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Abstract

During language processing, humans form complex embedded representations from

sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding

also underlies the human ability to encode sequences of spatial locations. We introduce a

novel paradigm in which subjects are exposed to a sequence of spatial locations on an octa-

gon, and are asked to predict future locations. The sequences vary in complexity according

to a well-defined language comprising elementary primitives and recursive rules. A detailed

analysis of error patterns indicates that primitives of symmetry and rotation are spontane-

ously detected and used by adults, preschoolers, and adult members of an indigene group

in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon

and limited access to schooling. Furthermore, subjects readily combine these geometrical

primitives into hierarchically organized expressions. By evaluating a large set of such combi-

nations, we obtained a first view of the language needed to account for the representation of

visuospatial sequences in humans, and conclude that they encode visuospatial sequences

by minimizing the complexity of the structured expressions that capture them.

Author Summary

The child’s acquisition of language has been suggested to rely on the ability to build hier-

archically structured representations from sequential inputs. Does a similar mechanism

also underlie the acquisition of geometrical rules? Here, we introduce a learning situation

in which human participants had to grasp simple spatial sequences and try to predict the

next location. Sequences were generated according to a “geometrical language” endowed

with simple primitives of symmetries and rotations, and combinatorial rules. Analyses of
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error rates of various populations—a group of French educated adults, two groups of 5

years-old French children, and a rare group of teenagers and adults from an Amazonian

population, the Mundurukus, who have limited access to formal schooling and a reduced

geometrical lexicon—revealed that subjects’ learning indeed rests on internal language-

like representations. A theoretical model, based on minimum description length, proved

to fit well participants’ behavior, suggesting that human subjects “compress” spatial

sequences into a minimal internal rule or program.

Introduction

In the past decades, studies of sequence learning have outlined one possible mechanism by

which complex mental representations are constructed out of simpler primitives: the human

ability to extract complex nested structures from sequential inputs [1]. While non-human pri-

mates fail to show any systematicity in language learning [2], humans seem to be innately

endowed with a quick grasp of complex embedded rules. At 8 months of age already, infants

presented with a brief sequence of syllables readily extract recurrent 3-syllabic words [3,4], and

by 12 months they understand how these words combine to form larger structures [5]. A simi-

lar ability to group consecutive items according to abstract regularities has also been demon-

strated during the learning of visuomotor sequences by adults [6,7]. Children and adults are

also able to learn more abstract algebraic rules such as “AAB” (a repetition of any two items

followed by a third one) [8,9]. This capacity for abstract rule learning seems to be enhanced in

humans and to rely on inferior prefrontal cortex (“Broca’s area”) [10,11]. Furthermore, differ-

ent but neighboring sectors of inferior prefrontal cortex appear to be used for linguistic and

for mathematical rules [12,13]. The question therefore arises whether a capacity for the inter-

nal representation and manipulation of nested sequences also underlies the acquisition of

mathematics. While there have been several studies of artificial language learning ([3,9,14–16];

see [17] for a review), there have been comparatively fewer studies of the acquisition of mathe-

matical structures. Our aim here is to introduce a novel experimental paradigm to study the

acquisition of elementary structures in the domain of geometry, with the ultimate goal of prob-

ing whether this ability presents some features that are uniquely developed in the human spe-

cies (for a similar approach, see [18,19]).

Several recent studies have suggested that even uneducated humans possess proto-

mathematical intuitions of geometry. Indeed, human abilities to navigate the environment and

to recognize geometrical shapes appear to develop early [20,21], are shared with many different

animal species [22–24], and rely on a precocious knowledge of geometrical notions like dis-

tance, direction, length, or angle [25,26]. Even adults who lack school education and whose

language has an impoverished vocabulary for geometry, rely on abstract geometrical cues

when processing shapes and maps [27,28]. In analogy with the domain of numbers [29,30], it

seems reasonable to hypothesize that these basic geometrical intuitions may serve as founda-

tion for more abstract ideas [31–33]. However, the mechanisms that lead to the formation of

advanced mathematical concepts from simpler ones still remain unknown.

In the present paper, we propose to formalize the human sensitivity to mathematical rules

as the availability of a “language of thought” [34] that allows the formation of complex repre-

sentations from a small repertoire of primitives. Following Fodor’s ideas, such a language

should comprise a limited set of atomic elements (“lexicon”) that can be combined into more

complex representations thanks to a set of formal combinatorial rules [34–36]. Such an

approach has already proved relevant to model human conceptual learning [37–39]. In the
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specific case of spatial learning, Yildirim et al. [40] introduced a compositional language for

spatial sequences, including a cursor, a set of basic commands to move it, “goto” loops, and

recursion. They show that this language could capture the behavior of human adults in catego-

rizing auditory or visual spatio-temporal sequences drawn out of seven locations arranged

around a circle. Yildirim et al. showed that their language could account for the transfer of

abstract sequence knowledge from the visual to the auditory modality (and vice-versa). How-

ever, their language did not model the participants’ understanding of geometry. Geometrical

primitives such as symmetry were unnecessary for their purposes, since the spatial sequences

were drawn from 7 locations on the circle and therefore did not form regular geometrical

shapes (unlike the present work). Only a handful of researchers have explicitly focused on geo-

metrical learning. Coding languages such as LOGO, a language in which a child learns to give

directional instructions to a turtle walking across a page, have been used to produce regular

geometrical patterns [41]. Following Chomsky’s ideas, Leyton introduced a generative gram-

mar that partially captures the human perception of geometrically regular static shapes

[42,43]. These research programs, however, either lacked empirical testing or were designed

for educational purposes, and they did not systematically probe the human acquisition of geo-

metrical sequences.

Lying at the intersection of those previous efforts, the present work introduces a simple for-

mal language composed of geometrical primitives and combinatorial rules that suffice to

describe the symmetries of a regular octagon. We ask whether humans can use such primitives

and combine them in order to encode regularities of variable degree of complexity in spatial

sequences. By analyzing the speed and ease with which human adults and children detect and

memorize geometrical structures, we show that our language provides an adequate description

of the representation that humans use to encode spatial sequences. By testing their capacity to

anticipate the rest of the sequence, even before it has been fully presented, we examine how

quickly human adults and children learn such combinatorial rules. By testing a variety of

sequences, we probed the complexity of the rules that can be acquired. Using these data, we

outline a theory of rule complexity consistent with human behavior.

Language

We designed a formal language capable of describing, in a compact manner, all sequences of

movements on a regular octagon. The set of primitive instructions is shown in Fig 1A and

includes rotations, axial and point symmetries. Each of these instructions captures a possible

transition from one location on the octagon to another. We denote them as 0 (stay at the same

location), +1 (next element clockwise), +2 (second element clockwise), -1, -2, H (horizontal

symmetry), V (vertical symmetry), P (rotational symmetry, equivalent to +4), A and B (sym-

metries around diagonal axes).

From these primitives, a sequence can then be generated by simple concatenation (e.g. the

expression +2 +2 +2 +2 generates a square). Although any sequence can be encoded in this

manner, we will provide evidence that humans detect and encode regular sequences in a

much more compressed form. Thus, we also assume that the “language of thought” includes

instructions for repeating operations. For instance, the sequence +2 +2 +2 +2 may be encoded

as [+2]^4, i.e. four repetitions of +2). The language also allows for a more complex form of

“repetition with variation”, as when drawing a first square, and then a second one rotated by

one dot: the corresponding expression is denoted [[+2]^4]^2<+1>, where [+2]^4 encodes

the square and []^2<+1> repeats it twice with an offset of +1 in the starting point. S1 Text

presents a formal syntax and semantics of this minimal language for geometry.
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In most languages, many equivalent expressions provide the same output. Here, for

instance, the same square can be captured as +2 +2 +2 +2, [+2]^4, [+2]^3 +2, etc. We therefore

assume that subjects apply Occam’s razor and attempt to select the most parsimonious expres-

sion that accounts for the observed sequence. The concept of Kolmogorov complexity, a

notion from algorithmic information theory, provides a natural mathematical framework for

these ideas [36,44]. This framework defines the complexity of a given sequence as the length of

Fig 1. Paradigm. (A) Basic geometrical rules used to create sequences: rotations (+1, +2, -1, -2), axial symmetries (H:

horizontal, V: vertical, A,B: oblique) and rotational symmetry (P). From one location of the octagon, each of the 7 others

can be reached by the application of one or more primitives. (B) Screen shot from experiment 1. The orange dot appears at

successive locations on the octagon, and subjects are asked to predict the next location. (C) Examples of sequences

presented to French adults (blue), kids and Munduruku adults (yellow), or both (green).

doi:10.1371/journal.pcbi.1005273.g001
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the shortest expression capable of producing it in a Turing-complete language, (i.e. any rea-

sonable programing language).

