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A B S T R A C T

Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral
brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of ge-
netics, experience and education in the development of this math-responsive network, however, remain un-
resolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional
mathematicians who were blind from birth (n = 1) or became blind during childhood (n = 2). Subjects were
scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements.
Blind mathematicians activated the classical network of math-related areas during mathematical reflection, si-
milar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced
mathematical reasoning can develop in the absence of visual experience. Additional activations were found in
occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery
or a more radical repurposing of visual cortex may occur in blind mathematicians.

1. Introduction

Humans exhibit a unique ability for advanced mathematical
thought. This ability seems to be rooted in evolutionarily ancient non-
verbal systems for numbers and geometry that all humans possess from
birth and share with other animal species. Indeed, human adults with or
without full access to education, young infants, and a variety of non-
human animal species all share a capacity to estimate numerosity from
visual or auditory sets and to perform arithmetical operations over
these quantities (Feigenson et al., 2004; Gilmore et al., 2007, 2010;
Izard et al., 2009; Pica, 2004). Similarly, they are endowed with basic
geometrical skills (Dehaene et al., 2006; Lee and Spelke, 2008; Spelke
and Lee, 2012). Recent work has suggested that formal mathematics
builds upon this core set of non-verbal proto-mathematical abilities.
Behaviorally, some studies have revealed a correlation between the
accuracy of the primitive approximate number system and math
achievement at schools (Feigenson et al., 2013; Halberda et al., 2008;
Libertus, 2015; Piazza et al., 2013; Starr, 2015). In geometry, it has
been suggested that non-symbolic knowledge of geometry predicts the
ability to use symbolic geometrical cues in 4-year-old children (Dillon
et al., 2013). Furthermore, neuroimaging studies of advanced mathe-
matical reflection (Amalric and Dehaene, 2016; Monti et al., 2012) and

deductive inference (Monti et al., 2007) have revealed that the neural
substrate for advanced formal mathematics strongly overlaps regions
involved in basic numerical and spatial abilities (Daitch et al., 2016;
Husain and Nachev, 2007; Nieder and Dehaene, 2009; Shum et al.,
2013).

However, the mechanisms by which formal mathematics emerges
from proto-mathematical systems for numbers and space remain un-
known. A possibility is that mathematical representations are rooted in
visuospatial thinking and develop through visual experience. This hy-
pothesis transpires in many mathematicians’ introspective reports on
their invention processes. For instance, Albert Einstein wrote to fellow
mathematician Jacques Hadamard that "[t]he psychical entities which
seem to serve as elements in thought are certain signs and more or less
clear images which can be ‘voluntarily' reproduced and combined….
The above mentioned elements are, in my case of visual and muscular
type” (Hadamard, 1975). Support for this “visual” hypothesis can be
found in several recent findings. In Stoianov and Zorzi (2012), a deep
learning network trained with visual arrays containing different num-
bers of objects spontaneously developed representations of numerosity
similar to those identified in monkeys (Nieder, 2005). Some studies also
suggest that numerosity is an early visual feature whose extraction is
grounded, at least in part, on a form of texture perception (Burr and
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Ross, 2008; Morgan et al., 2014). At a more abstract level, it has been
suggested that the perception of specific features in our environment,
such as symmetries or angles, shapes our basic understanding of geo-
metry (Giaquinto, 2005; Howe and Purves, 2005). Visual processing has
also proven to be relevant to mathematical problem solving, especially
in the domain of algebra where the covert “movements” involved in
resolving equations were found to interact with actual motion
(Goldstone et al., 2010; Landy et al., 2008).

Neuroimaging studies of mathematical processing are also compa-
tible with the hypothesis of a visual support. In fact, the brain regions
involved in mathematical reflection, regardless of domain (arithmetic,
analysis, algebra, topology or geometry) or problem difficulty (Amalric
and Dehaene, 2016; Dehaene et al., 2003; Monti et al., 2012), include
the bilateral intraparietal sulci (IPS) and bilateral infero-temporal re-
gions. The latter are located just lateral to the ventral visual pathway
and overlap with the recently discovered “Visual number form areas”
(VNFA) (Shum et al., 2013) that systematically activate to the visual
presentation of Arabic numerals. Moreover, in (Amalric and Dehaene,
2016), during mathematical reflection, participants’ ratings of image-
ability of highly-advanced mathematical statements correlated with
brain activity in a left occipito-temporal region close to the VNFA. As
for the parietal lobe, it is known to be involved in visually guided eye
and hand movements, but is also activated conjointly with frontal eye
fields during mental arithmetical problems (Knops et al., 2009). It also
intervenes in mental rotation (Culham and Kanwisher, 2001; O’Boyle
et al., 2005).

