Conjugate Gibbs Sampling for Bayesian Phylogenetic Models

Marc Manceau

August 31, 2020

	MCMC sampling	Evaluation and Results

- 1. It's a follow up on a previous discussion on "exponential families",
- 2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,
- 3. It seems quite efficient, and it might give us ideas to speed up future projects,
- 4. I usually like Nicolas Lartillot's papers.

	MCMC sampling	Evaluation and Results

- 1. It's a follow up on a previous discussion on "exponential families",
- 2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,
- 3. It seems quite efficient, and it might give us ideas to speed up future projects,
- 4. I usually like Nicolas Lartillot's papers.

	MCMC sampling	Evaluation and Results

- 1. It's a follow up on a previous discussion on "exponential families",
- 2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,
- 3. It seems quite efficient, and it might give us ideas to speed up future projects,
- 4. I usually like Nicolas Lartillot's papers.

	MCMC sampling	Evaluation and Results

- 1. It's a follow up on a previous discussion on "exponential families",
- 2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,
- 3. It seems quite efficient, and it might give us ideas to speed up future projects,
- 4. I usually like Nicolas Lartillot's papers.

	MCMC sampling	Evaluation and Results

- 1. It's a follow up on a previous discussion on "exponential families",
- 2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,
- 3. It seems quite efficient, and it might give us ideas to speed up future projects,
- 4. I usually like Nicolas Lartillot's papers.

Introduction	MCMC sampling	Evaluation and Results
●00	000	00
Introduction Aim of the paper		

They want to model an amino-acid substitution process,

evolving along a fixed tree topology,

while allowing for a lot of heterogeneities at the site level.

Introduction	MCMC sampling	Evaluation and Results
●00	000	00
Introduction Aim of the paper		

They want to model an amino-acid substitution process,

evolving along a fixed tree topology,

while allowing for a lot of heterogeneities at the site level.

Introduction	MCMC sampling	Evaluation and Results
●00	000	00
Introduction Aim of the paper		

- They want to model an amino-acid substitution process,
- evolving along a fixed tree topology,
- while allowing for a lot of heterogeneities at the site level.

Introduction	MCMC sampling	Evaluation and Results
●00	000	00
Introduction Aim of the paper		

- They want to model an amino-acid substitution process,
- evolving along a fixed tree topology,
- while allowing for a lot of heterogeneities at the site level.

Standard Metropolis-Hastings MCMC methods take very long to do so,

Could it be improved by considering a clever Gibbs sampler ?

Introduction	MCMC sampling	Evaluation and Results
●00	000	00
Introduction Aim of the paper		

- They want to model an amino-acid substitution process,
- evolving along a fixed tree topology,
- while allowing for a lot of heterogeneities at the site level.

Introduction	MCMC sampling	Evaluation and Results
O●O	000	00

Introduction Metropolis-Hastings or Gibbs sampling ?

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(l)}$ in the conditional law
 $p\left(X^{(l)} \mid \left(X^{(l)}\right)_{j \neq l} = \left(x_n^{(l)}\right)_{j \neq l}\right)$.
3. Fix $x_{n+1} := \left(x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(l)}, ..., x_n^{(k)}\right)$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction	MCMC sampling	Evaluation and Results
○●○	000	00

Introduction Metropolis-Hastings or Gibbs sampling ?

Metropolis-Hastings

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

$$\begin{split} \nu_x q_{xy} \min(1, r(x, y)) &= \nu_y q_{yx} \min(1, r(y, x)). \\ \text{Hence, it converges to the stationary} \\ \text{distribution } \nu. \end{split}$$

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(l)}$ in the conditional law
 $p\left(X^{(l)} \mid \left(X^{(l)}\right)_{j \neq l} = \left(x_n^{(l)}\right)_{j \neq l}\right)$.
3. Fix $x_{n+1} := \left(x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(l)}, ..., x_n^{(k)}\right)$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction		MCMC sampling	Evaluation and Results
O●O		000	00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction		MCMC sampling	Evaluation and Results
O●O		000	00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction		MCMC sampling	Evaluation and Results
○●○		000	00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction		MCMC sampling	Evaluation and Results
○●○		000	00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x))$. Hence, it converges to the stationary distribution ν_x .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $\rho\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction O●O		MCMC sampling	Evaluation and Results 00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $p\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction O●O		MCMC sampling	Evaluation and Results 00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $\rho\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction O●O		MCMC sampling	Evaluation and Results 00
Introduction Metropolis-Hastings or Gibbs	sampling ?		