Unfortunately, a classic result in algorithmic information theory is that, for any Turing-

complete language, Kolmogorov complexity is not computable. Even for simple languages,

Kolmogorov complexity is often difficult to compute in practice, because it involves examin-

ing, for each sequence, all the programs that compute it, a search that typically grows exponen-

tially with the size of the sequence. Different methods have been developed to approximate

Kolmogorov complexity. One idea is to approximate it using standard file compressors such as

Lempel-Ziv. Such approach was used e.g. in [45] to cluster large documents via a definition of

universal distance. File compressors behave well in relatively large texts but fail to provide any

significant compression when the input is a very small text devoid of repetitions, such as the

spatial sequences of 8 locations that we used here. In our case, we thus defined a new language

capable of detecting specific geometrical patterns in such short sequences. To quantify

sequence complexity, we used the notion of “minimal description length” which is closely

related to Kolmogorov complexity [46] (for other uses of information theory and minimal

description length in psychology, see e.g. [38,47–52]). From now on, we call “complexity” of a

spatial sequence x, denoted K(x), the length of the shortest expression(s) in our language that

reproduces it. The corresponding psychological assumption, that we put to a test in our experi-

ments, is that human participants attempt to “compress” the spatial sequence mentally, i.e. to

minimize the memory cost by identifying the simplest (shortest) mental expression that allows

them to store the sequence.

We make the simplest possible assumptions regarding expression length (see S1 Text for

details). In essence, (1) each additional primitive instruction adds a fixed cost; (2) repeating a

set of instructions n times adds a cost proportional to log(n) to the instructions to be repeated;

(3) the relative size of those two costs is such that even a single repetition reduces the size of an

expression (thus, the expression“[+2]^2” is more compressed than the equivalent “+2 +2”).

Stimulus sequences

In all experiments below, our general aim was to (1) probe human memory for spatial

sequences on the octagon and (2) examine whether human behavior could be captured by our

formal language and our definition of complexity. To this aim, we first generated all the 5040

sequences of length 8 that could be generated on the octagon, beginning in the same origin

and without repetition of any specific location. We then computed their complexity (K) in the

above language, quantifying their degree of geometrical regularity. Finally, we selected

sequences that spanned a broad range of geometrical primitives and regularities. All sequences

used in experiments 1–4 are shown in Fig 1C. We now detail them:

• The most complex sequences (K = 16), called “irregular”, consisted in a serial presentation of

all 8 locations in a fixed order with no apparent regularity. Such sequences could also be

called “incompressible” because their minimal description consists in a mere list of succes-

sive transitions between locations, without any compression afforded by repetition. Our lan-

guage comprised 768 such maximal-complexity sequences. For any given subject, one of

them was chosen randomly. In order to probe sequence memory, it was then repeated a sec-

ond time, for a total of 16 locations.

• At the other extreme, the sequence called “repeat” (K = 5) contained a single repeated primi-

tive (either +1 or -1), and thus consisted in a simple clockwise or counterclockwise

progression.

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers
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• The “alternate” sequence (K = 7) was constructed by applying alternatively two steps in one

direction (either +2 or -2), and one step in the opposite direction (respectively -1 or +1).

Thus, this sequence involved no nesting, but a mere repetition of two instructions.

Other sequences contained two embedded levels of regularity: a lower level where instruc-

tions built a geometrical shape (e.g. a square), and a higher level at which the shape was

repeated with a global transformation (e.g. the square was rotated):

• The “2squares” sequence (K = 8) was constructed by applying three times the rule +2, thus

drawing a square, and then restarting with a rotated starting point, which was defined by

applying the rule +1 or -1 to the previous starting point.

• The “2arcs” sequence (K = 8), consisted in three applications of the rule +1 (thus drawing an

arc of four successive points), then globally flipping this figure using an axial symmetry in

order to complete it with the four remaining locations.

• The “4segments” sequence (K = 7) consisted in first drawing a segment by applying an axial

symmetry, then translating it four times by shifting its starting point. This sequence resulted

in a succession of four parallel segments connected by a zigzag shape.

• The “4diagonals” sequence (K = 7) was constructed similarly through the repeated applica-

tion of rotational symmetry to four consecutive starting points.

Finally, two sequences contained three embedded levels of regularity.

• The “2rectangles” sequence (K = 10) consisted in an initial segment on which a global axial

symmetry was applied (thus tracing a rectangle), and then a +2 rotation that transposed this

shape to the remaining four points.

• The “2crosses” sequence (K = 7), similarly, started with a rotational symmetry (diagonal seg-

ment), which was then transformed by an axial symmetry (thus tracing a cross), and then a

+2 rotation that transposed it to the remaining four points.

In experiments 2–4, to evaluate memory span, we added two sequences that spanned only a

subset of the 8 locations. These were irregular sequences with respectively 2 and 4 locations

(called “2points” [K = 6] and “4points” [K = 9]).

Results

Experiment 1

Ethics statement. Experiments were approved by the regional ethical committee (Comité

de Protection des Personnes, Hôpital de Bicêtre), and participants gave informed consent.

Participants. Participants were 23 French adults (12 female, mean age = 26.6, age

range = 20–46) with college-level education.

Procedure. The experiment was organized in short blocks. In each block, subjects were

presented with a specific sequence of spatial locations, which they were asked to continue. The

eight possible locations, forming a symmetrical octagon, were constantly visible on the com-

puter screen (Fig 1B). On a given trial, the locations forming the beginning of the chosen

sequence were flashed sequentially, and then the sequence stopped. The subject’s task was to

guess the next location by clicking on it. As long as the subject clicked on the correct location,

he was asked to continue with the next one. In case of an error, the sequence was restarted

from the beginning: the entire sequence of locations was flashed again, the mistake was cor-

rected, and the subject was again asked to predict the next location. For each sequence, the

procedure was initiated by showing only the first two items. Thus, starting with the 3rd location

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers
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in the sequence, subjects were given a single opportunity to venture a guess at each step. In

order to introduce the task, participants were always presented first with a “repeat” sequence

of clockwise or counterclockwise rotating locations. The order of subsequent sequences was

randomized.

Stimuli. On each block, a spatial sequence consisting in a succession of 16 locations was

presented. These sequences are shown in blue and green labels in Fig 1C. In total, each partici-

pant was presented with two “repeat”, two “alternate” and two “2squares”, each spanning the

two directions of rotation around the octagon. Two “2arcs”, four “4segments” and one “4diag-

onals” were also presented in order to test the comprehension of all four axial symmetries and

rotational symmetry. In these cases, the direction of rotation was randomized. One exemplar

of “2rectangles” and one of “2crosses” were also randomly selected. Finally, two irregular

sequences were picked randomly among the 768 sequences of maximal complexity. The start-

ing point of each sequence was picked randomly among the subset of eight locations of the

octagon that preserved the global shape.

Statistical analysis. The data consisted in a discrete measure of performance (correct or

error) for each subject, each sequence item, and each ordinal position from 3rd to 16th. Because

those data were discrete (even after averaging performance over a subset of sequences or ordi-

nal data points), we used Friedman’s non-parametric test for paired data (a non-parametric

test similar to a parametric repeated-measures ANOVA). When necessary, we used a Bonfer-

roni correction for multiple comparisons (across 14 data points for educated adults, 8 data

points for other subjects). To quantify the evolution of performance over time, we calculated

for each subject the Spearman’s rank correlation of error rates with ordinal position, and com-

pared the mean correlation coefficient to 0 using a Student t-test. When the evolution of per-

formance over time was evaluated on a small number of ordinal positions (3 or 5, as happens

in experiments 2–4), we used Friedman’s test for multiple conditions. Finally, whenever we

needed to compare performance between groups of subjects on a specific condition (e.g. adults

and children, as will arise in experiment 2), given that we had discrete measures (correct or

error), we used Fisher’s exact test when the number of measures per subject was 1 or 2; and the

Wilcoxon rank-sum test for independent samples whenever comparing the means of 3 or

more conditions.

Specific planned comparisons were performed in order to finely probe the understanding

of hierarchical sequence structure. For example, in “4segments”, the even data points corre-

spond to the application of the 1st-level, shallower level of regularity (axial symmetry),

while the odd data points result from a change of starting point, and thus represent a deeper,

2nd-level regularity that involves a non-adjacent temporal dependency (subjects must remem-

ber the starting point of a sub-sequence of 2 items). Consequently, comparing performance on

such data points provides information about the representation of nested rules in our

paradigm.

Results. As a baseline, we first examined the performance with “irregular” 8-item

sequences, which contained no obvious geometrical regularity. The evolution of average per-

formance across the two successive repetitions is shown as a background gray curve in all pan-

els of Fig 2. The mean error rate decreased across trials (mean rank correlation of error rate

with ordinal position: ρ = -0.51 ± 0.05, Student t-test: t22 = 10.3, p<7.10−10). This improve-

ment could be decomposed into two contributions: rote memory and anticipation. First, per-

formance was better in the second half of each block, i.e. during the repetition of the sequence,

than in the first half, when the sequence was introduced, indicating rote memory (Friedman

test: F = 15.7, p<10−4; point-by-point comparisons revealed a significant difference at all

but the last location, ps<0.05). Second, performance improved even within the first half,

even before the full sequence had been presented (anticipation; r = -0.4 ± 0.08, Student t-test:

The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers
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t22 = 5.1, p<4.10−5). This finding indicates that subjects took advantage of the fact that the 8

locations were sampled without replacement, thus narrowing the choice of remaining loca-

tions. Yet memory for past locations was not perfect, as shown by the fact that performance on

data points 7 and 8 remained worse than the chance level expected if subjects perfectly avoided

past locations (respectively 85 ± 6% vs 50%; and 54 ± 8% vs 0% errors; One-Sample Wilcoxon

Signed Rank Tests: both ps< 0.001).

