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Is mathematical language similar to natural language? Are language areas

used by mathematicians when they do mathematics? And does the brain

comprise a generic semantic system that stores mathematical knowledge

alongside knowledge of history, geography or famous people? Here,

we refute those views by reviewing three functional MRI studies of the

representation and manipulation of high-level mathematical knowledge in

professional mathematicians. The results reveal that brain activity during

professional mathematical reflection spares perisylvian language-related

brain regions as well as temporal lobe areas classically involved in general

semantic knowledge. Instead, mathematical reflection recycles bilateral intra-

parietal and ventral temporal regions involved in elementary number sense.

Even simple fact retrieval, such as remembering that ‘the sine function is

periodical’ or that ‘London buses are red’, activates dissociated areas for

math versus non-math knowledge. Together with other fMRI and recent intra-

cranial studies, our results indicated a major separation between two brain

networks for mathematical and non-mathematical semantics, which goes a

long way to explain a variety of facts in neuroimaging, neuropsychology

and developmental disorders.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
Many scientists share the intuition that although mathematics is organized as a

language, this language differs from, and even dispenses with, the structures of

natural spoken language. In 1943, Hadamard asked his fellow mathematicians to

introspect about their mental processes. Albert Einstein replied that ‘words and

language, whether written or spoken, do not seem to play any part in my thought

processes. The psychical entities which seem to serve as elements in thought are

certain signs and more or less clear images which can be ‘voluntarily’ reproduced

and combined . . .. The above mentioned elements are, in my case of visual and

muscular type’ [1]. This famous quote is not isolated, and many mathematicians

including Hadamard himself, have reported a similar introspection.

This view, however, has been highly debated and disagrees with an influential

view in cognitive science that considers mathematics as an offshoot of the human

capacity for language. According to Noam Chomsky, ‘the origin of the mathema-

tical capacity [lies in] an abstraction from linguistic operations’ [2]. Indeed,

although mathematics call upon a dedicated inventory of symbols and words,

both natural language and mathematics share the need for a recursion operation

that creates embedded tree structures [3]. Furthermore, some mathematical con-

cepts seem to be language-dependent, for instance exact arithmetic facts may
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be stored in a language-specific form [4,5]. In particular, over-

learned multiplication tables, which are learned by rote, put a

greater emphasis on language areas than subtraction, which

requires quantity manipulations [6,7].

In summary, the relationships between mathematical

thinking and natural language processing remain uncertain.

Here we review several recent fMRI and behavioural studies

led in various populations that all converge in showing that

mathematical thinking can be dissociated from sentence-level

language processing and from general semantic thinking.
 g
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2. Imaging the brain of professional
mathematicians

Recently, cognitive neuroscience has started to address the link

between mathematics and language, mainly through studies

of numerical abilities. However, many mathematicians argue

that elementary arithmetic represents only a very small

subset of the variety of domains that mathematics encom-

passes. In three fMRI experiments, we therefore studied the

brain representation of advanced mathematical concepts in

professional mathematicians [8].

(a) Experiment 1
In our first experiment [8], 15 professional mathematicians and

15 humanities specialists, all researchers or teachers, were pre-

sented with spoken mathematical and non-mathematical

statements with high-level content and were asked to judge

them as true, false or meaningless during a 4 s reflection

period. Mathematical statements spanned four domains: alge-

bra, analysis, topology and geometry, and non-mathematical

statements enquired knowledge of nature and history (see [8]

for a detailed description of stimuli, procedure and partici-

pants). At the end of the fMRI exam, participants were also

presented with seven categories of images including words,

numbers and mathematical formulae, and performed an

additional localizer [9] including simple subtractions and sen-

tence listening. After fMRI, they were presented again with all

math and non-math statements and, for each of them, were

asked to provide ratings about various aspects including

their ‘imageability’ or their difficulty.

Within the group of mathematicians, we found that a

specific set of brain regions was activated during math-

ematical reflection periods. These regions included bilateral

intraparietal sulci (IPS), bilateral inferior temporal regions

(IT), and bilateral sites in dorsolateral, superior and mesial

prefrontal cortex (PFC). All of these regions showed greater

activation to meaningful mathematical statements than to

meaningful non-mathematical statements (figure 1). They

also showed greater responses to meaningful compared to

meaningless mathematical statements.

Two major characteristics of this particular set of brain

areas have been identified. First, they dissociate from regions

involved in the processing of general semantic knowledge.