Algorithm Initialize a first state x_0 . At step *i*, the chain being in state x_i ,

- 1. Propose a next state y_{i+1} by drawing a realisation in distribution $q(x_i, \cdot)$.
- 2. Compute the ratio:

$$r(x_i, y_{i+1}) := \frac{\nu(y_{i+1})q(y_{i+1}, x_i)}{\nu(x_i)q(x_i, y_{i+1})}$$

3. Draw $u \sim \mathcal{U}(0, 1)$. If $u \leq r$, set $x_{i+1} := y_{i+1}$. otherwise, keep $x_{i+1} := x_i$.

Reversibility One can check that

 $\nu_x q_{xy} \min(1, r(x, y)) = \nu_y q_{yx} \min(1, r(y, x)).$ Hence, it converges to the stationary distribution ν .

Advantage One can use (almost) any proposal distribution *q*.

Drawback One needs to carefully tune *q* to ensure fast convergence.

GIBBS SAMPLER

Algorithm First, initialize the chain in state x_0 . At step n, $x_n = (x_n^{(1)}, x_n^{(2)}, ..., x_n^{(k)})$,

1. Draw
$$i \sim \mathcal{U}\{1, 2, ..., k\}$$
.
2. Draw $x_{n+1}^{(i)}$ in the conditional law
 $\rho\left(X^{(i)} \mid (X^{(j)})_{j \neq i} = (x_n^{(j)})_{j \neq i}\right)$.
3. Fix $x_{n+1} := (x_n^{(1)}, x_n^{(2)}, ..., x_{n+1}^{(i)}, ..., x_n^{(k)})$.

Reversibility One can check that $\nu_x p_{xy} = \nu_y p_{yx}$. Hence, it converges to the stationary distribution ν .

Advantage It is generally assumed that it converges faster.

Introduction		MCMC sampling	Evaluation and Results
○○●		000	00
Introduction Exponential families and prior	conjugacy		

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

Property 1

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Introduction		MCMC sampling	Evaluation and Results
○○●		000	00
Introduction Exponential families and prior	conjugacy		

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

Property 1

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $n|X \sim h$, where h belongs to the same family \mathcal{H} .

Introduction		MCMC sampling	Evaluation and Results
○○●		000	00
Introduction Exponential families and prior	conjugacy		

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

Property 1

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Introduction		MCMC sampling 000	Evaluation and Results 00
Introduction Exponential families and prior	r conjugacy		

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

Property 1

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$ then there exists another exponential family \mathcal{H} such that if $g \in \mathcal{H}$ and if $\eta \sim g$, the posterior is given by $\eta|X \sim h$, where h belongs to the same family \mathcal{H} .

Example 1

The exponential distribution is conjugate to a Gamma distribution.

Assume that
$$X|\lambda \sim \mathcal{E}(\lambda)$$

and $\lambda|\alpha, \beta \sim \Gamma(\alpha, \beta)$
 $\implies \lambda|X, \alpha, \beta \sim \Gamma(\alpha + 1, \beta + X)$.

Introduction		MCMC sampling	Evaluation and Results
○○●		000	00
Introduction Exponential families and prior	conjugacy		

A family of probability distributions parametrized by a parameter θ is called an exponential family if its probability mass function, or density, can be expressed as

$$f(x|\theta) = h(x)e^{\eta(\theta)^{t}T(x) - A(\eta(\theta))}$$

Property 1

These exponential families admit conjugate priors that belong to another exponential family. I.e. if

 $X|\eta \sim f_{\eta}$, where f_{η} belongs to an exponential family $\mathcal{F}(\eta)$

then there exists another exponential family $\mathcal H$ such that if $g \in \mathcal H$ and if

 $\eta \sim {
m g}, ~~$ the posterior is given by

 $\eta | X \sim h$, where h belongs to the same family \mathcal{H} .