Irregular sequences served as a baseline with which to compare other regular sequences. In

every regular sequence, the mean error rate was significantly lower than in the irregular base-

line (“repeat”: 2.5 ± 0.9%; “alternate”: 25.5 ± 4%; “2arcs”: 15 ± 1.4%; “2squares”: 23.5 ± 3.7%;

“4segments”: 15 ± 1.4%; “4diagonals”: 27 ± 4%; “2rectangles”: 38 ± 3.2%; “2crosses”:

27.5 ± 3.2%; “irregular”: 59.5 ± 3.8%; Friedman tests, all ps<0.001). Moreover, in every case,

participants performed significantly better than baseline even before the full presentation of

the 8-item sequence (averaged error rate of data points 6–8 for “repeat”: 0%; “alternate”:

Fig 2. Performance of adult participants in experiment 1. Top panels show the evolution of error rate across successive steps (data points 3–16

in adults) for each regular sequence (error bars = 1 SEM). The gray curve in the background shows the error rate for irregular sequences, which

serve as a baseline. Bottom panels show the percentage of responses at a given location for each data point. White dots indicate the correct location.

Vertical dashed lines mark the transition between the two 8-item subsequences that constitute the full 16-item sequences.

doi:10.1371/journal.pcbi.1005273.g002
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19.6 ± 6.1%; “2arcs”: 8 ± 2.1%; “2squares”: 16.7 ± 5%; “4segments”: 4 ± 2%; “4diagonals”:

17.4 ± 4.7%; “2rectangles”: 33.3 ± 5.2%; “2crosses”: 18.8 ± 5.2; and “irregular”: 69.6 ± 3.8%; all

ps<10−4).

Thus, sequence regularity facilitated both rote memory and anticipation. Crucially, as pre-

dicted, these effects were captured by our measure of complexity: the mean error rate was highly

correlated with K across sequences (for all data points: Spearman’s ρ = 0.75 ± 0.04, Student t-

test: t22 = 21, p<10−11; for data points 6–8: ρ = 0.73 ± 0.04, t22 = 21, p< 10−9, Fig 3, top panel).

Furthermore, complexity in our language gave a better account of adults’ behavior than alterna-

tive encoding strategies which did not use geometrical features such as rotations and symme-

tries, but used only the distance between successive locations. We computed two variants of

sequence complexity devoid of geometrical content: the normalized jump length, measuring

the average distance between locations in a sequence, averaged over the number of jumps; and

complexity in a degraded language where the primitives were only ±1, ±2, ±3, +4, and repetition

(S1 Fig). In both cases, obvious outliers were observed (e.g. the complexity for “4segments” in

the second case reached the maximum value of 16, which is inconsistent with the data). More-

over, correlations of those measures with total error rate were significantly lower than those

obtained with the full language (normalized jump length ρ = 0.60 ± 0.03, t(44) = 3.23, p = 0.003;

complexity in degraded language: ρ = 0.51 ± 0.03, t(44) = 4.88, p< 10−4).

We then examined the pattern of errors in each regular sequence. Unsurprisingly, for the

“repeat” sequence, which only consisted in the repeated application of the +1 or -1 rule, all

error rates verged on 0 and were far below the baseline (all ps< 0.001 corrected). The fact that

subjects were already able to complete the sequence after seeing only the first two items sug-

gests that they quickly recognized and applied the primitives+1 and -1, and treated repetition

as a default assumption.

For “alternate”, after a systematic error at the 3rd data point (error rate = 95%), the error

rate continuously decreased over the first half of the sequence (mean correlation coefficient:

ρ = -0.68 ± 0.06, Student t-test: t = 11.8, p< 5.10−11) and dropped to 15 ± 6% at the 7th data

point. Even though “alternate” induced more errors than “repeat” (overall: F = 23, p< 10−6),

performance was significantly better than “irregular” (all ps< 0.05 corrected, except at the 3rd

and the 5th data points). Thus, although “alternate” was more difficult than “repeat”, partici-

pants were able to identify and combine the rules +1 and +2.

For“2arcs” and “2squares”, performance profiles were similar. At all data points except the

5th, 9th, 13th and 16th, error rates were significantly below the baseline (all ps< 0.05 corrected).

The data points with high performance correspond to the application of the lowest-level rule

(+1 for “2arcs” and +2 for “2squares”), therefore providing evidence that this superficial rule

was quickly learned. On the contrary, data points 5, 9 and 13, corresponding to the application

of the higher-level rule, exhibited more errors than their neighbors (Friedman test: F = 23,

p = 2.10−6). At data point 5, the error rate was not significantly below the irregular baseline in

“2squares”, and it was even worse than baseline in “2arcs” (error rate at 5th data point in “irreg-

ular”: 70 ± 6%; “2arcs”: 91 ± 4%, F = 6.23, p = 0.013; “2squares”: 76 ± 8%, F = 0.69, p = 0.41).

Errors at this point consisted primarily in the continued application of the lower-level rule.

Importantly, however, performance on data point 5, 9 and 13 improved over time (“2arcs”:

Friedman test: F = 37, p < 9.10−9; “2squares”: F = 18.6, p< 9.10−5), and error rates at data

points 13 fell significantly below baseline in “2arcs” (p< 0.05 corrected), indicating that sub-

jects eventually learned both 1st and 2nd-level rules.

For”4segments”, error rate fell significantly below baseline for all data points (all ps< 0.001

corrected), except points 3 and 9. Within each block of 8 items, error rate decreased quickly

and continuously to 0 (rank correlations for the 1st half: ρ = -0.82 ± 0.02, t22 = 36.4, p< 0.001;

and the 2nd half: ρ = -0.62 ± 0.04, t22 = 15.8, p = 2.10−13). These results suggest that the 1st and
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Fig 3. Complexity predicts error rates. For each sequence, the y axis represents the mean error rate, and

the x axis the sequence complexity, as measured by minimal description length. Panels show data from

French adults (top, experiment 1), preschool children (middle, pooling over experiments 2 and 3), and

Munduruku teenagers and adults (bottom, experiment 4). For each group, a regression line is also plotted and

the Spearman’s correlation coefficient is displayed. In French children and Munduruku adults, the

“4diagonals” and “2crosses” are clear outliers—as explained in the main text, the regression can be improved

by assuming that their “language of thought” does not include rotational symmetry P.

doi:10.1371/journal.pcbi.1005273.g003
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2nd-level rules forming the “4segments” sequence were easily identified and applied. Separate

analyses indicated that the mean error rate was similar for horizontal, vertical, and oblique

symmetries (vertical: 11.5 ± 1.6%; horizontal: 16.1 ± 2.8%; oblique: 16.8 ± 2.1% and

15.5 ± 2.5%; Friedman test for differences between the four types of symmetries: F = 4.3, n.s.).

Thus, adult participants easily identified all axial symmetries.

The performance in“4diagonals” indicated that rotational symmetry was harder to identify

than other symmetries (comparison of “4diagonals” and “4segments”; respectively 27.3 ± 4%

vs 15 ± 1.4% errors, F = 7.3, p = 0.007). A saw tooth pattern (Fig 2) indicated that even data

points had systematically lower error rates than odd ones (Friedman test: F = 18, p< 3.10−5),

suggesting that the application of rotational symmetry (1st-level rule) was easier than that of

the rotation of the starting point (2nd-level rule). Even data points exhibited error rates signifi-

cantly lower than baseline (all ps< 0.02, ps< 0.001 corrected except for data points 10, 14 and

16). On the contrary, odd data points exhibited no difference with baseline, again suggesting

that the 2nd-level rule was harder to understand than the 1st-level one. Nevertheless, there was

a small but significant improvement over time on both odd and even data points (rank correla-

tion for odd data points: ρ = -0.4 ± 0.07, t = 5.5, p< 2.10−5; rank correlation for even data

points: ρ = -0.39 ± 0.06, t = 7.32, p < 6.10−11).

In “2 rectangles”, like in “2squares”, data points 5, 9 and 13 corresponded to the application

of the deepest (3rd-level) rule. None of these exhibited an error rate lower than the baseline

(data point 5: 60.9 ± 10.6% vs 69.6 ± 6.2%, F = 0.28, p = 0.6; data point 9: 78.2 ± 9% vs

54.3 ± 8.5%, F = 4, p = 0.046; data point 13:47.8 ± 10.9% vs 41.3 ± 9.5%, F = 0.69, p = 0.4), and

there was no improvement over time (Friedman test: F = 4.1, p = 0.13), suggesting that partici-

pants did not manage to understand how the starting point of the rectangle changed. At the

immediately subsequent data points 6, 10 and 14, that corresponded to the construction of the

first side of the rectangle, performance improved compared to points 5, 9 and 13 (respectively

46 ± 7%vs 62 ± 5% errors, F = 2.88, p = 0.089), although it was still not significantly lower than

baseline (Fs< 0.5, ps> 0.4). At subsequent points (7, 8, 11, 12, and 15, 16), the error rate fur-

ther improved (14 ± 4% errors, Friedman comparison with 3rd-level rule: F = 22, p< 3.10−6)

and became significantly lower than baseline (all ps< 0.05 corrected), indicating that the 1st

and 2nd-level rules that allowed to complete the rectangle were systematically learned.