One major issue for a visual origin of mathematical abilities, how-
ever, lies in the fact that mathematical knowledge also develops in the
blind (Landau et al., 1981; Abboud et al., 2015; Kanjlia et al., 2016).
The so-called “visual” number form area may, in fact, be activated in
congenitally blind subjects when numerals are presented auditorily via
visual-to-auditory sensory substitution (Abboud et al., 2015). Blind
subjects may even become professional mathematicians, although this
is much less documented scientifically (Jackson, 2002). There are ac-
tually many examples of famous blind mathematicians in the history of
mathematics, such as Leonhard Euler who was blind during the two last
decades of his life, or Nicholas Saunderson who went blind in his first
year and yet became the Lucasian professor of Mathematics at Cam-
bridge University. In fact, blind mathematicians can be top-of-the-class
geometers, like the French mathematician Bernard Morin who first
constructed a sphere eversion, topologists such as the famous Russian
mathematician Pontryagin, or analysts like the American mathemati-
cian Lawrence Baggett.

Two alternative hypotheses may account for the existence of ta-
lented blind mathematicians. The first one assumes that blind mathe-
maticians learn mathematics by compensating through other mod-
alities. In this case, the same behavioral outcome – high-level
mathematics – would arise from very different cerebral substrates (e.g.
areas involved in auditory or tactile processing). The second hypothesis
assumes that mathematical activity is in fact based on highly abstract
representations which are amodal rather than primarily visual. Several
findings indeed suggest that the mental representation of numbers
consists of highly abstract entities that can be accessed indifferently
from visual, auditory or tactile input (Piazza et al., 2006; Riggs et al.,
2006; Tokita et al., 2013). There is also evidence of integration of nu-
merical information presented in two different modalities in newborns
(Izard et al., 2009), in 6-month old infants (Feigenson, 2011), in chil-
dren (Barth et al., 2005), in human adults (Barth et al., 2003) and in
monkeys (Jordan et al., 2005; Jordan et al., 2008).

Recently, Kanjlia et al. (2016) used fMRI to investigate the brain
mechanisms of mental arithmetic in the blind. Congenitally blind adults
were asked to decide whether two equations (e.g. 7− 2 = x;
6 − 1 = x) had the same result. The results indicated that (1) they
performed similarly to blindfolded sighted participants and (2) they
activated a classical bilateral fronto-parietal network, very similar to
what was observed in sighted subjects, the only difference being an

additional activity in occipital cortex. These findings show that nu-
merical thinking can develop in the absence of visual experience and is
rooted in typical number-related brain circuits, therefore lending sup-
port to our second hypothesis.

Many mathematicians, however, argue that simple numerical
knowledge may not be representative of the broader field of mathe-
matics, which encompasses domains such as geometry or topology
which might conceivably depend on visual experience. Here, we in-
tended to bring some light to bear on this topic through neuroimaging
studies of advanced mathematical concepts (rather than the basic ar-
ithmetic studied by Kanjlia et al., 2016) in three exceptional cases of
blind professional mathematicians. Those subjects accepted to partici-
pate in two fMRI experiments similar to our prior work (Amalric and
Dehaene, 2016). During fMRI, they were asked to quickly evaluate the
truth value of various auditory mathematical and nonmathematical
statements with high-level content.

Note that, although our fMRI images were acquired in adults and
therefore reflected the end point of a long developmental process, they
should still be informative on the role of visual experience in mathe-
matical development. This is because, amongst our three participants,
one was blind from birth and all had become blind before the age of 11,
and therefore acquired high-level mathematical concepts in the absence
of visual experiment. If visual experience plays a dominant role in
shaping cerebral representations of advanced mathematical concepts,
then different brain regions should activate in the blind compared to
sighted mathematicians. In this case, even the two blind mathemati-
cians who have developed basic mathematical knowledge while they
could still see may recruit different brain regions for advanced math-
ematical concepts. On the contrary, if mathematical representations
develop independently of visual experience, then the same brain re-
gions should activate during mathematical reflection irrespective of
blindness. Finally, if occipital cortex can be recycled (Dehaene and
Cohen, 2007) or re-used in blind subjects, as previously observed for
instance by Kanjlia et al. (2016) for arithmetic and by Bedny et al.
(2011) for language processing, then we might expect an additional
activation of occipital cortex in blind subjects.