Example 1

The family of Poisson distributions $(\mathcal{P}(\lambda))_{\lambda \in \mathbb{R}^+}$ is an exponential family. The Poisson distribution is conjugate to a Gamma distribution.

$$\begin{split} X|\lambda &\sim \mathcal{P}(\lambda) \\ \lambda|\alpha,\beta &\sim \Gamma(\alpha,\beta) \\ \implies \lambda|\alpha,\beta,x &\sim \Gamma(\alpha+x,\beta+1) \end{split}$$

	Models ●O	MCMC sampling 000	Evaluation and Results 00
Models			
Models of substitution			

choose
$$\rho = \begin{pmatrix} & \rho_{12} & \rho_{13} & \rho_{14} \\ & & & \\ & & \rho_{23} & \rho_{24} \\ & & & & \\ & & & & \rho_{34} \end{pmatrix}$$
 the relative exchangeabilities
and $\pi = (\pi_1, \pi_2, \pi_3, .)$ the equilibrium frequencies, or "profile"
 $\implies Q = \begin{pmatrix} \rho_{12}\pi_2 & \rho_{13}\pi_3 & \rho_{14}\pi_4 \\ \rho_{12}\pi_1 & \rho_{23}\pi_3 & \rho_{24}\pi_4 \\ \rho_{13}\pi_1 & \rho_{23}\pi_2 & \rho_{34}\pi_4 \end{pmatrix}$

Two model configurations:

SUB all sites in the alignment are evolving under the same substitution process (i.e. share π and ρ). MAX each site is evolving under its substitution process.

Three possibilities for ρ :

WAG all ρ_{ab} values are fixed to a known value from the literature. Poisson all ρ_{ab} values are fixed equal to 1. GTR all ρ_{ab} values are free parameters.

Leading to 6 possibilities.

	Models ●O	MCMC sampling 000	Evaluation and Results 00
Models			
Models of substitution			

choose
$$\rho = \begin{pmatrix} \cdot & \rho_{12} & \rho_{13} & \rho_{14} \\ \cdot & \cdot & \rho_{23} & \rho_{24} \\ \cdot & \cdot & \cdot & \rho_{34} \\ \cdot & \cdot & \cdot & \rho_{34} \end{pmatrix}$$
 the relative exchangeabilities

and $\pi = (\pi_1, \pi_2, \pi_3, .)$ the equilibrium frequencies, or "profile"

	(·	$\rho_{12}\pi_{2}$	$ ho_{13}\pi_3$	$\rho_{14}\pi_4$	
 0 -	$\rho_{12}\pi_{1}$	•	$ ho_{23}\pi_3$	$\rho_{24}\pi_4$	
 Ψ =	$\rho_{13}\pi_1$	$\rho_{23}\pi_2$	•	$ ho_{34}\pi_4$	
	$\backslash \rho_{14} \pi_1$	$\rho_{24}\pi_{2}$	$ ho_{34}\pi_3$. /	

Two model configurations:

SUB all sites in the alignment are evolving under the same substitution process (i.e. share π and ρ). MAX each site is evolving under its substitution process.

Three possibilities for ρ:

WAG all ρ_{ab} values are fixed to a known value from the literature. Poisson all ρ_{ab} values are fixed equal to 1. GTR all ρ_{ab} values are free parameters.

Leading to 6 possibilities.

	Models	MCMC sampling	Evaluation and Results
	●O	000	00
Models Models of substitution			

choose
$$\rho = \begin{pmatrix} \cdot & \rho_{12} & \rho_{13} & \rho_{14} \\ \cdot & \cdot & \rho_{23} & \rho_{24} \\ \cdot & \cdot & \cdot & \rho_{34} \\ \cdot & \cdot & \cdot & \rho_{34} \end{pmatrix}$$
 the relative exchangeabilities

and $\pi = (\pi_1, \pi_2, \pi_3, .)$ the equilibrium frequencies, or "profile"

		(·	$\rho_{12}\pi_{2}$	$\rho_{13}\pi_3$	$\rho_{14}\pi_4$	
	0 -	$\rho_{12}\pi_1$	•	$ ho_{23}\pi_3$	$\rho_{24}\pi_4$	
_	Ψ =	$\rho_{13}\pi_{1}$	$\rho_{23}\pi_2$	•	$ ho_{34}\pi_4$	
		$\backslash \rho_{14} \pi_1$	$\rho_{24}\pi_{2}$	$ ho_{34}\pi_3$. /	

Two model configurations:

SUB all sites in the alignment are evolving under the same substitution process (i.e. share π and ρ). MAX each site is evolving under its substitution process.

Three possibilities for ρ :

WAG all ρ_{ab} values are fixed to a known value from the literature. Poisson all ρ_{ab} values are fixed equal to 1. GTR all ρ_{ab} values are free parameters.