Finally, for “2crosses”, the performance profile resembled that of “4diagonals”: on even

data points, the error rate was systematically lower than the baseline (all ps< 0.03 corrected

except at the 14th data point) and globally lower than the error rate on odd data points

(F = 10.7, p = 0.001), indicating that participants easily identified the most superficial rule.

Additional evidence for a 3-tiered organization was observed. The error rate was significantly

higher on data points 5, 9 and 13, corresponding to the starting point of the cross (3rd-level

rule, 41 ± 7% errors) than on data points 7, 11 and 15, corresponding to the starting point of

the second branch of the cross (2nd-level rule 26.1 ± 7% errors, Friedman comparison between

2nd and 3rd levels: F = 4.45, p = 0.035). No such difference was seen between data points 5, 9,

13 and 7, 11, 15 in “4diagonals” (F = 1.9, p = 0.17). On data point 7, 11 and 15, the error rate

was in turn significantly higher than on subsequent data points 8, 12 and 16, corresponding to

the completion of the cross (1st-level rule, 4.35 ± 3.3% errors, Friedman comparison between

1st and 2nd levels: F = 5.33, p = 0.021). On data points 6, 10 and 14, corresponding to the con-

struction of the first branch of the cross (17.4 ± 5.2% errors, the error rate was also significantly

lower than on data points 5, 9 and 13 (F = 9.3, p = 0.002). Finally, on data points 3, 5, 11 and

15, the error rate was not significantly lower than the baseline. In summary, 2nd and 3rd levels

rules, though eventually learnt, were harder to grasp than the 1st level rule.

Discussion. Adults were able to detect various geometrical regularities and to quickly gen-

eralize on the basis of only a few items, before seeing the entire sequence. They correctly
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prolonged every sequence and erred precisely at the points where past clues did not allow

them to guess the requested rule (data point 3 in “alternate”, “4segments”, “4diagonals”, “2rect-

angles” and “2crosses”; data point 5 in “2arcs”, “2squares”, “2rectangles” and “2crosses”, and

data point 9 in “4segments”). In most such cases, systematic errors indicated that subjects sys-

tematically continued to apply the lower-level rule. For example, in “2squares”, participants

got used to a succession of +2 rules and kept applying it at the 5th data point. In other cases

where the previous points formed a sub-sequence that seemed to come to an end (e.g. after the

first “4 points” in“2rectangles” and “2crosses”, or after the first 8 points in “4segments”), par-

ticipants failed because they could not guess how to restart.

Aside from these predicable errors, our results indicated that all regular sequences were bet-

ter learnt than the irregular baseline, with error rates increasing essentially monotonically with

complexity. This finding indicates that geometrical regularity is a major determinant of visuo-

spatial memory in our task. Indeed, geometrical regularities allowed participants to memorize

sequences of 8 items and beyond that would have otherwise exceeded their working memory

capacity (as exemplified by the persistence of errors in the “irregular” baseline).

Participants’ performance provided clear indications of the type of regularities that they

were able to identify. All the primitives that we hypothesized were easily recognized by adult

subjects: +1/-1 (successor), +2/-2, and all axial and point symmetries (as indicated by superior

performance on even data points of “4segments” and “4diagonals” sequences). Furthermore,

participants also identified additional embedded levels of regularity. Performance with

“2arcs”, “2squares”, “4segments” and “4diagonals” sequences provided evidence for a fast

learning of the most superficial rule and its repetition. 2nd and 3rd-level rules were harder to

learn, as suggested by (1) the slower decrease of error rates for 2nd level than for 1st level, and

(2) the persistence of errors over time at data points corresponding to the 3rd-level rule in

“4diagonals”, “2rectangles”, “2crosses”. By construction, evidence in support of those deeper

levels is presented with reduced frequency compared to the 1st-level rule—for instance in

“2arcs” and “2squares”, the 2nd-level rule applies only to one trial in four. However, sequences

such as “4diagonals” and “2crosses”, where 1st- and 2nd-level rules apply with the same fre-

quency (every other trial), the 2nd-level rule still induced more errors than the 1st-level rule.

Those results therefore suggest that deeper hierarchical levels are genuinely harder to learn,

probably because they involve non-adjacent temporal dependencies: in “2arcs” or “2squares”,

for instance, the 2nd-level rule applies to the initial point of a length-4 sub-sequence. Another

compounding factor may be spatial distance across space. The “4diagonals” or “2crosses”, in

which the distance between odd locations is almost maximum, yielded the maximum error

rates.

Altogether, these findings indicated that adult participants easily identified elementary

primitives of symmetry and rotation, and promptly understood the hierarchical organization

of regular sequences. However, such performance is perhaps unsurprising giving that our sub-

jects were young adults with college-level education. In experiment 2, we asked whether pre-

schoolers, who have not yet received formal education, also grasped geometrical rules.

Experiment 2

Participants. 24 preschoolers were tested (minimal age = 5.33, max = 6.29,

mean = 5.83 ± 0.05). The experimental apparatus was installed at school, in a quiet room that

was not the usual classroom. Children came one by one to play the game.

Procedure. To render the experiment more attractive for young children, we replaced the

flashing dots with pictures of animals, one for each sequence. Children were asked to look

carefully at how each animal moved. They were told that animals were playful: they appeared
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at one place, and then hid at another. Children were asked to catch them by pointing at the

next location where they thought that they might appear. The experimenter then clicked on

the designated target. To shorten the experiment, we divided each trial into two subsequences

of 8 items. Children saw the first five locations of a sequence and had to point to the next

three. Then, after a short break, they saw the first three locations of the same sequence and had

to point to the next five. Like in adults’ experiment, whenever kids pointed to the wrong loca-

tion, the program automatically restarted from the beginning of the trial, went on to correct

the error, and asked for a guess of the next location.

Stimuli. The sequences were essentially the same as in experiment 1 (yellow and green

labels in Fig 1C). Only the sequence “alternate”, which was difficult even for adults, was

replaced by a sequence that allowed us to test directly for kids’ understanding of the basic rule

+2. This sequence consisted in the successive application of the rule +2 (called “repeat+2”). To

explicitly measure working memory span, we also introduced two additional baselines, i.e.

irregular sequences with only 4 and 2 locations (called “4points” and “2points”). Finally, to

reduce the duration of the experiment, we presented only a single exemplar of each sequence

category. The only exception was the“4segments”sequence, which was presented 4 times in

order to test all 4 axial symmetries.

Results. We first analyzed performance on the “irregular” baselines with 8, 4 and 2 items.

When 8 locations devoid of any geometrical regularity were presented, the error rate was very

high (80 ± 2% errors in average). Yet notably, as for adults, the performance improved over

time (Spearman’s rank correlation over the two presentations: ρ = -0.41 ± 0.04, Student t-test:

t23 = 10.4, p< 4.10−10). Surprisingly, no such a pattern of error was observed for “4points”in

which the error rate remained at a sustained level during the whole trial (minimum error rate:

75 ± 9%). There was no significant improvement neither in the first presentation phase, nor in

the second (Friedman’s test on 1st and 2nd phases: Fs = 0.29; 3.2; ps> 0.5). However, error rates

for “2points” significantly differed from “irregular” (from data points 7 to 16, all ps< 0.01 cor-

rected) and significantly decreased over the first phase (F = 19.7, p = 10−4). Thus, measured

with our method, children’s visual memory span for irregular sequences fell between 2 and 4.

For most of the regular sequences, the mean error rate was significantly lower than the

“irregular” baseline (Friedman’s tests: all ps<0.002 either across 1st and 2nd phases or for 1st

phase only): “repeat” (across 1st and 2nd phases: 6 ± 2% errors; on 1stphase only: 13 ± 5%),

“repeat+2” (1st and 2nd phases: 24 ± 7%; 1st phase only: 33 ± 9%), “2arcs” (39 ± 5%; 49 ± 6%),

“2squares” (53 ± 6%; 51 ± 8%) and “4segments” (50 ± 5%; 54 ± 5%). However, such a perfor-

mance was not seen for “4diagonals” (73 ± 4% errors), “2rectangles” (79 ± 3% errors),

“2crosses” (81 ± 3% errors), for which mean error rates did not differ from baseline (all ps>
0.07).

As with adults, we found that preschoolers’ overall mean error rate was predicted by

the complexity of the sequences (at all data points: Spearman’s ρ = 0.52 ± 0.02, Student t-test:

t23 = 21, p<10−9; at data points 6–8: ρ = 0.41 ± 0.03, t23 = 11, p< 10−5, Fig 3, middle panel),

even though the correlation was lower than in experiment 1 (t46 = 5, p< 10−5).

Examination of individual sequences shown in Fig 4 revealed that, for “repeat”, all error

rates dropped quickly to 0 and were far below the baseline (all ps< 8.10−4 corrected), indicat-

ing that children quickly recognized and applied the primitives +1 and -1. The same conclu-

sion was reached for the primitives +2 and -2 in “repeat+2”, in which all error rates were

significantly lower than baseline (Friedman test: all ps< 0.05 corrected), continuously

decreased over the 1st phase (F = 8.4, p = 0.15) and stayed close to 0 over the 2nd phase.