Indeed, examining regions activated by non-mathematical

versus mathematical reflection, we found the inferior angular

gyrus (AG), the anterior part of the middle temporal gyrus

(aMTG), the ventral inferior frontal gyrus (IFG pars orbitalis)

and an extended sector of mesial PFC (mesial parts of

Brodmann’s areas 9, 10 and 11). Similar results were found for

the contrast of meaningful versus meaningless non-mathematical

judgements. Crucially, there was virtually no intersection of
the areas for meaningful . meaningless mathematical reflection

and for meaningful . meaningless non-mathematical reflection.

Because the activations observed during mathematical

reflection overlapped with a ‘multiple demand system’ [10]

active during various difficult cognitive tasks involving

executive control, it was important to control for task diffi-

culty. We used participants’ difficulty ratings to verify that

easy math statements continued to activate the math-related

network more than difficult non-math statements did. Our

results therefore could not be due to a greater task difficulty

for math relative to non-math statements.

This network for mathematical thinking also differed

from the areas of the left temporal lobe and left IFG (Broca’s

area) classically involved in processing the syntax of spoken

and written sentences [11,12]. A region-of-interest analysis

performed in eight language-related regions during sentence

presentation showed that, if anything, mathematics called

less upon those language regions than did general semantic

reasoning. Whole-brain imaging results confirmed that cer-

ebral responses to mathematical reflection spared areas

activated by sentence processing.

Second, brain regions activated by mathematical reflection

activate for all math-related tasks, regardless of difficulty or

any specific mathematical content. Indeed, all mathematical

domains tested in this experiment (algebra, analysis, topology

and geometry) activated these regions. Furthermore, even

simple calculation (e.g. compute 7-3) or the mere presentation

of mathematical formulae or numbers suffice to active them.

Does this result mean that our findings are artefactual and

simply due to the presence of numbers in our mathematical

stimuli? No. We carefully avoided any direct mention of

numbers in our high-level mathematical statements, and the

results remained essentially unchanged after excluding all

statements containing indirect references to numbers or to

fractions (e.g. R2, unit sphere, semi-major axis, etc). Thus,

these overlapping activations could not be explained by a

shared numerical component. Furthermore, the overlap was

confirmed by sensitive single-subjects representational simi-

larity analyses. In bilateral IPS and IT regions of interest, at

the single-subject level, we found a high degree of similarity

between the activation patterns evoked by mathematical

reflection and those evoked by calculation or the recognition

of numbers and mathematical expressions—compared to the

activation patterns evoked by non-mathematical reflection,

sentence listening, face or words recognition.

In summary, high-level mathematics, at a high level of

detail, makes use of the very same regions involved in elemen-

tary arithmetic and number recognition. Indeed, the regions

that were activated during the recognition of Arabic numerals

in all subjects were expanded in professional mathematicians

and became responsive to abstract expression such as integrals

or differential equations. The findings are compatible with the

idea that high-level mathematics ‘recycles’ brain areas involved

in simpler concepts such as number or space [13].
(b) Control studies
In two further studies, we sought to replicate the observed

dissociation between mathematical and general semantic pro-

cessing, and to probe the nature of the boundary between

language and mathematical processes [14].

In a first control experiment, similar to experiment 1, we

probed the influence of semantic content on the math/

http://rstb.royalsocietypublishing.org/


experiment 1: complex mathematical reflection
examples: ‘Lp spaces are separable’ versus ‘The Paris metro was built before the Istanbul one’
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experiment 3: elementary declarative, negative and quantified statements
examples: ‘the sine function is periodical’ versus ‘London buses are red’

examples: ‘(a + b) (a – b) = a2 – b2’ versus ‘rock¢n roll is a musical style characterize by a slow tempo’
(b)

(a)

(c)

Figure 1. A reproducible dissociation between mathematical and general semantic knowledge. The figure shows brain activity in professional mathematicians evoked by
(a) complex mathematical and general semantic statements [8], (b) simpler facts asking for an immediate response and (c) elementary declarative, negative and quantified
statements. (Left) Brain maps showing areas of greater activation during reflection on mathematical statements versus non-mathematical statements (blue) or vice versa
(green). (Right) Average fMRI signal in representative math-related areas. Top panel, Copyright & 2016 National Academy of Sciences.
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language separation. Specifically, we assessed whether much

simpler mathematical problems that even called upon rote

memory also activated our math-related network. This time,

spoken mathematical and non-mathematical statements were

either true or false (meaningless statements were eliminated),

and the mathematicians were asked to decide, as fast as

possible (within 2.5 s) whether they were true or false. Math-

ematical statements consisted in well-known mathematical

facts such as classical algebraic identities that are known by

rote (e.g. a2 2 b2 ¼ (a 2 b)(a þ b)), trigonometric formulae,

properties of complex numbers and simple statements in non-

metric Euclidean geometry. These were compared to declarative

non-mathematical facts about arts. Low-level auditory controls

consisting of series of beeps were also presented.