Leading to 6 possibilities.

	Models ●O	MCMC sampling 000	Evaluation and Results 00
Models			
Models of substitution			

choose
$$\rho = \begin{pmatrix} \cdot & \rho_{12} & \rho_{13} & \rho_{14} \\ \cdot & \cdot & \rho_{23} & \rho_{24} \\ \cdot & \cdot & \cdot & \rho_{34} \\ \cdot & \cdot & \cdot & \rho_{34} \end{pmatrix}$$
 the relative exchangeabilities

and $\pi = (\pi_1, \pi_2, \pi_3, .)$ the equilibrium frequencies, or "profile"

		(·	$\rho_{12}\pi_{2}$	$\rho_{13}\pi_3$	$\rho_{14}\pi_4$	
	0 -	$\rho_{12}\pi_1$	•	$ ho_{23}\pi_3$	$\rho_{24}\pi_4$	
_	Ψ =	$\rho_{13}\pi_{1}$	$\rho_{23}\pi_2$	•	$ ho_{34}\pi_4$	
		$\backslash \rho_{14} \pi_1$	$\rho_{24}\pi_{2}$	$ ho_{34}\pi_3$. /	

Two model configurations:

SUB all sites in the alignment are evolving under the same substitution process (i.e. share π and ρ). MAX each site is evolving under its substitution process.

Three possibilities for ρ :

WAG all ρ_{ab} values are fixed to a known value from the literature. Poisson all ρ_{ab} values are fixed equal to 1. GTR all ρ_{ab} values are free parameters.

Leading to 6 possibilities.

	Models	MCMC sampling	Evaluation and Results
	O●	000	00
Models Priors			

$$p(l) = \prod_{j} \beta e^{-\beta l_{j}}$$

site-specific rates $r \ \Gamma(\alpha, \alpha)$ prior distribution.

$$p(r) \propto \prod_{i} r_i^{\alpha-1} e^{-\alpha r_i}$$

site-specific profiles π with flat Dirichlet prior distribution.

relative exchangeabilities when not fixed, $\mathcal{E}(1)$ prior distribution.

	Models	MCMC sampling	Evaluation and Results
	O●	000	00
Models Priors			

$$p(l) = \prod_{j} \beta e^{-\beta l_{j}}$$

site-specific rates $r \ \Gamma(\alpha, \alpha)$ prior distribution.

$$p(r) \propto \prod_{i} r_i^{\alpha - 1} e^{-\alpha r_i}$$

site-specific profiles π with flat Dirichlet prior distribution.

	Models	MCMC sampling	Evaluation and Results
	O●	000	00
Models Priors			

$$p(l) = \prod_{j} \beta e^{-\beta l_{j}}$$

site-specific rates $r \Gamma(\alpha, \alpha)$ prior distribution.

$$p(r) \propto \prod_{i} r_i^{\alpha-1} e^{-\alpha r_i}$$

site-specific profiles π with flat Dirichlet prior distribution.

relative exchangeabilities when not fixed, $\mathcal{E}(1)$ prior distribution.

	Models	MCMC sampling	Evaluation and Results
	O●	000	00
Models Priors			

$$p(l) = \prod_{j} \beta e^{-\beta l_{j}}$$

site-specific rates $r \Gamma(\alpha, \alpha)$ prior distribution.

$$p(r) \propto \prod_{i} r_i^{\alpha-1} e^{-\alpha r_i}$$

site-specific profiles π with flat Dirichlet prior distribution. relative exchangeabilities when not fixed, $\mathcal{E}(1)$ prior distribution.

	Models	MCMC sampling	Evaluation and Results
	O●	000	00
Models Priors			

$$p(l) = \prod_{j} \beta e^{-\beta l_{j}}$$

site-specific rates $r \Gamma(\alpha, \alpha)$ prior distribution.

$$p(r) \propto \prod_{i} r_i^{\alpha-1} e^{-\alpha r_i}$$

site-specific profiles π with flat Dirichlet prior distribution.

relative exchangeabilities when not fixed, $\mathcal{E}(1)$ prior distribution.

	MCMC sampling ●00	Evaluation and Results 00
MCMC sampling		

- sample the internal states in p(X_{ij}|X_{leaves}) using two depth-first traversals of the tree before sampling the substitution process along each branch, conditioned on both extremities, i.e.
- number of substitutions n_{ij} is Poisson distributed with parameter r_i l_j if the state is the same at both extremities (otherwise, Poisson excluding n_{ii} = 0).
- 3. successive states (σ_{ii}^k) are drawn from π .