2. Results

2.1. Description of the blind participants

Subject A, a 46-years-old male, progressively became blind over a
period extending from 3 to 10 years of age, because of optic nerve
damage arising from a neurological impairment that also caused facial
hemiplegia. He nevertheless followed regular schooling and exhibited
precocious mathematical skills. Notably, he explained that mathema-
tical Braille was not well adapted to mathematical lessons in high
school, so that he had to do mathematics only mentally. He is now
teaching arithmetic and geometry in a top-ranking French university.
Surprisingly perhaps, he declared having strong number-color sy-
nesthesia to this present day.

Subject B, a 54-years-old male, became blind at the age of 11 as a
combined result of glaucoma and Marfan syndrome, a genetic disorder
of connective tissue that commonly affects the eyes by inducing lens
dislocation. He is a prominent mathematician, essentially known for a
major breakthrough in the domain of contact geometry. Like subject A,
subject B reported a vivid number-color synesthesia.

Subject C, a 36-years-old male, is congenitally blind due to bilateral
anophthalmia. He followed typical university training in mathematics
and computer sciences, and defended a PhD thesis on Lambda calculus.
He now works as a research engineer in a French computer science
laboratory.

2.2. Experiment 1: advanced mathematical statements

In a first experiment, participants were presented with the difficult
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mathematical and nonmathematical statements used in (Amalric and
Dehaene, 2016) and had to judge whether they were true, false or
meaningless. Stimuli spanned various domains of math including ana-
lysis (e.g. “Any compact topological group admits a unique probability
measure invariant under left-translations”; true), algebra (e.g. “There
exists an infinite order group that admits a finite number of sub-
groups”; false), topology (e.g. “The graph of the completion of a com-
pact group is dense in a partially connected open set”; meaningless) and
geometry (e.g. “The Euclidean orthogonal group has exactly two con-
nected components”; true), as well as nonmath problems (e.g. “In An-
cient Greece, a citizen who could not pay his debts was made a slave”;
true). After fMRI, participants were presented again with all statements
and were asked to give ratings about various aspects of these state-
ments, including their “imageability” (see Amalric and Dehaene, 2016,
for a full description of the Methods). Within the group of sighted
mathematicians, we had previously found that bilateral intraparietal
sulci (IPS), bilateral inferior temporal regions (IT), and bilateral sites in
dorsolateral, superior and mesial prefrontal cortex (PFC) showed
greater activation to meaningful math than to meaningful nonmath
judgements during the reflection period, regardless of the mathematical
domain or the perceived difficulty (Fig. 2A, for more details, see
Amalric and Dehaene (2016)).

Behaviorally, an ANOVA with group and problem type as factors
revealed no significant main effect of group (F(1,16) = 0.005,
p = 0.95) or math domain (F(3,48) = 0.93, p = 0.43), nor a group by
domain interaction (F(3,48) = 2.65, p = 0.059). Subject A answered
correctly to 66.7% of the math statements and 62.5% of the nonmath
statements, which is very similar to the group of sighted mathemati-
cians (math: 63%, nonmath: 65%). Subject B responded correctly to
78.6% of math statements and 73.3% of nonmath statements, which is
slightly but not significantly above the average of our previous group of
15 sighted professional mathematicians. Subject C found experiment 1
challenging: he succeeded only with 44.4% of math statements, com-
pared to 64.3% of nonmath statements.

For subject A, examination of the contrast of meaningful math
versus meaningful nonmath during the reflection period revealed acti-
vation in bilateral IPS, IT, mesial and inferior PFC (Fig. 2C, Table S1).
The time course of activation in representative areas of this math-re-
sponsive network showed that the fMRI signal increased for all four
domains of math, while nonmath statements induced a slow deactiva-
tion (Fig. 2F). Additional activation was observed in bilateral occipital
cortex (Figs. 2 C, 4, Table S1). Virtually the same activation was ob-
served when comparing meaningful versus meaningless mathematical
statements. Subject A’s average imageability rating equaled 42.7% for
math statements and 10.3% for nonmath statements. This imageability
rating correlated with activation in bilateral middle frontal gyri (BA6),
occipital cortex along the calcarine sulci and more dorsal occipital sites,
and at several parietal foci (Table S3).

For subject B, math reflection induced more activation than non-
math reflection in several bilateral parietal, occipito-parietal and occi-
pital sites, in bilateral IT regions, as well as in bilateral prefrontal foci
(Fig. 2D, Table S1). Again, similar activation was observed when ex-
amining the contrast of meaningful versus meaningless math judg-
ments. Global imageability rating equaled 29.2% for math statements,
and 13.5% for nonmath statements. Imageability rating for math
statements correlated with activation in bilateral occipital cortices, in-
cluding at the junction with the precuneus, and bilateral superior
frontal sulci (Table S3).