As for adults, performance profiles were similar for “2arcs” and “2squares”. Error rates

were below baseline at most of the data points (“2arcs”: all ps< 0.05 corrected except at data

points 6, 7 and 13; “2squares”: ps< 0.05 corrected at data points 6, 12 and 16). These results
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therefore provide evidence that the superficial rule (+1 for “2arcs” and +2 for “2squares”) was

quickly learned, while the application of the higher-level rule, at the 13th data point, induced

more errors (Friedman test of comparison between the 13th data point its neighbors: F = 23,

p = 2.10−6). At this particular data point, 67% of children simply continued to apply the

1st-level rule in “2arcs” and 54% in “2squares”.

Fig 4. Performance of preschool children in experiment 2. Same format as Fig 2. In children, only data points 6 to 8 and 12 to 16 were collected.

Vertical dashed lines indicate the transition between the first and the second presentations of the 8-item sequences.

doi:10.1371/journal.pcbi.1005273.g004
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For “4segments”, error rate was significantly below the baseline at almost all data points

(Friedman test: all ps< 0.05 corrected at data points 6, 7, 12, 13 and 15) and decreased continu-

ously within each presentation phase (1st phase: F = 12.4, p = 0.002; 2ndphase: F = 11.9,

p< 0.02). Separate analyses indicated that the mean error rate was similar for horizontal, verti-

cal, and oblique symmetries (vertical: 46 ± 7% errors; horizontal: 42 ± 6%; oblique: 55 ± 7%

and 58 ± 6%; Friedman test for differences between the four types of symmetries: F = 4.9, n.s.).

Thus, all axial symmetries forming the 1st level of the “4segments” sequences were correctly

identified and applied. Moreover, at odd data points of “4segments”, which correspond to the

application of the 2nd-level rule, performance was significantly better than baseline (all ps<
0.05 corrected), therefore indicating that children also discovered the 2nd-level rules.

For “4diagonals”, error rate was not significantly below baseline neither at even data points,

corresponding to the application of the 1st-level rule, i.e. rotational symmetry, nor at odd data

points, corresponding to the application of the 2nd-level rule (all ps> 0.1). This result suggests

that rotational symmetry was more challenging than axial symmetries for 5-years-old children.

Finally, for “2rectangles” and “2crosses” that contain 3 embedded levels of rules, none of

the data points showed an error rate significantly lower than the baseline (all ps> 0.1). These

rules seemed to be beyond the grasp of our children.

Discussion. Kids experienced more difficulty than adults, but their answers still provided

evidence for a quick understanding of most geometrical primitives: they mastered +1 and +2

operations as well as axial symmetries, and only failed with rotational symmetry. Their behav-

ior with the category “4segments” demonstrated that they could detect embedded regularities,

yet they failed with more complex embeddings that defined the changes in the starting point of

arcs, squares, rectangles or crosses. It thus seems that a reduced language, with fewer primi-

tives and shallower embeddings, is needed to capture children’s performance. In the final sec-

tion, we will provide a formal model of this idea.

One possibility is that children failed to detect sequential dependencies that exceeded their

spatial working memory span. Performance on the “4points” irregular sequence suggested that

their spatial memory span was below 4, while the “2arcs”, “2squares”, “2rectangles” and

“2crosses” sequences involved dependencies spanning over 4 locations. This limitation could

also explain the errors children made in “4diagonals”: even if they partially understood what

the regularity was, they remained confused about distant locations.

An alternative explanation for the children’s failures is the sequences were not repeated

long enough. Indeed, the simplifications that we introduced implied that children were pre-

sented with fewer sequence repetitions than adults. This is because, when subjects failed, the

entire sequence was repeated, and there was more opportunity for failing in the adults than in

the children’s version of the experiment. For instance, when kids were asked to guess the 13th

location of a sequence, they had had at most 3 occasions to grasp the corresponding regularity

on previous trials, while adults had up to 7 such occasions (assuming they frequently failed on

previous trials). To address this issue, in experiment 3 we presented children with two com-

plete previews of each sequence before the test phase started.

Experiment 3

Participants. Participants were 23 5-years-old children (minimal age = 4.67, max = 5.85,

mean = 5.41 ± 0.07), tested at school during school-day.

Stimuli and procedure. The experiment was identical to experiment 2, except that each

block started with two full viewings of the corresponding 8-location sequence, while the child

was merely instructed to attend carefully. This provided an opportunity to memorize the

sequence before the testing phase began.
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Results. In spite of the additional training, the children’s results remained virtually

unchanged (Fig 5). Comparisons of experiments 2 and 3, at each data point of each category,

indeed revealed no significant improvement.

In details, the mean error rate remained very high for “irregular” (86 ± 3%)and “4points”

(73 ± 6%) sequences, and there was no significant improvement of performance neither in the

Fig 5. Performance of preschool children in experiment 3. Same format as Fig 4.

doi:10.1371/journal.pcbi.1005273.g005
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first phase, nor in the second phase (“irregular”: 1st phase: F = 1.4, p = 0.5; 2nd phase: F = 0.83,

p = 0.9; “4points”: 1st phase: F = 0.5, p = 0.78; 2nd phase: F = 1.17, p = 0.88). In “2points”, mean

error rate equaled 13 ± 4%, and at all data points, error rate significantly differed from “irregu-

lar” (all ps< 0.006 corrected).

Again, for “repeat”, “repeat+2”, “2arcs”, and “4segments”, the mean error rate was signifi-

cantly lower than baseline (Friedman test: all ps< 0.007): “repeat” (across 1st and 2nd stage:

10 ± 3% errors; on 1st stage only: 19 ± 6% errors), “repeat+2” (32 ± 8%; 39 ± 9% errors),

“2arcs” (55 ± 6%; 52 ± 9% errors), and “4segments” (56 ± 6%; 61 ± 7% errors). In this experi-

ment, the mean performance in “2squares” (overall error: 68 ± 6%; 1st stage: 71 ± 8% errors)

did not differ from baseline (F = 2, n.s). “4diagonals” (78 ± 4%; 80 ± 6% errors), “2rectangles”

(83 ± 4%; 81 ± 6% errors), “2crosses” (82 ± 3%; 80 ± 5% errors), remained more challenging

for children, with mean error rates not different from baseline (all ps> 0.15).

We again found a positive correlation between the mean error rate and the complexity of

the sequences (at all data points: Spearman’s ρ = 0.52 ± 0.02, Student t-test: t22 = 19, p<10−8;

at data points 6–8: ρ = 0.41 ± 0.04, t22 = 10, p< 10−4). Again, the correlation was weaker in

children than in adults (t45 = 5, p< 2.10−5). Pooling across experiments 2 and 3, we found a

global correlation between error rate and complexity equal to 0.51 ± 0.02 (t46 = 23, p< 10−12),

again significantly weaker than in adults (t69 = 5.8, p< 10−6).

As in experiment 2, error rates on “repeat”, “repeat+2” and “4segments” were significantly

better than baseline, and performance significantly improved over time, thus confirming that

children were able to detect and use the primitive rules +1, +2 and axial symmetries (“repeat”:

all ps< 0.007 corrected; improvement for 1st and 2nd stages: Fs = 5.4; 11.6; ps< 0.05; “repeat

+2”: all ps< 0.022 corrected except at the 6th data point; improvement for 1st and 2nd stages:

Fs = 9; 11.2; ps< 0.03; “4segments”: all ps< 0.05 corrected except at data points 6, 7 and 12;

improvement for 1st and 2nd stages: Fs = 8.9; 15.6; ps< 0.02). As in experiment 2, children’

results on“4segments” were not influenced by the type of axial symmetry (vertical: 50 ± 8%

errors; horizontal: 57 ± 7%; oblique: 66 ± 7% and 56 ± 8%; Friedman test for differences

between the four types of symmetries: F = 2.5, n.s.). Error rate on “4diagonals” was not signifi-

cantly better than baseline (all ps> 0.1), indicating that children again experienced more diffi-

culty with rotational symmetry.

As in experiments 1 and 2, “2arcs” and “2squares” showed similar error patterns. “2arcs”

provided evidence for the comprehension of the superficial rule: error rate was significantly

below baseline at data points 8, 15 and 16 (ps< 0.05 corrected) and there was a significant

improvement of performance over the 2nd stage (F = 17.8, p< 0.002). For “2squares”, error

rate was not significantly below baseline, but there was a tendency at data points 8, 15 and 16

(ps< 0.02 uncorrected). As in experiment 2, error rate at the 13th data point of “2arcs” and

“2squares” was at baseline level (ps> 0.2).

Finally, no evidence of learning was found in “2rectangles” and “2crosses”, for which error

rate was not different from baseline (all ps> 0.2) and no performance improvement was

observed (ps> 0.3).

Discussion. In spite of two additional viewings of the complete sequence, experiment 3

fully replicated experiment 2, thus affording several conclusions. First, +1, +2, and axial sym-

metries are geometrical primitives in children. Second, preschoolers are sensitive to embedded

regularities in the “4segments” sequence. Third, under the present conditions, they fail to

grasp more complex embedded regularities. Previewing the sequences did not influence per-

formance, suggesting that the latter conclusion cannot be attributed to a lack of exposure to

sufficient evidence.

The difficulties that 5-year-old children experienced with rotational symmetry and with

complex embedding could arise from several factors, including age and lack of education. In
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order to separate those factors, we thus performed a fourth experiment where we tested Ama-

zon Indians (teenagers and young adults) with little or no access to education.