Simulation of a "mapping" in the Poisson case

The augmented likelihood is:

$$p(\Xi|r, l, \pi) = \prod_{i} \pi\left(\sigma_{i0}^{0}\right) \prod_{j} e^{-r_{i}l_{j}} \frac{(r_{i}l_{j})^{n_{ij}}}{n_{ij}!} \prod_{k=1}^{n_{ij}} \pi\left(\sigma_{ij}^{k}\right)$$
$$= \left(\prod_{a=1}^{20} \pi(a)^{w_{a}}\right) \left(\prod_{i} r_{i}^{u_{i}}\right) \left(\prod_{j} l_{j}^{v_{j}}\right) \left(\prod_{ij} \frac{e^{-r_{i}l_{j}}}{n_{ij}!}\right)$$

Introduction		MCMC sampling	Evaluation and Results
000		●00	00
MCMC sampling	the Poisson case		

- 1. sample the internal states in $p(X_{ij}|X_{leaves})$ using two depth-first traversals of the tree before sampling the substitution process along each branch, conditioned on both extremities, i.e.
- 2. number of substitutions n_{ij} is Poisson distributed with parameter $r_i l_j$ if the state is the same at both extremities (otherwise, Poisson excluding $n_{ij} = 0$).
- 3. successive states (σ_{ii}^k) are drawn from π .

The augmented likelihood is:

$$p(\Xi|r,l,\pi) = \prod_{i} \pi\left(\sigma_{i0}^{0}\right) \prod_{j} e^{-r_{i}l_{j}} \frac{\left(r_{i}l_{j}\right)^{n_{ij}}}{n_{ij}!} \prod_{k=1}^{n_{ij}} \pi\left(\sigma_{ij}^{k}\right)$$
$$= \left(\prod_{a=1}^{20} \pi(a)^{w_{a}}\right) \left(\prod_{i} r_{i}^{u_{j}}\right) \left(\prod_{j} l_{j}^{v_{j}}\right) \left(\prod_{ij} \frac{e^{-r_{i}l_{j}}}{n_{ij}!}\right)$$

		MCMC sampling ●00	Evaluation and Results 00
MCMC sampling	the Poisson case		

- sample the internal states in p(X_{ij} |X_{leaves}) using two depth-first traversals of the tree before sampling the substitution process along each branch, conditioned on both extremities, i.e.
- 2. number of substitutions n_{ij} is Poisson distributed with parameter $r_i l_j$ if the state is the same at both extremities (otherwise, Poisson excluding $n_{ij} = 0$).
- 3. successive states (σ_{ii}^k) are drawn from π .

The augmented likelihood is:

$$p(\Xi|r,l,\pi) = \prod_{i} \pi\left(\sigma_{i0}^{0}\right) \prod_{j} e^{-r_{i}l_{j}} \frac{\left(r_{i}l_{j}\right)^{n_{ij}}}{n_{ij}!} \prod_{k=1}^{n_{ij}} \pi\left(\sigma_{ij}^{k}\right)$$
$$= \left(\prod_{a=1}^{20} \pi(a)^{w_{a}}\right) \left(\prod_{i} r_{i}^{u_{j}}\right) \left(\prod_{j} l_{j}^{v_{j}}\right) \left(\prod_{ij} \frac{e^{-r_{i}l_{j}}}{n_{ij}!}\right)$$

		MCMC sampling ●00	Evaluation and Results 00
MCMC sampling	the Poisson case		

- sample the internal states in p(X_{ij} |X_{leaves}) using two depth-first traversals of the tree before sampling the substitution process along each branch, conditioned on both extremities, i.e.
- 2. number of substitutions n_{ij} is Poisson distributed with parameter $r_i l_j$ if the state is the same at both extremities (otherwise, Poisson excluding $n_{ij} = 0$).
- 3. successive states (σ_{ii}^k) are drawn from π .