Despite subject C’s difficulties with math problems, there was small
but significant activation elicited by mathematical reflection more than
nonmathematical reflection in a few bilateral occipito-parietal and oc-
cipital foci, in right IPS and right MFG (Fig. 2E, Table S1). Subject C
reported no mental imagery in this experiment, therefore preventing us
from studying the correlation of imageability with brain activation.

These results suggest that activations observed in each individual
blind mathematician and in the group of sighted mathematicians were

similar apart from an occasional additional activation in occipital
cortex. This conclusion was confirmed by a group analysis comparing
15 sighted versus 3 blind mathematicians. The main effect of math >
nonmath in the blind again revealed a parieto-occipital network, plus
bilateral activation in inferior temporal regions (Fig. 2B). There was a
significant intersection of the math > nonmath networks in sighted
and blind mathematicians in bilateral intraparietal sulci and inferior
temporal cortices. The interaction with group, searching for greater
activation to mathematics in blind than in sighted mathematicians
(Blind > Sighted × math > nonmath), revealed activation ex-
clusively in left occipital cortex (Fig. 4). A symmetrical activation was
seen in the right hemisphere when relaxing the cluster-wise threshold
(p < 0.05 uncorrected). Examination of fMRI signal for subject A re-
vealed that even if both math and nonmath reflection activated those
occipital regions, activation remained transient for nonmath statements
(Fig. 4).

2.3. Experiment 2:simpler mathematical facts

We sought to replicate those results in a second experiment focusing
on simpler mathematics. Statements were either true or false and
consisted in well-known mathematical facts such as classical algebraic
identities (e.g. “(a + b)2 equals a2 + b2 + 2ab”) or trigonometric for-
mulae (“cos(a + b) equals cos(a)cos(b)-sin(a)sin(b)”), algebraic equa-
tions (“(z − 1)2 equals z2 − 2z + 1”),trigonometric equations (“sin(x
+ π) equals − sin(x)”), complex number properties (“the angle be-
tween i and 1 + i equals π/4”), and non-metric Euclidean geometry
(“Any equilateral triangle can be divided into two right triangles”).
These were compared to declarative nonmathematical facts about art
(“Pantomime relies on attitude and gesture, without speaking”).
Auditory controls consisting of series of beeps were also presented.

Overall performance for math statements reached 78.6% correct in
both groups of sighted and blind mathematicians, thus confirming that
the statements were simpler than in experiment 1. For example, ∼90%
of classical algebraic identities (called rote facts in Fig. 1) were cor-
rectly classified, as were ∼84% of algebraic equations. Trigonometric
formulae were the most difficult, with an average performance of
58.1% correct. Complex number properties were quite easy for sighted
mathematicians (80.6%), and subjects A and B (75% and 80%), but
appeared to be harder for subject C (50%). If anything, geometrical
statements were responded slightly better by blind mathematicians
(respective correct rates: 100%, 87.5% and 83.3%) than by sighted
mathematicians (79.9%). Overall, however, an ANOVA with group and
problem type as factors revealed no significant main effect of group (F
(1,15) = 0.07, p = 0.80) nor a group by type interaction (F(4,60)
= 1.46, p = 0.23).

In fMRI, within the group of sighted mathematicians, extensive
activations were again elicited by math more than by nonmath state-
ments in bilateral IPS, bilateral IT regions, bilateral superior, and
middle frontal regions (Brodmann areas 9 and 46) (Fig. 3A, Table S2).
These results, which will be detailed in another publication, indicate
that the classical mathematical network is highly reproducible even
when simple and well-known mathematical facts are used.

In blind subject A, the contrast of math versus nonmath statements
again revealed activation in bilateral IPS and bilateral IT and bilateral
MFG (BA 9), plus activation in a left occipito-parietal region and bi-
lateral lateral occipital foci (Fig. 3C, Table S2). Examination of the time
course of activation in bilateral IPS and IT also revealed a sharp and
sustained activation for all categories of math, a slow deactivation for
declarative nonmath facts, and no activation for auditory control beeps
(Fig. 3F).

For subject B, the same contrast revealed activation in various bi-
lateral parietal and occipital sites, bilateral IT regions, and some bi-
lateral middle prefrontal foci (Fig. 3D, Table S2).

For subject C, math statements, relative to nonmath statements,
elicited more activation in bilateral IPS, IT, MFG (BA 9 and BA46), plus
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one occipital focus near the calcarine sulcus (Fig. 3E, Table S2). Ex-
amination of the time course of activation in bilateral IPS and IT also
revealed a sharp and sustained activation for all categories of math, a
slow deactivation for declarative nonmath facts, and no activation for
auditory control beeps. We note here that, while complex statements
from experiment 1 did not elicit any mental imagery in subject C, he
informally reported vivid mental imagery for trigonometry, complex
numbers and geometrical statements in this experiment.