In a second control experiment, with the same subjects, we

asked whether, within the statements of everyday language,

the mere presence of some minimal logical operators could

suffice to activate the math-related network. Specifically, we

tested the influence of quantifiers and negation in mathemat-

ical and non-mathematical processing. Therefore, the true or

false statements were either declarative sentences (‘The sine

function is periodical’; ‘London buses are red.), or included

the quantifier ‘some’ (‘Some matrices are diagonalizable’;

‘Some ocean currents are warm’), or a negation (‘Hyperboloids

are not connected’; ‘Orange blossoms are not perfumed’),
or both quantifier and negation (‘Some order relations are not

transitive’; ‘Some plants are not climbing’).

In both experiments, we replicated the extensive activations

elicited by math more than non-math statements in bilateral

IPS, bilateral IT regions and bilateral superior and middle fron-

tal regions (BA 9 and 46) (figure 1). In the first control

experiment, these regions again activated systematically for

all types of math and deactivated for non-math judgements.

In the second control experiment, they responded more to

math than non-math statements, irrespective of the presence

of quantifiers and negation. Interestingly, while frontal acti-

vation became weaker as the statements became easier,

suggesting that frontal cortex was primarily called upon

during intense and prolonged mathematical reflection, intra-

parietal and IT activations to mathematics remained strong

even when subjects judged very simple and overlearned

facts, suggesting that these regions are involved in the core

knowledge of math.

The reverse contrast of non-math versus math reflection

yielded activation in the bilateral anterior and posterior

temporal lobe and bilateral inferior frontal areas in both exper-

iments, largely replicating our previous findings [8] and

previous meta-analyses of the brain areas for general semantic

knowledge [15] (figure 1). Interestingly, as non-mathematical

problems became easier, extensive anterior temporal

http://rstb.royalsocietypublishing.org/
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activations remained, but activations at the temporo-parietal

junction and in mesial frontal regions progressively disap-

peared, suggesting that the latter areas may be involved in

sustained working memory and/or the mental inferences

involved in plausible reasoning and intentional communi-

cation. A contrario, the bilateral anterior temporal lobe is

confirmed as a core player in semantic knowledge—but at the

exclusion of mathematical knowledge, which involves an

entirely different network.

Taken together, these results indicate the presence of a

common neural substrate for math processing in the intrapar-

ietal sulcus and ventral temporal cortex, independent of

content and difficulty, with additional activations extend-

ing into dorsal PFC depending on the strategy and effort

deployed to understand and solve the problem. Furthermore,

this math-related network dissociates from other regions

involved in sentence processing and semantic integration.

This is true even in the case of very simple math and non-

math statements that differ minimally in their surface form,

and even in the presence of minimal logical operators such

as quantifiers or negation.
5

3. Convergence with other studies
Several studies have shown a similar separation between

mathematics and language. While space precludes a detailed

appraisal, we now briefly review this convergence of data

from a variety of fields.

(a) Brain-imaging studies of mathematical processing
In agreement with the present results, several brain-imaging

studies indicate that separate neural substrates are involved

in algebraic versus syntactic manipulations. For example,

Maruyama et al. [16] showed that classical language areas

were not recruited when students were asked to process the

syntax of nested algebraic expressions such as ‘(((3 þ 4) 2

2) þ 5) 2 1’. Monti and collaborators [17–19] used fMRI to

compare extremely well-matched tasks that required partici-

pants either to perform syntactic manipulations on

sentences, or logical or algebraic manipulations on statements

of equivalent complexity (e.g. ‘x þ y ¼ z; y ¼ z – x; are these

equivalent statements?). They found that left fronto-temporal

perisylvian regions were more recruited by linguistic than by

algebraic judgements, while the latter recruited areas such as

the IPS, previously reported for numerical [20,21] or spatial

[22,23] cognition.

A few observations have indicated that language-

related areas such as the posterior temporal/angular gyrus

region can be activated during the processing of number and

arithmetic. A general rule-of-thumb, however, is that these acti-

vations occur whenever subjects process numerical materials

in a rote manner, for instance when remembering exact

addition facts such ‘fifty-four plus thirteen is sixty-seven’ [4]

or when drilling multiplication facts [7]. Demonstrably, such

rote learning involves a language-specific memory code [4,5].