The augmented likelihood is:

$$p(\Xi|r, l, \pi) = \prod_{i} \pi \left(\sigma_{i0}^{0}\right) \prod_{j} e^{-r_{i}l_{j}} \frac{(r_{i}l_{j})^{n_{ij}}}{n_{ij}!} \prod_{k=1}^{n_{ij}} \pi \left(\sigma_{ij}^{k}\right)$$
$$= \left(\prod_{a=1}^{20} \pi(a)^{w_{a}}\right) \left(\prod_{i} r_{i}^{u_{i}}\right) \left(\prod_{j} l_{j}^{v_{j}}\right) \left(\prod_{ij} \frac{e^{-r_{i}l_{j}}}{n_{ij}!}\right)$$

		MCMC sampling ○●○	Evaluation and Results 00
MCMC sampling Conjugacy: an illustration witl	h /		

$$p(l) \propto \prod_{j} e^{-\beta l_j}$$

And observe that the (part we are interested in in the) augmented likelihood is Poisson,

$$p(\Xi|r, l, \pi) = \left(\prod_{a=1}^{20} \pi(a)^{w_a}\right) \left(\prod_i r_i^{u_i}\right) \left(\prod_j l_j^{v_j}\right) \left(\prod_{ij} \frac{e^{-r_i l_j}}{n_{ij}!}\right)$$
$$\propto \prod_j l_j^{v_j} e^{-Rl_j}$$

$$p(l|\Xi, r, \pi) \propto \prod_{j} l_{j}^{v_{j}} e^{-(\beta+R)l_{j}}$$

		MCMC sampling ○●○	Evaluation and Results 00
MCMC sampling Conjugacy: an illustration witl	h /		

$$p(l) \propto \prod_{j} e^{-\beta l_{j}}$$

And observe that the (part we are interested in in the) augmented likelihood is Poisson,

$$p(\Xi|r, l, \pi) = \left(\prod_{a=1}^{20} \pi(a)^{w_a}\right) \left(\prod_i r_i^{u_i}\right) \left(\prod_j l_j^{v_j}\right) \left(\prod_{ij} \frac{e^{-r_i l_j}}{n_{ij}!}\right)$$
$$\propto \prod_j l_j^{v_j} e^{-Rl_j}$$

$$p(l|\Xi, r, \pi) \propto \prod_{j} l_{j}^{v_{j}} e^{-(\beta+R)l_{j}}$$

		MCMC sampling O●O	Evaluation and Results 00
MCMC sampling Conjugacy: an illustration wit	h /		

$$p(l) \propto \prod_{j} e^{-\beta l_{j}}$$

And observe that the (part we are interested in in the) augmented likelihood is Poisson,

$$p(\Xi|r, l, \pi) = \left(\prod_{a=1}^{20} \pi(a)^{w_a}\right) \left(\prod_i r_i^{u_i}\right) \left(\prod_j l_j^{v_j}\right) \left(\prod_{ij} \frac{e^{-r_i l_j}}{n_{ij}!}\right)$$
$$\propto \prod_j l_j^{v_j} e^{-Rl_j}$$

$$p(I|\Xi, r, \pi) \propto \prod_{j} l_{j}^{v_{j}} e^{-(\beta+R)l_{j}}$$

		MCMC sampling O●O	Evaluation and Results 00
MCMC sampling Conjugacy: an illustration wit	h /		

$$p(l) \propto \prod_{j} e^{-\beta l_{j}}$$

And observe that the (part we are interested in in the) augmented likelihood is Poisson,

$$p(\Xi|r, l, \pi) = \left(\prod_{a=1}^{20} \pi(a)^{w_a}\right) \left(\prod_i r_i^{u_i}\right) \left(\prod_j l_j^{v_j}\right) \left(\prod_{ij} \frac{e^{-r_i l_j}}{n_{ij}!}\right)$$
$$\propto \prod_j l_j^{v_j} e^{-Rl_j}$$

$$p(l|\Xi, r, \pi) \propto \prod_{j} l_{j}^{\nu_{j}} e^{-(\beta+R)l_{j}}$$

	MCMC sampling 00●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ij}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

	MCMC sampling ○○●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

	MCMC sampling ○○●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

	MCMC sampling ○○●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

	MCMC sampling ○○●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

	MCMC sampling ○○●	Evaluation and Results 00
MCMC sampling Overall strategy		

- 1. along each branch j and at any site i, sample n_{ij} the total number of substitutions, (t_{ij}^k) the times at which substitutions occur, and (σ_{ii}^k) the successive states.
- sampling the branch-length *I* given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is a Gamma again with known parameters.
- sampling the site-specific rates r given everything else. The prior is Gamma, conjugate to a Poisson variable. Posterior is Gamma again with known parameters.
- 4. sampling the stationary profile π given everything else. The prior is a Dirichlet, conjugate to a multinomial distribution. Posterior is Dirichlet again with known parameters.
- 5. update the hyperparameters with a MH step.