At the group level, pooling over our three blind mathematicians,
math versus nonmath problems elicited activation in bilateral IPS, oc-
cipito-parietal junction, left IT regions and left MFG (Fig. 3B). There
was again a significant intersection of the math > nonmath networks
in sighted and blind mathematicians in bilateral intraparietal sulci, left
inferior temporal cortex and MFG (BA9). The only group difference
between blind and sighted mathematicians during the resolution of
math problems more than during the resolution of nonmath problems,
was located in two bilateral occipital regions located close to but
slightly anterior and inferior to the left occipital region identified in
experiment 1 (Fig. 4). Examination of the fMRI signal over time in these
regions revealed a profile of activation similar to the one observed in
the rest of the math-responsive network: a fast activation for all types of
math problems and no activation or even a slow deactivation for non-
math problems and the auditory control condition.

3. Discussion

In two high-resolution fMRI experiments contrasting math versus
nonmath reflection, we observed in blind mathematicians a consistent
and systematic activation of the math-responsive network that we had
previously identified in sighted professional mathematicians (Amalric
and Dehaene, 2016). Indeed, bilateral intraparietal, inferior temporal
and dorsal prefrontal sites were activated in both experiments in the
group of sighted mathematicians as well as in each individual blind
mathematician. The only exception was in experiment 1 for subject C

who exhibited very little activation. This negative finding may be due
to the fact that subject C received less math training than the others and
found experiment 1 harder. In experiment 2, however, subject C ex-
hibited activations to simpler math statements in a set of areas that
were very similar to the network exhibited in the sighted group and in
subjects A and B.

Previous studies have shown that the parietal lobe, involved in
mathematical skills, also houses a diversity of areas for visuospatial
functions such as orienting of visual gaze and attention, visually guided
hand movements, mental rotation of objects, or the maintenance of
visuospatial information in working memory (Hubbard et al., 2005;
Husain and Nachev, 2007; Simon et al., 2002; Zacks, 2008). Similarly,
inferior temporal activation during mathematical reflection has pre-
viously been linked to the recognition of visual Arabic numerals (Shum
et al., 2013) and visually presented mathematical expressions (Amalric
and Dehaene, 2016). Nevertheless, the present results, together with
similar prior findings on number recognition and calculation in blind
subjects (Abboud et al., 2015; Kanjlia et al., 2016) refute the hypothesis
of a link between mathematical expertise and visual experience. In-
stead, they suggest that cortical representations of advanced mathe-
matics, involving the IPS and inferior temporal regions as essential
nodes, can develop independently of visual experience.

It may seem surprising that all blind participants exhibited activa-
tion in bilateral inferior temporal regions that have been described as
the visual number form areas (VNFA), because these areas have been
reported to be specifically responsive to written Arabic numerals (Shum
et al., 2013). However, a similar activation was observed using sight-to-
sound sensory substitution in congenitally blind individuals trained to
hear colored-shapes and asked to interpret the shapes I, V, and X as
Roman numerals (Abboud et al., 2015). Our result thus supports the
idea that the VNFA encodes mathematical symbols and concepts in an
abstract way, regardless of any specific sensory modality. Indeed, we
found that this area is also responsive to written mathematical formulas
in professional mathematicians (Amalric and Dehaene, 2016). A recent

Fig. 1. Experimental paradigms and behavioral re-
sults. (A) In experiment 1, auditory math and non-
math statements were announced by a beep and
followed by a 4 s reflection period. Another beep
announced the 2 s response period during which
subjects were asked to press one of three buttons
placed in right hand to indicate whether they judged
the statement as true, false, or meaningless. A resting
period of 7 s ended each trial. (B) Experiment 2 was
similar to experiment 1 except that math and non-
math statements were simpler so that subjects were
asked for a speeded response during a single 2.5 s
period ending with a beep. (C) The two bar plots
represent the percentage of correct responses in ex-
periments 1 and 2 (bars = one standard error of the
mean). On average, sighted and blind mathemati-
cians performed virtually identically. Dashed lines
represent the chance level (33.3% in experiment 1,
50% in experiment 2).
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Fig. 2. Math-responsive network in blind and sighted mathematicians in experiment 1. Whole-brain inflated maps and coronal slice showing the contrast of meaningful math versus
meaningful nonmath reflection in 15 sighted mathematicians (A), 3 blind mathematicians (B), and each blind subject individually (C–E). Contrast maps are display at punc < 0.001
uncorrected at the voxel level, and pFDR < 0.05 corrected for multiple comparisons at the cluster level. (F) Average time course of the fMRI signal in subjects A, B and C in representative
areas of activation: bilateral intraparietal sulci (IPS) and inferior temporal (IT) regions.
Note: explore these data yourself at http://www.unicog.org/webdemo/Amalric_oct2016/.
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intracranial study indicates that this region contains distinct but in-
termingled sites sensitive to Arabic numerals and to calculation itself
(Daitch et al., 2016). Thus, the contribution of this region to mathe-
matics appears to be much broader than its label suggests, and it is
probably only because of difficulties in imaging this temporal region

with fMRI that this region was not previously considered as a core re-
gion for number sense.