The inferior frontal region (‘Broca’s area’) is also activated

when subjects name complex numerals such as ‘three hundred

twenty-four’, in direct proportion to the complexity of the syn-

tactic structures involved [24]. A contrario, the bulk of the

evidence indicates that such language circuitry is not activated

whenever a deeper, semantic representation of numbers is

accessed and manipulated.
(b) fMRI of semantic networks
New data-driven analysis methods have been applied in order

to clarify how different cortical sectors contribute to the seman-

tic processing of words [25]. A large amount of fMRI data was

recorded in individual subjects while they listened to narrative

stories that referred to a great variety of contents, including an

occasional mention of numerical information. The results

revealed a systematic mapping of semantic information onto

different sectors of the cortex. In particular, bilateral parietal,

inferior frontal and inferior temporal regions were particularly

selective to numerical information, along with words referring

to units of measure, positions and distances (figure 2). On the

contrary, social and relational words were particularly rep-

resented at various specialized sites along the superior and

middle temporal region and the IFG. This separation into

two distinct semantic networks appeared as a major principle

of brain organization, because it corresponded to the first two

principal components of variation in word-related brain

activity [25] (figure 2).

(c) Intracranial recordings
Electrophysiological signals recorded from surface and depth

electrodes in epilepsy patients confirm the joint contributions

of the bilateral intraparietal sulcus and of the ventral infero-

temporal cortex in number processing and calculation. Shum

et al. [26] were the first to demonstrate the bilateral involvement

of IT sites in number processing. These regions were initially

called ‘visual number form areas’ because of their strong

response to Arabic digits more than other visual stimuli, and

of their proximity to the ‘visual word form area’ [27] and

other category-specific regions of the ventral visual stream

[28]. However, a similar activation has now been found in con-

genitally blind people trained to recognize roman numbers

versus letters using a visual-to-music sensory-substitution

device [29]. Furthermore, IT regions do not activate only

during the visual recognition of numbers, but also during cal-

culation [30,31] (figure 3) and during advanced mathematical

reflection in professional mathematicians [8] (figure 1).

Daitch et al. [30] report how different sectors of IT cortex

respond specifically either to the presentation of numbers, to

the presentation of operation symbols, or to calculation per se.

These recent intracranial studies also show that (i) parietal

and IT activity is modulated by problem difficulty [31];

(ii) number-active sites in ventral temporal regions exhibit a

response pattern similar to and simultaneous with math-

active parietal regions during elementary calculation [30].

Finally, in direct agreement with Huth et al.’s [25] fMRI find-

ings, parietal electrodes sensitive to calculation are

transiently and specifically activated whenever numbers and

other quantities are mentioned in the midst of spontaneous

speech production [32].

(d) Neuropsychological dissociations
Within the domain of neuropsychology, i.e. the study of cogni-

tive deficits in brain-lesioned adults, double dissociations have

been observed. It is, indeed, quite frequent for patients who

suffer from acquired acalculia (impaired number processing

and calculation, typically due to a left parietal lesion) to exhibit

preserved language skills. With the exception of the multipli-

cation table, whose impairment is frequently associated with

deficits in other aspects of rote verbal memory, calculation

http://rstb.royalsocietypublishing.org/
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Figure 2. Brain activation elicited by word categories contained in naturalistic narrative stories [25]. (a) Snapshot from the explorer proposed by the Gallant lab
(http://gallantlab.org/huth2016/), showing a parietal site sensitive to various quantity- and math-related concepts. (b) Brain maps of the first and second principal
components of cerebral activation to narrative stories (image courtesy of Alexander Huth and Jack Gallant).
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skills can be selectively impaired, or on the contrary, selectively

spared relative to linguistic skills [33–35]. Most strikingly,

patients with severe aphasia may exhibit preserved mathemat-

ical and algebraic skills [36,37]. In particular, these studies

revealed the case of a patient with extensive lesions in the

left temporal lobe, who failed in matching semantically revers-

ible sentences such as ‘the man killed the lion’ to the

corresponding pictures, but performed well on algebraic and

calculation problems involving the four basic operations on

either abstract, numerical or fractional terms, and even when

those mathematical expressions required mental transform-

ations or simplifications. Dissociations between impaired

semantic knowledge and preserved knowledge of numbers

and arithmetic are also observed in many cases of semantic

dementia [38,39].
(e) Developmental deficits
Studies of developmental disorders such as dyscalculia versus

