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Introduction Models MCMC sampling Evaluation and Results

Some reasons to speak about this paper

1. It’s a follow up on a previous discussion on “exponential families”,

2. It uses this concept within a Gibbs Sampler, in a phylogenetic setting,

3. It seems quite efficient, and it might give us ideas to speed up future projects,

4. I usually like Nicolas Lartillot’s papers.
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Introduction Models MCMC sampling Evaluation and Results

Introduction
Aim of the paper

I They want to model an amino-acid substitution process,

I evolving along a fixed tree topology,

I while allowing for a lot of heterogeneities at the site level.

Standard Metropolis-Hastings MCMC methods take very long to do so,

Could it be improved by considering a clever Gibbs sampler ?
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Introduction
Metropolis-Hastings or Gibbs sampling ?

Metropolis-Hastings

Algorithm Initialize a first state x0.
At step i , the chain being in state xi ,

1. Propose a next state yi+1 by drawing a
realisation in distribution q(xi , ·).

2. Compute the ratio:

r(xi , yi+1) :=
ν(yi+1)q(yi+1, xi )
ν(xi )q(xi , yi+1)

3. Draw u ∼ U(0, 1).
If u ≤ r , set xi+1 := yi+1.
otherwise, keep xi+1 := xi .

Reversibility One can check that
νx qxy min(1, r(x , y)) = νy qyx min(1, r(y , x)).
Hence, it converges to the stationary
distribution ν.

Advantage One can use (almost) any proposal
distribution q.

Drawback One needs to carefully tune q to
ensure fast convergence.

Gibbs sampler

Algorithm First, initialize the chain in state x0.
At step n, xn = (x (1)

n , x (2)
n , ..., x (k)

n ),
1. Draw i ∼ U{1, 2, ..., k}.
2. Draw x (i)

n+1 in the conditional law

p
(

X (i) |
(

X (j)
)

j 6=i
=
(

x (j)
n

)
j 6=i

)
.

3. Fix xn+1 :=
(

x (1)
n , x (2)

n , ..., x (i)
n+1, ..., x

(k)
n

)
.

Reversibility One can check that νx pxy = νy pyx .
Hence, it converges to the stationary
distribution ν.

Advantage It is generally assumed that it
converges faster.

Drawback One needs to know how to sample
step 2.
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Introduction
Exponential families and prior conjugacy

Definition 1
A family of probability distributions parametrized by a parameter θ is called an exponential family if its
probability mass function, or density, can be expressed as

f (x |θ) = h(x)eη(θ)t T (x)−A(η(θ))

Property 1
These exponential families admit conjugate priors that belong to another exponential family. I.e. if

X |η ∼ fη, where fη belongs to an exponential family F(η)
then there exists another exponential family H such that if g ∈ H and if

η ∼ g, the posterior is given by
η|X ∼ h, where h belongs to the same family H.
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then there exists another exponential family H such that if g ∈ H and if

η ∼ g, the posterior is given by
η|X ∼ h, where h belongs to the same family H.

Example 1
The exponential distribution is conjugate to a Gamma distribution.

Assume that X |λ ∼ E(λ)
and λ|α, β ∼ Γ(α, β)
=⇒ λ|X , α, β ∼ Γ(α + 1, β + X) .
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Definition 1
A family of probability distributions parametrized by a parameter θ is called an exponential family if its
probability mass function, or density, can be expressed as
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X |η ∼ fη, where fη belongs to an exponential family F(η)
then there exists another exponential family H such that if g ∈ H and if

η ∼ g, the posterior is given by
η|X ∼ h, where h belongs to the same family H.

Example 1
The family of Poisson distributions (P(λ))λ∈R+ is an exponential family.
The Poisson distribution is conjugate to a Gamma distribution.

X |λ ∼ P(λ)
λ|α, β ∼ Γ(α, β)

=⇒ λ|α, β, x ∼ Γ(α + x , β + 1) .
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Models
Models of substitution

They model aa substitutions (S = 20), but for simplicity, it would give the following for nt (S = 4):

choose ρ =


. ρ12 ρ13 ρ14
...

. . . ρ23 ρ24
...

. . . ρ34
. . . . . . . .

 the relative exchangeabilities

and π = (π1, π2, π3, .) the equilibrium frequencies, or “profile”

=⇒ Q =

(
. ρ12π2 ρ13π3 ρ14π4

ρ12π1 . ρ23π3 ρ24π4
ρ13π1 ρ23π2 . ρ34π4
ρ14π1 ρ24π2 ρ34π3 .