The behavioral performance of sighted and blind mathematicians
did not provide any evidence that training via nonvisual modalities
gives blind individuals any specific advantage or disadvantage in

Fig. 3. Math-responsive network in blind and sighted mathematicians in experiment 2. Same format as Fig. 2.
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mathematical processing compared to sighted individuals. Indeed, un-
like in (Castronovo and Seron, 2007) where blind participants per-
formed better in numerosity estimation than sighted subjects, blind
individuals in our tasks did not judge the truth value of mathematical
statements significantly better than sighted participants. However, we
examined only the endpoint of mathematical training in adults, and our
findings do not preclude the possibility that differences in mathematical
skills and conceptual understanding would be observed during devel-
opment.

Turning to brain-imaging results, a comparison of blind and sighted
participants in our experiments revealed an additional activation in the
occipital cortex of blind mathematicians while they were thinking
about math problems. This finding is compatible with many recent
observations that blindness does not lead to a lack of activity of “visual”
cortex during tactile or auditory tasks (Bedny et al., 2011; Raz et al.,
2005). In particular, a similar activation of occipital cortex has recently
been observed in congenitally blind adults performing mental calcula-
tion (Kanjlia et al., 2016). To the best of our knowledge, however, this
is the first time that occipital activation is observed in an activity as
abstract and high-level as professional mathematics.

We note in passing that, in our study, even though all three blind
mathematicians exhibited occipital activation during mathematical
thinking, the amount and location of such activation differed among the
three individuals. While an extensive activation was seen in bilateral
occipital cortex in subject A, who became blind between the age of 3
and 10, smaller clusters of activation in right occipital cortex and in the
calcarine sulcus were observed in subject B (who became blind at the
age of 11), and only very small but significant activation was seen in the
calcarine sulcus in subject C (who was congenitally blind). It is however
hard to explain such inter-individual differences by applying the con-
clusions extracted from group analysis in the literature. Indeed, our
results do not agree for example with studies showing greater occipital
activation to auditory verbal tasks in early-blind than in late-blind
people (Bedny et al., 2012; Burton, 2003). Note however that all our
participants became blind before ages that usually mark the limit be-
tween early and late blindness, i.e. 14 (Cohen et al., 1999; Wan et al.,
2010) or 16 (Sadato et al., 2002). Some studies have also suggested that
the visual cortex is recruited at a level that depends on performance
(Amedi et al., 2008; Amedi et al., 2003). However, again, this claim
does not seem to apply to the present study, given that subject B

Fig. 4. Additional occipital activation elicited by math in blind mathematicians. (A) Occipital coronal slices showing the interaction of group (Blind > Sighted) and statement type
(math > non-math) in experiment 1 (top panel) and experiment 2 (bottom panel). (B) Occipital coronal slices show the activation elicited by math > nonmath in each blind subject and
each experiment. (C) Temporal profile of activation in left and right occipital cortices in subject A in each experiment.
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performed slightly better than subject A but showed less activation in
occipital cortex. In the present study, it would in fact be bold to draw
any conclusions regarding the causes of the observed differences in
occipital activation in only three subjects whose individual histories
differed massively in the onset and the cause of blindness (optic nerve
damage, glaucoma, and anophthalmia).

How can we account for the additional occipital activation in blind
participants compared to sighted subjects? We might first speculate that
they entertained a form of mental imagery. Indeed, subject A, who
exhibited the most extensive occipital activation, also reported a great
amount of imageability during math in experiment 1. Furthermore, the
two participants who were not congenitally blind reported number-
color synesthesia. Subject C also reported that statements dealing with
trigonometry or geometry elicited vivid mental imagery. Similar reports
of mental imagery have already been discussed in blind individuals
during mental rotation of objects (Arditi et al., 1988), drawing (Amedi
et al., 2008), or Braille reading (Striem-Amit et al., 2012). There is
nothing contradictory in the possibility that blind subjects develop
sufficient intuitions of what vision is as to end up forming and ma-
nipulating mental images. Indeed, Denis Diderot, in his celebrated
Letter on the Blind (1749), already noted how

“Saunderson was extremely successful as professor of mathematics
at the University of Cambridge. He gave lessons in optics, he lec-
tured on the nature of light and colors, he explained the theory of
vision; he wrote on the properties of lenses, the phenomena of the
rainbow, and many other subjects connected with sight and its
organ.”