Experiment 4

Participants. During two field trips in 2014 and 2015, one of us (P.P.) collected behavioral

data in Wariri, an isolated village of the upper Cururu region of the Munduruku main terri-

tory, located on the Anipiri River. 20 Mundurukus volunteered for this experiment: 14 teenag-

ers (age range 10–14, mean = 12 ± 0.4) and 6 adults (age range 30–67, mean = 46 ± 6.6). As in

many other villages of the Munduruku main territory, inhabitants of the Wariri village, includ-

ing our volunteers, have poor and restricted access to schooling and have a very partial com-

mand of Portuguese. Munduruku language is quite impoverished in number words and

Euclidean geometrical terms [27,31]. Still, previous research has shown that Mundurukus are

able to grasp sophisticated concepts of number and space in an approximate and nonverbal

manner [27,31,53,54].

Stimuli and procedure. Munduruku subjects found the adult version of the task exceed-

ingly dull and could not be persuaded to complete it, so we substituted the shorter but analo-

gous children’s version. The design was thus exactly the same as experiment 3 with children.

Results. For “irregular”, the mean error rate equaled 78 ± 3% and we observed a small but

significant decrease in error rate in the second phase (ρ = -0.25, p = 0.035), indicating rote

learning of the succession of positions. This ability to learn positions was confirmed by perfor-

mance on the “4points” sequence, with a mean error rate of 49 ± 8%, and error rates signifi-

cantly below baseline at data points 6 and 12 (ps< 0.013 corrected). Participants also quickly

grasped the sequence “2points”, with a mean error rate of 5.6 ± 2.8%, and an error rate below

the baseline from the beginning to the end of the trial (all ps< 0.013 corrected).

For all regular sequences, except “2crosses”, the mean error rate was significantly lower

than baseline (Friedman test: all ps<0.003): “repeat” (across 1st and 2nd stage: 2.5 ± 1.2%

errors; on 1st stage only: 5 ± 2.8% errors), “repeat+2” (1.3 ± 0.9%; 1.7 ± 1.7% errors), “2arcs”

(16.9 ± 5.9%; 23.3 ± 8.6% errors), “2squares” (26.9 ± 5.4%; 18.3 ± 6.8% errors), “4segments”

(12.1 ± 2.8%; 16.1 ± 3.6% errors), “4diagonals” (59.4 ± 5.3%; 55 ± 6.2% errors) and “2rectan-

gles” (53.1 ± 5.3%; 51.7 ± 6.3% errors). However, the mean performance in “2crosses”

(78.1 ± 3.2%; 78.3 ± 5.7% errors) did not differ from baseline (F = 0.29, n.s).

We again found a positive correlation of the mean error rate with the complexity of the

sequences (at all data points: Spearman’s ρ = 0.59 ± 0.02, Student t-test: t19 = 28, p<10−12; at

data points 6–8: ρ = 0.51 ± 0.05, t19 = 11, p< 10−5, Fig 3, bottom panel). In this group of teenag-

ers and adults Mundurukus, the correlation was weaker than in adults’ group (t41 = 3.71, p<

0.001), but slightly greater than the correlation observed in both groups of children (t66 = 2.00,

p = 0.05).

Munduruku teenagers and adults quickly detected and used the rules +1, +2 and all axial

symmetries, as shown in Fig 6 by error rates on “repeat”, “repeat+2”, and “4segments”, that

were below the baseline (“repeat”: ps< 0.008 corrected; “repeat+2”: ps< 0.004 corrected; “4seg-

ments”: ps< 0.037 corrected except at the 15th data point). The mean error rate was similar for

horizontal, vertical, and oblique symmetries (vertical: 7.5 ± 3.3% errors; horizontal: 25.6 ± 8.4%;

oblique: 9.4 ± 3.5% and 11.6 ± 6.6%; Friedman test for differences between the four types of

symmetries: F = 3.4, n.s.). It is less clear, however, that participants were fully able to detect and

use rotational symmetry, as performance with “4diagonals” was not significantly better than the

baseline, but there was a tendency at data points 6, 8 and 14 (ps< 0.04 uncorrected).

“2arcs” and “2squares” again showed similar error patterns, suggesting that participants

were able to understand both superficial and deep rules. For “2arcs”, error rate was
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significantly below baseline at all data points (shallower rule at points 6–8, 12, 14–16: all

ps< 0.018 corrected; deeper rule at point 13: p = 0.031 corrected). For “2squares”, error rate

was significantly below baseline at all data points except the 13th and 16th (all ps< 0.037

corrected).

Fig 6. Performance of Munduruku participants in experiment 4. Same format as Fig 4.

doi:10.1371/journal.pcbi.1005273.g006
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On “2rectangles”, the error rate was significantly below the baseline at the 12th data point

(p = 0.013 corrected), indicating that some features of this three-levels sequence were grasped

by participants. “2crosses” was more challenging, and the Munduruku never managed to per-

form better than baseline.

Interestingly, whenever there was a difference, Munduruku teenagers and adults systemati-

cally performed better than French children and worse than French adults.

Discussion. Munduruku teenagers and adults, although having a limited access to school-

ing, performed at a level close to French adults, their answers providing evidence for a quick

understanding of most of the geometrical primitive rules (+1, +2 and axial symmetries), and

for an ability to detect different levels of embedded regularities. Only rotational symmetry was

not clearly detected, perhaps explaining their poor performance on “2crosses”. All in all, the

results suggest that geometrical primitives and their combinations are available to human

adults and teenagers after minimal experience, even in the absence of formal education.

Detailed fitting of the “language of geometry” model

The above data indicate that adults quickly infer an internal representation of an unfolding

geometrical sequence and use it to predict what comes next. Our experiment is predicated

upon the hypothesis that this representation takes the form of a “language of thought” [34,36]:

a set of precise primitive instructions that can be combined into complex expressions that

faithfully capture the observed geometrical sequence. The language that we proposed supposes

that “2squares” or “2arcs” can be compactly represented by two nested repetitions, and “2rect-

angles” or “2crosses” by 3 nested repetitions. At the same time, plausibly, it does not attribute a

compact form to complex sequences where humans do no detect any specific regularity. Over-

all, those hypotheses seem to be correct inasmuch as complexity is a good predictor of error

rates. In the present section, we go one step further and ask whether the language predicts, in a

quantitative manner, why and when errors arise.

Model description. To predict sequence continuation behavior, we may assume that at

any given moment, subjects hold on to the simplest possible hypothesis concerning the current

sequence, and use this hypothesis to predict the next items. Formally, after observing the first

n items in a sequence (hereafter the “prefix”), subjects identify the shortest expression compat-

ible with this prefix, and then compute the continuation of this expression.

Because actual performance presented some degree of stochasticity, we also introduced

what seems to be a natural source of noise in this model. Our proposal is that, as the length of

an expression increases, the probability that the subject fails to properly estimate its length

increases. We model this by assuming that program length is evaluated with a degree of ran-

domness, i.e. additive Gaussian noise with standard deviation σ (constant across all

sequences). Moreover, to avoid a systematically perfect performance at the last data point, we

assumed that the model can only compute expressions up to a certain complexity. Here, we set

a maximal capacity to Kmax = 12. Whenever a prefix implies an expression with K > 12, the

algorithm selects a response at chance.

The initial sequence (S) comprises the first two locations shown to the subject. From this

point, the model constructs the sequence by adding one location at a time until it reaches 8,

following the pseudo-algorithm below (S2 Fig):

While Number of locations < 8:

1. Consider all programs that generate sequences of 8 locations and share the prefix S.

2. Estimate the length of those programs, assuming that this estimation has Gaussian noise

given by the free parameter σ.
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3. Choose the sequence S’ whose prefix matches S and which has complexity K(S’). If there is

more than one such sequence, choose randomly between them.

4. If K(S’)� Kmax, then generate as a prediction the next location predicted by sequence S’;

otherwise, generate a prediction at random.

Fits to adults’ data. To evaluate the fit of the model to the data, we only considered the 8

sequences that were used in all groups and involved no repetition of the 8 locations. The

model captured in a very robust manner, independently of parameter values, the most salient

aspects of the data (Fig 7). First, it shows different degrees of performance for each sequence in

agreement with the data: close to perfect performance for the repeat sequence, close to chance

performance for the irregular sequences, and an intermediate progression for other sequences.

The model also captures an overall trend for improving performance as the sequence pro-

gresses and, crucially, each of the local drops in performance that arise at specific points within

each sequence. Indeed, the model fully accounts for the precise time points at which they

occur (odd-numbered time points 3, 5 and sometimes 7, as explained in the results section).

To obtain those results, the only free parameter of the model, σ, was fit by minimizing the

mean square errors (MSE) across all time points and all sequences. For each value of σ we per-

formed 300 runs and calculated the average performance of the model for each position of the

sequence. This analysis revealed a very clear minimum for σ = 2 (S3 Fig). For reference, we

compared this with the MSE of the simplest possible fit, consisting in a constant level of perfor-

mance, distinct for each sequence (for a total of 8 parameters). Within a broad range of noise

(including the noiseless model with σ = 0) the language-of-geometry model, with its single

degree of freedom, performed better than this 8-parameter model. As shown in S3 Fig, even

the performance of the noiseless model, while more discrete than the real data, captures the

main aspects of our results.