)
I Two model configurations:

SUB all sites in the alignment are evolving under the same substitution process (i.e. share π and ρ).
MAX each site is evolving under its substitution process.

I Three possibilities for ρ:
WAG all ρab values are fixed to a known value from the literature.
Poisson all ρab values are fixed equal to 1.
GTR all ρab values are free parameters.

I Leading to 6 possibilities.
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They model aa substitutions (S = 20), but for simplicity, it would give the following for nt (S = 4):

choose ρ =


. ρ12 ρ13 ρ14
...

. . . ρ23 ρ24
...

. . . ρ34
. . . . . . . .

 the relative exchangeabilities

and π = (π1, π2, π3, .) the equilibrium frequencies, or “profile”

=⇒ Q =

(
. ρ12π2 ρ13π3 ρ14π4

ρ12π1 . ρ23π3 ρ24π4
ρ13π1 ρ23π2 . ρ34π4
ρ14π1 ρ24π2 ρ34π3 .

)
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MAX each site is evolving under its substitution process.

I Three possibilities for ρ:
WAG all ρab values are fixed to a known value from the literature.
Poisson all ρab values are fixed equal to 1.
GTR all ρab values are free parameters.

I Leading to 6 possibilities.
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Models
Priors

branch lengths l independent E(β) prior distribution.

p(l) =
∏

j

βe−βlj

site-specific rates r Γ(α, α) prior distribution.

p(r) ∝
∏

i

rα−1
i e−αri

site-specific profiles π with flat Dirichlet prior distribution.
relative exchangeabilities when not fixed, E(1) prior distribution.

These are chosen because they are conjugate to the likelihood of the augmented data.
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MCMC sampling
Simulation of a “mapping” in the Poisson case

1. sample the internal states in p(Xij |Xleaves) using two depth-first traversals of the tree
before sampling the substitution process along each branch, conditioned on both extremities, i.e.

2. number of substitutions nij is Poisson distributed with parameter ri lj if the state is the same at both
extremities (otherwise, Poisson excluding nij = 0).

3. successive states (σk
ij ) are drawn from π.

The augmented likelihood is:

p(Ξ|r , l, π) =
∏

i

π
(
σ
0
i0

)∏
j

e−ri lj (ri lj )nij

nij !

nij∏
k=1

π
(
σ

k
ij

)
=

(
20∏

a=1

π(a)wa

)(∏
i

rui
i

)(∏
j

l
vj
j

)(∏
ij

e−ri lj

nij !

)
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MCMC sampling
Conjugacy: an illustration with l

I Recall that the prior is exponential (special case of Gamma),

p(l) ∝
∏

j

e−βlj

I And observe that the (part we are interested in in the) augmented likelihood is Poisson,

p(Ξ|r , l, π) =

(
20∏

a=1

π(a)wa

)(∏
i

rui
i

)(∏
j

l
vj
j

)(∏
ij

e−ri lj

nij !

)
∝
∏

j

l
vj
j e−Rlj

I Resulting posterior is Gamma again,

p(l|Ξ, r , π) ∝
∏

j

l
vj
j e−(β+R)lj
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MCMC sampling
Overall strategy

1. along each branch j and at any site i , sample nij the total number of substitutions, (tk
ij ) the times at

which substitutions occur, and (σk
ij ) the successive states.

2. sampling the branch-length l given everything else.
The prior is Gamma, conjugate to a Poisson variable.
Posterior is a Gamma again with known parameters.

3. sampling the site-specific rates r given everything else.
The prior is Gamma, conjugate to a Poisson variable.
Posterior is Gamma again with known parameters.

4. sampling the stationary profile π given everything else.
The prior is a Dirichlet, conjugate to a multinomial distribution.
Posterior is Dirichlet again with known parameters.

5. update the hyperparameters with a MH step.
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Evaluation and Results
Estimating the decorrelation time

1. Run M independent chains, discard Q steps an record K points: (θmk ). Apply any test function to
this output, and record (xmk = x(θmk )).

2. The last points of the M chains (xmK ) have unknown mean µ and variance v .

3. The within chains means (x̄m = 1/K
∑K

k=1
xmk ) have unknown mean µ an variance v ′, where

v ′ =
v

Keff
=⇒ Keff ≈

Empirical variance of (xmK )
Empirical variance of (x̄m)

4. Measure the time spent between two successive recorded points, τ ,
and compute the decorrelation time,

τd =
τK
Keff
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Evaluation and Results
Results

I Using Gibbs sampling leads to much smaller decorrelation times,

I At least one order of magnitude smaller,

I and 2-3 orders of magnitude when the substitution process is very site-specific, with lots of
parameters (MAX-GTR).
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