Assuming the mental imagery hypothesis, our results however query
the necessity of mental imagery to mathematical processing. Indeed,
the amount of occipital activation varied across blind participants, even
though they all performed similarly in experiment 2. We might thus
think that the mathematical concepts that we studied here are likely to
be encoded in an abstract manner, allowing blind individuals to ma-
nipulate them through nonvisual representations. According to this
view, vision could simply be the preferred or the most “advantageous”
(Poincaré, 1902) modality by which to convey mathematical informa-
tion in sighted people. This hypothesis is compatible with studies
showing that visual features are relevant to mathematical under-
standing (Goldstone et al., 2010; Stoianov and Zorzi, 2012).

Furthermore, the mental imagery hypothesis conflicts with the fact
that occipital activations were absent in sighted participants, even
though they too reported high levels of imageability. An alternative to
this hypothesis, therefore, is that the occipital activation reflects
“neuronal recycling” (Dehaene and Cohen, 2007), i.e. a repurposing of
part of the visual cortex towards a related function which would be
useful to mathematical processing. Indeed, activation in occipital cor-
tices of blind individuals overlap with areas that, in sighted individuals,
are heavily influenced by top-down visual attention (Martínez et al.,
1999) and include retinotopic maps or topographically organized visual
areas that may constitute a topographic buffer (Kosslyn, 2005) de-
picting shapes (Vinberg and Grill-Spector, 2008). Such retinotopic maps
might therefore be particularly appropriate to support the mental ma-
nipulation of geometrical shapes or spatial diagrams that are central to
mathematics, regardless of the modality in which they are initially
conveyed.

Finally, a third account of the occipital activation may also be
proposed, namely a radical reorientation of visual cortex for a com-
pletely novel use, unrelated to the normal role of this region in forming
retinotopic maps and processing shapes. Indeed, several studies have
shown that occipital cortex may be also activated in congenitally blind
individuals during nonmathematical tasks such as sentence processing
and verbal working memory, with a profile similar to the one observed
in Broca’s area (Amedi et al., 2003; Bedny et al., 2011; Lane et al., 2015;
Röder et al., 2002). It is hard to see what kind of visual imagery or
neuronal recycling could explain these language-related occipital

activations. Rather, it seems plausible that a broad form of plasticity,
particularly in the developing brain, could lead to a radical repurposing
of occipital cortices towards high-level cognitive functions, including
mathematical thinking. This radical plasticity hypothesis, however,
would still need to explain the recent observation that, in the blind,
distinct and reproducible sectors of occipital cortex are allocated to
number-related and language-related functions, whose resting-state
activity patterns correlate respectively with the frontoparietal number
network and the left-hemispheric language network (Kanjlia et al.,
2016). This result, suggesting that pre-existing connectivity to distant
areas may account for the specialization of occipital cortex in the blind,
is in agreement with the neuronal recycling hypothesis (Hannagan
et al., 2015). We acknowledge that, at present, our observations are
simply insufficient to convincingly distinguish among those three in-
terpretations of occipital activation during mathematical processing in
the blind.

Regarding our original question, however, the results are un-
ambiguous in supporting the hypothesis that visual experience is not
necessary for the development of a normal cerebral representation of
advanced mathematical concepts. Given that the activation during
mathematical judgments overlapped with regions classically involved
in the mental representation of space and number, in both sighted and
blind subjects, our results are compatible with the hypothesis that ad-
vanced mathematics builds upon abstract and amodal systems for
number and space, which can develop in the absence of visual experi-
ence.

4. Methods

4.1. Participants

Three blind mathematicians and 20 sighted mathematicians parti-
cipated in this study. The latter were all professional mathematicians,
i.e. full-time researchers and/or professors in mathematics. For more
details regarding the subjects who participated in the first experiment
(n = 15), see Amalric and Dehaene (2016). The second experiment
(n = 14) comprised 5 subjects who already participated in experiment
1 and 9 new subjects with equivalent academic background. All ex-
periments were approved by the regional ethical committee for bio-
medical research, and subjects gave informed consent after they read or
heard (in case of the blind) consent information.

4.2. Experiment 1

Participants were presented, in semi-random order, with spoken
mathematical statements that belonged to analysis, algebra, topology
and geometry, and to non-mathematical statements. Within each cate-
gory, 6 statements were true, 6 were false, and 6 were meaningless. All
meaningful statements bore upon non-trivial facts which required lo-
gical reflection. Immediately after fMRI, a paper questionnaire allowed
to reexamine all statements in the same order. For each of them, par-
ticipants were asked to rate, on a scale from 0 to 7, several subjective
features such as their confidence in their answer or the “imageability”
of the statements. Blind participants were read each question by the
experimenter and responded orally.