Fits to children’s data. Our model captures, without any fine parameter tuning, the non-

linear performance functions exhibited by educated adults, by assuming that they use all of the

primitives available in our language. Young children or uneducated adults, however, may not

master the full language of geometry.

We thus examined, first, which transformation of the model could account for the chil-

dren’s data. We started by fitting the parameter σ, again using 300 independent runs for each

value of σ. This analysis showed that no amount of noise could fit the data adequately. This

was confirmed quantitatively (MSE for all noise values were greater than 0.3) and also from

visual inspection which revealed a pattern very different from the data (Fig 7). Notably, even

for the best fit, performance was massively underestimated for low-complexity sequences such

as “repeat” or “2arcs”, while being massively over-estimated for high-complexity sequences

such as “2rectangles” or “2crosses”.

We next examined the hypothesis that children may have additional sources of noise. Spe-

cifically, we supplied the model with an additional source of noise in the execution of each pro-

gram. We assumed that the model could generate a random response (an execution error) with

a probability given by a second parameter σ2. These two sources of noise had different effects

on the simulated data. Yet, even with the inclusion of this additional noise parameter, the

model still performed very poorly. Indeed, MSE values were greater than 0.18 for the full set of

parameters, and the best fits were achieved with a very high execution noise, which resulted in

an ability to predict the fine-grained structure of errors: the model performed in a highly

unstructured manner, with a low and flat performance within and across sequences (S4 Fig).

As a third step, instead of implementing a noisy version of the full language, we assumed

that children might use a subset of the language. For instance, their mental programs might
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Fig 7. Model fits to subjects’ data. Comparisons of the correct rates exhibited in completing regular and “irregular”

sequences by French adults (top), preschool children (middle) and Munduruku teenagers and adults (bottom) with the

performance of our model in its full version (for French adults—top), then in a noisy version (for children—middle), and finally in

a version that includes a reduced instruction set (for children—middle; and Mundurukus—bottom).

doi:10.1371/journal.pcbi.1005273.g007
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lack some of the primitive instructions, or might not be able to express deep levels of nested

repetitions. Based on the above results, we examined a semantically and syntactically restricted

language devoid of (a) rotational symmetry primitive P (b) the ability to encode nested repeti-

tions: while the original language allows for “repetitions of repetitions”, e.g. to encode the

“2squares” sequence, we assumed that young children may only be able to encode a single level

of repetition. For simplicity, we do not report here a full exploration of other possible sub-

languages, which yielded no better fit.

We further assumed that the use of those two resources is probabilistic. This assumption

was meant to capture variability both within subjects (e.g. a child may understand nesting and

yet fail to use it on some trial) as well as between subjects (some children may not be capable

of encoding nested structures). Accordingly, the original model (with single parameter σ) was

supplemented with two additional parameters: p_NEST, the probability of using nested

sequences with repetitions of repetitions, and p_P, the probability of using instruction P.

Our model, in this version, cannot distinguish between these alternatives. We do show

below an analysis of correlations that shows that children that perform poorly in a sequence

that uses the P instruction also tend to have bad performance in other sequences that use the P

instruction. This suggests that, to a certain degree, there is variability in the population of

young children in the degree of consolidation of their language of geometry.

To fit the data, we performed 300 independent runs of the model for a fixed level of σ = 3

and without program execution noise (σ2 = 0). For each run we generated two random vari-

ables that determined, with probabilities p_NEST and p_P respectively, if all sequences that

used nesting or the instruction P had their complexity set to the maximum value of K = 12.

This is equivalent to stating that any expression using these resources exceeds Kmax and hence

cannot be used to extract regularities (note that the alternative, which would have been to

recompute all complexities K for the language with reduced instruction set, was not available

because the language without the instruction P cannot generate the full set of sequences).

Varying p_NEST and p_P showed that:

1. The best performance is achieved for values p_NEST = 0.14 and p_P = 0.18, which captures

the children’s performance in great detail (Fig 7). These are relatively low values indicating

that for the majority of children and/or trials, these resources are indeed not used to extract

regularities.

2. While these values are low, a language entirely lacking these resources fits the data quite

poorly, showing near-chance performance for all sequences, except for the simplest repeti-

tion of +1. (S5 Fig, Panel marked “Full Reduced Instruction set”)

3. Removing the instruction P but allowing all levels of nesting, results in a very different pat-

tern of performance, with near-perfect performance for 4 out of the 8 sequences (S5 Fig,

panel marked “No instruction P, normal nesting”)

Fits to Munduruku data. As with children, the noisy version of the full model could not

account for the data (MSE> 0.19 for the best fit). The analysis varying p_NEST and p_P
showed that:

1. The best performance is achieved for values p_NEST = 0.54 and p_P = 0.26 (S6 Fig). Note

that both values, especially p_NEST, are higher than those obtained for young children.

2. As with the young children, a language which never uses nesting or P (i.e. with p_NEST = 0
and p_P = 0) cannot account for the data, as its performance is close to chance for all
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sequences, except for the simplest repetition of +1. (S6 Fig, Panel Full Reduced

Instructions)

3. However, compared to young children, a simplified version of the full model, removing

only the instruction P but allowing all levels of nesting, results in an acceptable fit, very sim-

ilar to the best fit. In fact, a plot of the value of MSE for varying probabilities (S6 Fig, color

matrix) shows that the fit varies little over a broad region that includes high values of

P_NEST. Thus, compared to children, simply lowering the probability of using P resulted

in an accurate description of the Munduruku data (Fig 7).

Discussion

The aim of our research was to evaluate whether the human memory for spatial sequences pro-

vides evidence for (1) an understanding of simple geometrical primitives in both educated and

uneducated humans, (2) a capacity to combine those primitives into complex embedded

expressions, and (3) a notion of sequence complexity based on minimum description length.

We discuss those aspects in turn.

Geometrical primitives

The findings from four experiments suggest that simple rotations (equivalent to the rules ±1,

and ±2) and vertical, horizontal and oblique symmetries were all detected and quickly used by

human adults with various cultural backgrounds and 5-years-old children. These results are

consistent with previous work highlighting the importance of the detection of symmetries in

shape perception [42,55–58] or in spatial navigation [22,59]. The primitive operations postu-

lated in our language (±1, ±2, axial and rotational symmetries) may form part of the “core

knowledge” of mathematics which is thought to be shared by all humans [28]. In Plato’s Meno

(~ 380 B.C.) [60], Socrates, after interrogating an uneducated Greek slave on the area of vari-

ous squares drawn in the sand, already concluded that “his soul must have always possessed

[the] knowledge” (for a recent replication, see [61]). Recent evidence has confirmed the exis-

tence of core geometrical knowledge shared with other animal species and available in early

infancy [21,22,24,62,63]. In particular, previous research with American and Munduruku

adults and children led to the conclusion that they all exhibit a shared competence for various

concepts of topology, Euclidean geometry, and basic geometrical figures [27,53].

It could be argued that the present language mixes purely geometrical properties (axial and

rotational symmetries) with other arithmetic (+1, +2, +3) and abstract algebraic features (repe-

tition). However, such a mixture is probably indispensable if we consider that geometry is a

branch of mathematics concerned with questions of shape, size, relative position of figures,

and the properties of space. Integers, although conceivably part of a distinct system of arithme-

tic, are indispensable to capture even basic geometrical concepts such as “square” or “triangle”.

Numbers and space are tightly intertwined concepts, and the metaphor of numbers as a mea-

sure of space (which is the etymology of “geo-metry”) played a foundational role in the history

of mathematics from Pythagoras and Euclid to Descartes and Hilbert. Mathematics is a unified

discipline in which it is difficult to delineate the boundaries between geometry and other

domains, and the present language reflects this simple fact.

Interestingly, previous behavioral studies also concluded that symmetries and other geo-

metrical transformations were more difficult for Munduruku adults, Munduruku children or

American children than for educated American adults [27]. The present results are in agree-

ment with this conclusion, inasmuch as (1) axial symmetries induced more errors for
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Munduruku than for French adults and even more errors for French preschoolers than for

Munduruku and French adults together; (2) rotational symmetry was quickly detected by

French adults, but not by French preschoolers or Munduruku adults; (3) combinatorial rules

that consisted in a global symmetry or rotation of a geometrical shape (e.g. in “2arcs” or

“2squares”), were harder to detect for Munduruku than for French adults and even harder for

French preschoolers than for Munduruku and French adults together.

One might argue that children and Mundurukus’ failure to detect rotational symmetry

might be due to a greater movement distance in “4diagonals” than in “4segments”. However,

this argument is made less plausible given that the successive distances between points 4, 5 and

6 of the “4segments” and “4diagonals” sequences are exactly the same, and yet the error rates

are lower in “4segments” than in “4diagonals”. This observation suggests that distance had a

much lesser influence, if any, than the capacity to encode rotational symmetry. It seems that

rotational symmetry is inherently a more difficult mathematical concept. Nevertheless, our

model simulations suggest that it was not entirely lacking in Munduruku or in children, but

merely probabilistically absent in some trials and/or some children.