		MCMC sampling 000	Evaluation and Results ●O
Evaluation and Results Estimating the decorrelation t	ime		

- 1. Run *M* independent chains, discard *Q* steps an record *K* points: (θ_{mk}) . Apply any test function to this output, and record $(x_{mk} = x(\theta_{mk}))$.
- 2. The last points of the *M* chains (x_{mK}) have unknown mean μ and variance *v*.
- 3. The within chains means ($ar{x}_m = 1/K\sum_{k=1}^K x_{mk}$) have unknown mean μ an variance u', where

$$v' = rac{v}{K_{
m eff}} \implies K_{
m eff} pprox rac{{
m Empirical variance of (x_m \kappa)}}{{
m Empirical variance of (ar{x}_m)}}$$

$$\tau_d = \frac{\tau K}{K_{\rm eff}}$$

		MCMC sampling 000	Evaluation and Results ●O
Evaluation and Results Estimating the decorrelation t	ime		

- 1. Run *M* independent chains, discard *Q* steps an record *K* points: (θ_{mk}) . Apply any test function to this output, and record $(x_{mk} = x(\theta_{mk}))$.
- 2. The last points of the *M* chains (x_{mK}) have unknown mean μ and variance *v*.

3. The within chains means $(ar{x}_m=1/K\sum_{k=1}^K x_{mk})$ have unknown mean μ an variance u' , where

$$v' = rac{v}{K_{
m eff}} \implies K_{
m eff} pprox rac{{
m Empirical variance of (x_{mK})}}{{
m Empirical variance of (ar{x}_{m})}}$$

$$au_d = rac{ au K}{K_{
m eff}}$$

		MCMC sampling 000	Evaluation and Results ●O
Evaluation and Results Estimating the decorrelation t	ime		

- 1. Run *M* independent chains, discard *Q* steps an record *K* points: (θ_{mk}) . Apply any test function to this output, and record $(x_{mk} = x(\theta_{mk}))$.
- 2. The last points of the *M* chains (x_{mK}) have unknown mean μ and variance *v*.
- 3. The within chains means $(\bar{x}_m = 1/K \sum_{k=1}^{K} x_{mk})$ have unknown mean μ an variance v', where

$$v' = rac{v}{K_{
m eff}} \implies K_{
m eff} pprox rac{{
m Empirical variance of }(x_{mK})}{{
m Empirical variance of }(ar{x}_{m})}$$

$$\tau_d = \frac{\tau K}{K_{\rm eff}}$$

		MCMC sampling 000	Evaluation and Results ●O
Evaluation and Results Estimating the decorrelation t	ime		

- 1. Run *M* independent chains, discard *Q* steps an record *K* points: (θ_{mk}) . Apply any test function to this output, and record $(x_{mk} = x(\theta_{mk}))$.
- 2. The last points of the *M* chains (x_{mK}) have unknown mean μ and variance *v*.
- 3. The within chains means $(\bar{x}_m = 1/K\sum_{k=1}^K x_{mk})$ have unknown mean μ an variance v', where

$$v' = rac{v}{K_{
m eff}} \implies K_{
m eff} pprox rac{{
m Empirical variance of }(x_{mK})}{{
m Empirical variance of }(ar{x}_{m})}$$

$$\tau_d = \frac{\tau K}{K_{eff}}$$

	MCMC sampling 000	Evaluation and Results O●
Evaluation and Results Results		

- Using Gibbs sampling leads to much smaller decorrelation times,
- At least one order of magnitude smaller,
- and 2-3 orders of magnitude when the substitution process is very site-specific, with lots of parameters (MAX-GTR).

	MCMC sampling 000	Evaluation and Results ⊙●
Evaluation and Results Results		

- Using Gibbs sampling leads to much smaller decorrelation times,
- At least one order of magnitude smaller,
- and 2-3 orders of magnitude when the substitution process is very site-specific, with lots of parameters (MAX-GTR).

	MCMC sampling 000	Evaluation and Results O●
Evaluation and Results Results		

- Using Gibbs sampling leads to much smaller decorrelation times,
- At least one order of magnitude smaller,
- and 2-3 orders of magnitude when the substitution process is very site-specific, with lots of parameters (MAX-GTR).