removed leaf. The number of sampled lineages then goes
from 1þ x� y�w to x� y�w, and applying update (4.11) fol-
lowed by Proposition 4.1 leads to
bM t; zð Þ ¼ kxwvþwþ yþ1ð Þrw 1� rð Þvþ yþ1ð Þ R tor�t;zð Þ
R th�t;zð Þ R th � t; zð Þx�y�wu th � t; zð ÞY

tj2X

R tj � t; z
� �

R th � t; zð Þ
Y
tj2W

R th � t; zð Þ
R tj � t; z
� �Y

tj2Y
u tj � t; z
� �R th � t; zð Þ

R tj � t; z
� �

¼ kxwvþwþ yþ1ð Þrw 1� rð Þvþ yþ1ð ÞR tor � t; zð ÞY
tj2X

R tj � t; z
� �Y

tj2W
R tj � t; z
� ��1 Y

tj2Y[ thf g
u tj � t; z
� �

R tj � t; z
� ��1

:

3. a sampled ancestor. The number of sampled lineages then
remains unchanged and equal to 1þ x� y�w. Applying update
(4.12) followed by Proposition 4.1 leads to
bM t; zð Þ ¼ kxw vþ1ð Þþwþyrw 1� rð Þ vþ1ð Þþy R tor�t;zð Þ
R th�t;zð Þ R th � t; zð Þ1þx�y�w

Y
tj2X

R tj � t; z
� �

R th � t; zð Þ
Y
tj2W

R th � t; zð Þ
R tj � t; z
� �Y

tj2Y
u tj � t; z
� �R th � t; zð Þ

R tj � t; z
� �

¼ kxw vþ1ð Þþwþyrw 1� rð Þ vþ1ð ÞþyR tor � t; zð ÞY
tj 2 XR tj � t; z

� �Y
tj2W

R tj � t; z
� ��1Y

tj2Y
u tj � t; z
� �

R tj � t; z
� ��1

:

4. a branching time. The number of sampled lineages then goes
from 1þ x� y�w to 2þ x� y�w, and applying update
(4.15) followed by Proposition 4.1 leads to
17
bM t;zð Þ¼ kxþ1wvþwþyrw 1� rð Þvþy R tor�t;zð Þ
R th�t;zð Þ R th� t;zð Þ2þx�y�w

Y
tj 2X

R tj � t;z
� �

R th � t;zð Þ
Y
tj2W

R th � t;zð Þ
R tj � t;z
� �Y

tj2Y
u tj � t;z
� �R th� t;zð Þ

R tj � t;z
� �

¼ kxþ1wvþwþyrw 1� rð ÞvþyR tor � t;zð ÞY
tj 2X [ thf gR tj � t;z

� �Y
tj2W

R tj � t;z
� ��1Y

tj2Y
u tj � t;z
� �

R tj � t;z
� ��1

:

In all these cases, Proposition 4.3 is verified across epoch
th�1; thð Þ, which ends the proof.

Appendix F. Using a generating function to solve for Lt

F.1. A slightly different strategy

Recall that Lt verifies the following ODEs,

_L ið Þ
t ¼ �c iþ kð ÞL ið Þ

t þ k 2kþ ið ÞL iþ1ð Þ
t þ liL i�1ð Þ

t

L ið Þ
0 ¼ qk0

0 1� q0ð Þi:

If we introduce the corresponding generating function,

bL t; zð Þ ¼
X1
i¼0

ziL ið Þ
t

then the initial condition on L translates into,

bL 0; zð Þ ¼
X1
i¼0

z 1� qð Þð Þiqk0 ¼ qk0
1

1� z 1� qð Þ ; 8z 2 � 1
1� q

� �
:

The ODE translates into a PDE, but not as nicely as for Mt , see
below,

@t
bL ¼

X1
i¼0

zi �c iþ kð ÞL ið Þ
t þ k 2kþ ið ÞL iþ1ð Þ

t þ liL i�1ð Þ
t

� �
¼ �ck

X1
i¼0

ziL ið Þ
t � c

X1
i¼1

iziL ið Þ
t þ k

X1
i¼1

zi�1 2kþ i� 1ð ÞL ið Þ
t þ l

X1
i¼0

iþ 1ð Þziþ1L ið Þ
t

¼ �ckbL � cz@z
bL þ 2k� 1ð Þk 1

z
bL � L 0ð Þ

t

� �
þ k@z

bL þ lz2@z
bL þ lzbL

¼ �ckþ 2k� 1ð Þk 1
z þ lz

� �bL þ lz2 � czþ k
� �

@z
bL � 2k� 1ð Þk 1

z
bL t;0ð Þ:

We are thus left with the following PDE problem,

bL 0; zð Þ ¼ qk0

1�z 1�qð Þ

�z@t
bL þ lz3 � cz2 þ kz

� �
@z
bL þ lz2 � ckzþ 2k� 1ð Þk

� �bL � 2k� 1ð ÞkbL t; 0ð Þ ¼ 0:
ðF:1Þ

This remaining term with bL t;0ð Þ complicates things a little bit.

However, the initial condition on bL provides us with a first candi-
date function to satisfy this PDE.

F.2. Solution

We introduce below function f, and show that it satisfies the
PDE problem (F.1).

f t; zð Þ :¼ pk
t

1� zut
:

First, we observe that it satisfies the initial condition. We then
need to check that it satisfies the PDE, and to do so we expand each
of the four components of Eq. (F.1).

The first one gives us,

�z@t f ¼ �z k _ptpk�1
t 1�zutð Þþz _utpkt

1�zutð Þ2

¼ �z
k 2kut�cð Þ 1�zutð Þþ ku2t �cutþlð Þz

1�zutð Þ2
pk
t

¼ k �2kzut� 2k�1ð Þz2u2tð Þþc kz� k�1ð Þz2utð Þ�lz2
1�zutð Þ2

pk
t :
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We then turn to the second component,

lz3 � cz2 þ kz
� �

@zf ¼
kzut � cz2ut þ lz3ut

1� zutð Þ2
pk
t :

And the third one,

lz2 � ckzþ 2k� 1ð Þk
� �

f ¼ 1�zutð Þ lz2�ckzþ 2k�1ð Þkð Þ
1�zutð Þ2

pk
t

¼ k 2k�1ð Þ� 2k�1ð Þzutð Þþc �kzþkz2utð Þþl z2�z3utð Þ
1�zutð Þ2

pk
t :

And the fourth and final one,

� 2k� 1ð Þkf t;0ð Þ ¼ �k 2k�1ð Þ 1�zutð Þ2

1�zutð Þ2
pk
t

¼ k � 2k�1ð Þz2u2t þ2 2k�1ð Þzut� 2k�1ð Þð Þ
1�zutð Þ2

pk
t :

Putting everything together, we can now check that indeed,

� z@t f þ lz3 � cz2 þ kz
� �

@zf þ lz2 � ckzþ 2k� 1ð Þk
� �

f � 2k� 1ð Þf t;0ð Þ

While the branching and w-sampling with removal updates do
not change anything to this solution, all the others do. Further
work is thus needed to look for other solutions to this same PDE
with different initial conditions.
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