dyslexia have also revealed a frequent dissociation between

mathematical and linguistic processes. In one study [40], 8-

and 9-year-old children with dyscalculia showed specific

difficulties in task involving numbers and arithmetic, but not
in non-numerical verbal tasks. Conversely, dyslexic children

performed well in numerical calculation or comparison, but

found all verbal tasks more challenging (including the

naming of number words). At a later age, this dissociation

may persist [41]: dyslexic students experience difficulties in

associating letters with their sound but can normally associate

Arabic numerals with their corresponding magnitude,

whereas dyscalculic students show the reverse impairment.

The centrality of the dissociation between math and

non-math knowledge is also reflected in the existence of devel-

opmental disorders of primarily genetic origin that cut through

those two domains. For instance, children with Williams

syndrome possess an extended vocabulary and sophistica-

ted syntactic structures, yet their numerical and visuospatial

cognition fails to develop normally, in agreement with the

presence of cortical anomalies in the intraparietal sulcus

[42,43]. Conversely, children with autism spectrum disorder,

particularly Asperger syndrome, often exhibit preserved or

even extraordinary developed numerical and visuospatial

skills, in the face of severe deficits of language, communication,

and social cognition, accompanied by cortical abnormalities

along the superior temporal sulcus [44–46]. In the future,

such observations may play a key role in the search for genes

http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
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involved in the differential development of the corresponding

brain circuits.

( f ) Child development
Developmental studies have revealed that preverbal infants

possess sophisticated proto-mathematical intuitions prior to

language acquisition. For instance, newborns familiarized

with a certain number of auditory syllables looked longer at

an image containing the same number of objects than a different

number [47]. They were thus able to transfer abstract numerical

information from one modality to another. Furthermore, their

performance was modulated by the ratio between congruent

and incongruent numbers, in a way analogous to older children

and adults. Neuroimaging studies of 6- and 7-month-old

preverbal infants have also evidenced a numerical distance

effect, following Weber’s law, which appeared over right pos-

terior sites in studies using electroencephalography [48] or

near-infrared spectroscopy [49]. Later in childhood, brain

imaging of 3-year-old children has shown neural tuning to

numerosities in the intraparietal sulcus [50]. Crucially, an

fMRI study of 4-year-old children watching ‘Sesame Street’

educational videos has revealed a dissociation comparable to

the present one: whenever the videos talked about numbers,

activation was found in intraparietal cortex, while letter-related

materials elicited activation in Broca’s area (figure 4).
Furthermore, children’s activity in parietal cortex predicted

their performance in mathematical tests, while activity in

Broca’s area predicted performance in verbal tests [51].

(g) Cognitive anthropology
In the past decade, anthropological studies of Amazon tribes

have brought another contribution to the idea that mathematics

and language involve separate processes. Those studies show

that human adults and children who are largely deprived of

formal schooling and possess an impoverished lexicon for

numerical and geometrical concepts may still possess sophisti-

cated mathematical intuitions [52,53]. In particular, despite the

fact that Munduruku speakers do not have number words

above 5, they can estimate, represent, compare and even per-

form approximate arithmetical operations such as addition or

subtraction with far larger numbers than they can name [52].

Similar conclusions can be made in the domain of geometry.

Although Munduruku people do not have geometrical

words in their language, they can spontaneously identify and

use a wide range of geometrical concepts such as shapes

(circle, square, right-angled triangle, etc.), Euclidean properties

(parallelism, alignment, etc.), topological properties (closure,

connectedness, etc.), metric properties (distance, proportion,

etc.) and symmetries [53]. Our recent work suggests that

the capacity to combine those mathematical primitives into

http://rstb.royalsocietypublishing.org/
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nested structures is independent of other linguistic operations:

memory for geometrical sequences involves a ‘compression’

of the information into a mental ‘language of geometry’,

endowed with primitives and recursive combinatorial rules,

but independent of natural language [54].
 cietypublishing.org
Phil.Trans.R.Soc.B

373:20160515
4. Discussion
Evidence from several domains of cognitive science con-

verges to support the idea that the ability to understand the

‘language of mathematics’ dissociates from other aspects of

linguistic or semantic processing. The studies reviewed here

suggest that the behavioural dissociation between mathemat-

ical and linguistic skills is accompanied by a major neural

dissociation between math-responsive brain regions and

other areas involved in language processing and semantics.