Embedded expressions

Our findings also suggest that human subjects were able to detect most of the embedded

expressions we used to define our visuospatial sequences. In details, all subjects easily detected

simple repetition (repeat sequence) as well as the concatenation of two instructions underlying

the “alternate” and “2points” sequences. Evidence for repetition with variation was also found

in all groups of subjects. In particular, educated adults easily detected and encoded a systematic

change in the starting point of a geometrical shape (e.g. “2squares”), or a global transformation

applied to the whole shape (e.g. “2arcs”). In Munduruku, the application of these combinato-

rial rules was more challenging, but still led to a significant level of success. Finally, 5-years-old

children performance on “4segments” tended to show that they were able to apply a repetition

with a change in the starting point, and their performance on “2arcs” suggested that they were

also able to apply a global symmetry.

The analysis of error patterns provided direct evidence for hierarchical embedding. Superfi-

cial rules were acquired more quickly and induced fewer errors than deeper rules. In French

and Munduruku adults, the quantitative error patterns, peaking at odd-numbered time points

3, 5 and 7, were consistent with a single level of embedding for “repeat”, “repeat+2” and “alter-

nate”; two levels of embedding for “2arcs”, “2squares”, “4segments” and “4diagonals”; and

three levels of embedding for “2rectangles” and “2crosses”.

These findings thus suggest that subjects spontaneously detected the recurrence of low-level

subsequences that shared a common instruction, and then combined them into hierarchically

organized expressions. Those conclusions agree with those made in another domain by

Kotovsky and Simon [64]: when learning a series of letters, adults first detected the periodic

recurrence of some letters, then used it to infer higher-order rules. These authors showed that

the postulation of a hierarchical organization of rules was crucial in capturing the subjects’

behavior.

Moreover, the good performance achieved by subjects on time points 6, 7 and 8, even

before the entire sequence had been presented, indicates that they quickly inferred an internal

representation of the sequence and used it to predict the next locations. This is consistent with

works led by Restle in the 70’s [6,65–67], in which he showed that adults, when asked to antici-

pate or track the positions of a series of flashes, easily grouped consecutive items in what he

called “runs” (e.g. 1-2-3, where numbers refer to ordinal positions) or “trills” (e.g. 1-2-1-2) and

used these regularities to predict the next locations. Restle’s research showed that adults
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progressively learned how to combine “runs” and “trills” by building a mental tree structure

that encoded the sequence of flashes they had been presented with [6,65–67].

Our experiments 2 and 3 showed that 5-years-old children experienced difficulties in

understanding complex sequences, either involving rotational symmetry or the use of multiple

nested calls to the “repeat” instruction. The latter finding, using temporal spatial sequences,

can be related to research on the perception of static spatial patterns in childhood [18]. Using

fractals, Martins et al. tested 7–8 years-old and 9–10 years-old’s ability to represent recursive

rules (generating additional hierarchical levels) versus iterative rules (inserting additional

items within an existing hierarchical level). They concluded that all children could detect itera-

tive rules, but only fourth graders (9–10 years-old) were able to detect recursive rules.

Collectively, those results suggest an influence of age or education level on the ability to

understand hierarchically organized geometrical rules. Crucially, however, Munduruku teen-

agers and adults, who lacked school-based education, performed better than children on

sequences with 2 or 3 levels of embedding. Indeed, their results could be accounted for solely

by the absence of rotational symmetry. This finding suggests that schooling may not be neces-

sary for the development of the ability to understand nested rules. With age, it seems that a

geometrical language with embedding arises even in the absence of formal schooling. In fact,

even in young children, the failure with complex sequences need not be due to a lack of under-

standing of nested structures, but could arise from limitations in working memory, inasmuch

as the detection of such sequences requires a visual memory span of at least four. Indeed, even

in the absence of any regularity, children failed in memorizing an irregular sequence of length

4, suggesting that their visuo-spatial memory span was below this critical value. Further work

will be needed to assess whether children would succeed with nested structures if the working

memory load was alleviated.

Minimal description length as a predictor of spatial memory

We defined the theoretical complexity of a sequence as the length of the shortest expression

capable of generating it (following Kolmogorov’s ideas [44] and the minimum description

length principle [46]). In educated adults, this measure of complexity was an excellent predic-

tor of the mean error rate (Fig 7), suggesting that it provides a good approximation of the

internal representational complexity of spatial sequences. Such a relationship is in accordance

with previous works on conceptual learning. Feldman [51], following earlier work by Shepard,

Hovland and Jenkins [68], showed that the description length of Boolean concepts captured

the difficulty that humans experienced in learning these concepts. Minimal description length

was also successfully used by Bradmetz and Mathy [47] to model the response times of human

adults in a task requiring conceptual learning of classification rules. Moreover, Mathy and

Feldman [48] found that minimal description length was positively correlated with the memo-

rability of a sequence of digits. Our findings confirm that minimal description length provides

a reasonable approach to adult sequence learning capacity. For children and Munduruku sub-

jects, a language with reduced instruction set led to similar conclusions.

In passing, we note that there is a near-complete equivalence between the present

Kolmogorov-complexity approach and Bayesian model-selection approaches to sequence

learning [40,51]. In [51], internal models are first assigned a prior probability proportional to

their complexity, and then this probability is increased or decreased depending on how well

each model accounts for the incoming data or, on the contrary, generates a prediction error.

This is tantamount to selecting the simplest program that accounts for the observed data, as

we do here. In [40], the multi-sensory representations of visual or auditory sequences of loca-

tions around a circle were modeled as computer programs. These programs were formalized
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using a probabilistic context-free grammar, and learnt via Bayesian inference. Similar to our

work, the prior distribution favored the simplest, shortest programs. We also note that the spa-

tial language used in [40] was closely related to ours (including instructions “next” and “prev”

similar to our +1 and -1, loops and recursion). Crucially, however, it lacked geometrical primi-

tives such as horizontal or vertical symmetry that the present work suggests are essential to

capture the organization of more complex spatial sequences.

We end by pointing to several limitations of this work. Our model rests on a narrow lan-

guage that should not be taken as a complete description of “core geometry”. Many additional

primitives, both geometrical (e.g. right-angle, parallelism, triangle, distance. . .) and non-

geometrical (e.g. integer sequences) would need to be added to capture the full range of core

human intuitions [27]. A particularity of our language resides in the fact that each location is

defined relatively to preceding ones thanks to the application of a given geometrical rule.

While this choice allowed for a simple definition of complexity, it also resulted in the fact that

some simple geometrical shapes could not be easily captured. For instance, in the current lan-

guage, a circle or an equilateral triangle could not be described. In the future, the present meth-

odology should be extended in order to fully characterize the range of sequences, shapes and

scenes that humans readily consider as “geometrically simple”.

Supporting information

S1 Fig. Comparison of different potential predictors of error rates. For each sequence, the y

axis represents the mean error rate of French adults, and the x axis the sequence complexity, as

measured by complexity computed in the full language (top), complexity computed in a

degraded language including only the rules ±1, ±2, ±3, +4 and repetitions without symmetries

(middle), and the normalized jump length of a sequence (bottom). Regression lines are also

plotted and Spearman’s correlation coefficients are displayed. The middle and bottom plots

reveal clear outliers.

(TIF)

S2 Fig. Model description. Starting from prefix prf, the algorithm lists all possible sequences

and their associated programs P in our language, computes their associated complexity K(P)

introducing Gaussian noise, then chooses the program that minimizes K(P), and completes

the prefix prf with the next location either defined by P if K(P) does not exceed the complexity

threshold Kmax, or chosen randomly if K(P) is greater than Kmax.

(TIF)

S3 Fig. Fit of the data for varying values of σ. Even for low values of noise, the model identi-

fies the pattern of performance throughout the sequences (compare to the top panel showing

the data for adults).

(TIF)

S4 Fig. Fit of children’s data using a noisy version of the adult geometrical language. The

top panel shows the observed performance in preschoolers for each sequence. The matrix in

the middle shows the minimum mean square error (MMSE), i.e. the quality of the fit, as a

function of the amplitude of the noise in encoding σ and execution σ2. Even the best-fitting

model with these two noise parameters (bottom) shows a performance very different to the

data, with almost equal performance for all sequences.

(TIF)

S5 Fig. Comparison of different fits of children’s data. Children data (top panel) is not well

described by the adult geometrical model (second panel from the top). The matrix in the
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center shows the quality of the fit as a function of the probability p_P of having the P instruc-

tion (+4) and the probability p_Nest of having Nest> 1 in the language. The data is best cap-

tured by a model with low values of P and Nest >1 (third panel). However, when making these

probabilities equal to zero (fourth panel) the model describes the data very poorly. Similarity, a

model allowing for full nesting while fitting p_P (fifth panel) inappropriately predicts near-

perfect performance for the first four sequences.

(TIF)

S6 Fig. Comparison of different fits of Mundurucus’ data. Mundurucus’ data (top panel) is

not well described by the full model (second panel from the top). The image in the center

shows the quality of the fit as a function of the probability of having the P instruction (+4) and

the probability of having nested repetitions in the language. The data is best captured by a

model with low but non-zero values of p_P and p_Nest (third panel). Letting these probabili-

ties equal to zero (fourth panel) leads to a model that describes the data very poorly. A model

with full nesting, fitting only p_P (fifth panel), results in a fit comparable to the best fit.

(TIF)

S1 Text. Language of geometry. Description of the programming language used in this study.

(PDF)
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