4.3. Experiment 2

Participants were exposed to a simpler set of spoken mathematical
and non-mathematical statements than in experiment 1. Each statement
was either true or false. One category of mathematical statements
consisting in canonical algebraic identities and trigonometric formulae
was likely to be known by heart. Another category consisted in alge-
braic equations. The three remaining categories (trigonometry, com-
plex numbers, and geometry) required to visualize a simple mathema-
tical fact concerning the trigonometric circle, the complex plane, or
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geometrical shapes. Finally, non-mathematical statements were de-
clarative facts about music, painting, literature or movies. Series of pure
tone beeps with the same average duration as the statements were also
presented as a control for the presence of auditory activation. When the
last beep had a higher pitch than the others, subjects were asked to
respond “true”, and “false” otherwise. This experiment was divided into
7 runs of 12 statements each, including at least one exemplar of each
sub-category.

All statements were recorded using Audacity by a female native
French speaker who was familiar with mathematical concepts. Within
each experiment, statements from the different categories were mat-
ched in syntactic construction, number of syllables and duration.

Note that all statements used in experiments 1 and 2 can be found
online at http://www.unicog.org/webdemo/Amalric_oct2016/.

4.4. Procedure

In both experiments, the only display on screen was a fixation cross
on a black background, which sighted participants had to fixate con-
tinuously. Each trial started with a beep and a color change of the
fixation cross (which turned to red), announcing the onset of the
statement. In experiment 1, participants were given a fixed reflection
period of 4 s following auditory presentation. In experiment 2, they
were asked to answer as quickly as they could. In the latter case, a
maximum of 2.5 s was left for the reflection and the response. In both
experiments, the response period started and ended with a beep, and
was signaled by the fixation cross turning to green. In experiment 1,
subjects gave their evaluation of the sentence (true, false, or mean-
ingless) by pressing one of three corresponding buttons held in the right
hand. In experiment 2, they pressed the button held in the right hand
for true, and held in the left hand for false. Each trial ended with a 7-s
resting period (Fig. 1).

4.5. fMRI data acquisition and analysis

We used two 3-T whole body systems (Siemens Trio and Prisma)
with high-resolution multiband imaging sequences developed by the
Center for Magnetic Resonance Research (CMRR) (Xu et al., 2013)
(multiband factor = 4, Grappa factor = 2, 80 interleaved axial slices,
1.5 mm thickness and 1.5 mm isotropic in-plane resolution, ma-
trix = 128 × 128, TR = 1500 ms, TE = 32 ms). For sighted mathe-
maticians, a 32 channel head-coil was used for experiment 1 and a 64
channel head-coil for experiment 2. All three blind mathematicians
were scanned with a 32 channel head-coil.

Using SPM8 software, functional images were first corrected for
slice timing, realigned, normalized to the standard MNI brain space,
and spatially smoothed with an isotropic Gaussian filter of 2 mm
FMWH. A two-level analysis was then implemented in SPM8. For each
participant, fMRI images were high-pass filtered at 128s. Then, time
series from experiment 1 and experiment 2 were modelled separately.
For experiment 1, two regressors were defined for each sentence, one
capturing the activation to the sentence itself (kernel = sentence
duration) and the other capturing the activation during reflection
(kernel = reflection duration). For experiment 2, time series was
modelled using a single regressor per statement, with a kernel corre-
sponding to statement presentation plus the mean reaction time for that
subject. We then defined subject-specific contrasts by comparing the
activation evoked by two subsets of sentences during the reflection
period. We also used subjective imageability ratings of math statements
to compute a normalized and centered SPM contrast. Regressors of non-
interest included the six movement parameters for each run. Within
each auditory run, additional regressors of non-interest were added to
model activation to the alert signals and to the button presses.

For the second-level group analysis, individual contrast images for
each of the experimental conditions relative to rest were smoothed with
an isotropic Gaussian filter of 5 mm FWHM, and entered into a second-

level whole-brain ANOVA with stimulus category as within-subject
factor. All brain activation results are reported with a clusterwise
threshold of p < 0.05 corrected for multiple comparisons across the
whole brain, using an uncorrected voxelwise threshold of p < 0.001.
Individual and averaged time courses of activation were plotted after
averaging over spheres of 6 mm centered on the principal peaks of
activation observed in the contrast of math versus nonmath statements
when pooling across both experiments.
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