Such a clear-cut separation may explain why acquired or

developmental mathematical impairments often leave other

aspects of language processing and comprehension

untouched, or vice versa. Indeed, this dissociation seems to

operate at both syntactic and semantic levels. In the same

way that algebraic or geometrical syntax does not seem to

recruit linguistic syntax areas [16,55], mathematical semantic

content elicits activation that spares classical regions involved

in the semantic processing of words or sentences [15].

We note in passing that even if mathematical semantic

storage is dissociated from other semantic storage, such a sep-

aration obviously does not imply that the math-related

network is disconnected from the language network—on

the contrary, our fMRI experiments imply that when subjects

hear a mathematical statement, language areas are activated

first, during the sentence processing period, and only then,

if the content is mathematically relevant does processing

continue within the math network [8]. An early proposal

for the architecture of the number system, the triple-code

model [56], postulated bidirectional exchanges between the

intraparietal sulcus (representing quantity and other aspects

of number meaning), the lateral IT regions (representing the

visual number form of Arabic digits) and the left-hemispheric

language system, including the left AG (involved in the rep-

resentation and storage of numbers and arithmetic facts in

verbal form). Our data do not contradict this model, given

that listening to mathematical sentences activated language

areas involved in syntax processing and multiword semantic

integration such as the left perisylvian regions and the left

AG. This activation was lower for mathematical than for

non-mathematical sentences, but nevertheless significant,

especially in the initial phase of sentence processing. More

crucially, during the sentence listening period of our original

experiment, a small transient activation was observed in the

left AG in the contrast for meaningful compared to meaning-

less statements, both within math and non-math domains

(see figure S12 in [8]). This finding agrees with previous sug-

gestions that the AG might be involved in the semantic

integration of individual words or concepts [57]. Surpris-

ingly, however, rote algebraic facts did not activate the AG

more than other mathematical statements in our second

experiment, but continued to activate the classical math

network. Prior findings indicated that the AG might be

involved in the retrieval of verbal numerical facts such as

multiplication facts [6,7], but the present results suggest

that algebraic identities may not be stored in the same format.
Our results also challenge the triple-code model at the level

of the lateral IT activation. While this region was thought to be

associated with the visual form of numbers [26], we now see

that it can also activate in the complete absence of visual

stimuli, both during calculation and during high-level math-

ematics [8]. For semantics, it has been suggested that the left

MTG/ITG/fusiform gyrus ‘may be a principal site for storage

of perceptual information about objects and their attributes’

[58]. By extension, we suggest that lateral IT regions might

also be a site for storage of information about the attributes

of mathematical concepts [31].

Our fMRI findings, in turn, raise many questions regard-

ing the operational definition and intrinsic characteristics of

the fields of ‘mathematics’ and ‘language’, such that they acti-

vate two dissociated brain networks. First, what is the exact

extension of the domain of mathematics? The math-respon-

sive circuit that we observed in professional mathematicians

also appears to be involved in a broad range of cognitive pro-

cesses. It activates in a variety of effortful problem-solving

tasks akin to IQ tests [10], as well as in domain-general

logical, inferential or relational reasoning [19,59,60]. Even

reflection on physics concepts such as ‘energy’ or ‘wave-

length’ elicits partially similar activations [61]. Nevertheless,

the hypothesis of a domain-general ‘multiple demand’

system [10] does not fit with the observation that this

network fails to activate during equally flexible and long-

lasting reflection on non-math-related concepts [8]. While

arithmetic, logic, geometry, math, physics and IQ tests all

share a family resemblance, identifying exactly what these

different domains share, such that they solicit similar neural

substrates, remains an open question for future research—

indeed, one that may ultimately illuminate the classical

philosophical debate on the nature of mathematical

knowledge [62].

Second, where does language stop and mathematics

begin? Though they involve distinct brain areas, language

and mathematics are often intertwined. On the one hand,

mathematical words are essential to the proper communi-

cation among mathematicians, and may also play a key role

in conceptual change such as the acquisition of the ability

to understand and compute with large numbers [4,5,52].

On the other hand, spontaneous discourse makes frequent

recourse to mathematical concepts such as number, quan-

tities, distances or measurement units—and when it does,

math-responsive areas immediately activate [25,32]. Natural

language also makes use of distinctions of geometrical,

logical or numerical origin, such as spatial prepositions,

quantifiers and the singular/dual/plural distinction. Delimit-

ing, within natural language, the nature of the processes and

concepts that do or do not activate the math-responsive

network is a second open question that remains to be

thoroughly investigated.
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